ST LRI1K User Manual

1024-bit EEPROM tag IC at 13.56 MHz, with 64-bit UID and
Sawn and bumped wafer
kill code, ISO 15693 and ISO 18000-3 Mode 1 compliant
Features
ISO 15693 standard fully compliant
ISO 18000-3 Mode 1 standard fully compliant
To tag: 10% or 100% ASK modulation using
1/4 (26 Kbit/s) or 1/256 (1.6 Kbit/s) pulse position coding
From tag: load modulation using Manchester
coding with 423 kHz and 484 kHz subcarriers in low (6.6 Kbit/s) or high (26 Kbit/s) data rate mode. Supports the 53 Kbit/s data rate with Fast commands
Internal tuning capacitor (21 pF)
1 000 000 Erase/Write cycles (minimum)
40 year data retention (minimum)
1024-bit EEPROM with Block Lock feature
64-bit unique identifier (UID)
Electrical article surveillance capable (software
controlled)
Kill function
Read & Write (block of 32 bits)
5 ms programming time
LRI1K
November 2010 Doc ID 17170 Rev 3 1/86
www.st.com
1
Contents LRI1K
Contents
1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Initial dialogue for vicinity cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.1 Power transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.2 Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.3 Operating field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2 Communication signal from VCD to LRI1K . . . . . . . . . . . . . . . . . . . . . 14
3 Data rate and data coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Data coding mode: 1 out of 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Data coding mode: 1 out of 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 VCD to LRI1K frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Start of frame (SOF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4 Communications signal from LRI1K to VCD . . . . . . . . . . . . . . . . . . . . 20
4.1 Load modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Data rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5 Bit representation and coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1 Bit coding using one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.1 High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.2 Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Bit coding using two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.1 High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.2 Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6 LRI1K to VCD frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.1 SOF when using one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.1.1 High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.1.2 Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2/86 Doc ID 17170 Rev 3
LRI1K Contents
6.2 SOF when using two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2.1 High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2.2 Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3 EOF when using one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3.1 High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3.2 Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.4 EOF when using two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.4.1 High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.4.2 Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7 Unique identifier (UID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8 Application family identifier (AFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9 Data storage format identifier (DSFID) . . . . . . . . . . . . . . . . . . . . . . . . . 30
9.1 CRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
10 LRI1K protocol description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
11 LRI1K states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
11.1 Power-off state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
11.2 Ready state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
11.3 Quiet state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
11.4 Selected state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
12 Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
12.1 Addressed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
12.2 Non-Addressed mode (general request) . . . . . . . . . . . . . . . . . . . . . . . . . 35
12.3 Select mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
13 Request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
13.1 Request flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
14 Response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
14.1 Response flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
14.2 Response error code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Doc ID 17170 Rev 3 3/86
Contents LRI1K
15 Anticollision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
15.1 Request parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
16 Request processing by the LRI1K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
17 Explanation of the possible cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
18 Inventory Initiated command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
19 Timing definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
19.1 t1: LRI1K response delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
19.2 t2: VCD new request delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
19.3 t
: VCD new request delay in the absence of a response from the LRI1K 46
3
20 Commands codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
20.1 Inventory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
20.2 Stay Quiet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
20.3 Read Single Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
20.4 Write Single Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
20.5 Lock Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
20.6 Read Multiple Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
20.7 Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
20.8 Reset to Ready . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
20.9 Write AFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
20.10 Lock AFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
20.11 Write DSFID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
20.12 Lock DSFID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
20.13 Get System Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
20.14 Get Multiple Block Security Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
20.15 Kill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
20.16 Write Kill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
20.17 Lock Kill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
20.18 Fast Read Single Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
20.19 Fast Inventory Initiated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
20.20 Fast Initiate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4/86 Doc ID 17170 Rev 3
LRI1K Contents
20.21 Fast Read Multiple Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
20.22 Inventory Initiated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
20.23 Initiate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
21 Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
22 DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
23 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Appendix A Anticollision algorithm (Informative) . . . . . . . . . . . . . . . . . . . . . . . . 81
A.1 Algorithm for pulsed slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Appendix B CRC (Informative) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
B.1 CRC error detection method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
B.2 CRC calculation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
B.3 Application family identifier (AFI) (informative) . . . . . . . . . . . . . . . . . . . . . 84
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Doc ID 17170 Rev 3 5/86
List of tables LRI1K
List of tables
Table 1. Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 2. LRI1K memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 3. 10% modulation parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 4. Response data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 5. UID format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 6. CRC transmission rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 7. VCD request frame format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 8. LRI1K response frame format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 9. LRI1K response depending on request flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 10. General request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 11. Definitions of request flags 1 to 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 12. Request flags 5 to 8 when bit 3 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 13. Request flags 5 to 8 when bit 3 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 14. General response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 15. Definitions of response flags 1 to 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 16. Response error code definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 17. Inventory request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 18. Example of the addition of 0-bits to an 11-bit mask value . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 19. Timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 20. Command codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 21. Inventory request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 22. Inventory response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 23. Stay Quiet request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 24. Read Single Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 25. Read Single Block response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . 50
Table 26. Block Locking status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 27. Read Single Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 28. Write Single Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 29. Write Single Block response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . 52
Table 30. Write Single Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 31. Lock Single Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 32. Lock Block response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 33. Lock Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 34. Read Multiple Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 35. Read Multiple Block response format when Error_flag is NOT set. . . . . . . . . . . . . . . . . . . 54
Table 36. Block Locking status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 37. Read Multiple Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . 54
Table 38. Select request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 39. Select Block response format when Error_flag is NOT set. . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 40. Select response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 41. Reset to Ready request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 42. Reset to Ready response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . 57
Table 43. Reset to ready response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 44. Write AFI request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 45. Write AFI response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 46. Write AFI response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 47. Lock AFI request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 48. Lock AFI response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6/86 Doc ID 17170 Rev 3
LRI1K List of tables
Table 49. Lock AFI response format when Error_flag is set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 50. Write DSFID request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 51. Write DSFID response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 52. Write DSFID response format when Error_flag is set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 53. Lock DSFID request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 54. Lock DSFID response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 55. Lock DSFID response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 56. Get System Info request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 57. Get System Info response format when Error_flag is NOT set. . . . . . . . . . . . . . . . . . . . . . 62
Table 58. Get System Info response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 59. Get Multiple Block Security Status request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 60. Get Multiple Block Security Status response format when Error_flag is NOT set . . . . . . . 63
Table 61. Block Locking status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 62. Get Multiple Block Security Status response format when Error_flag is set . . . . . . . . . . . . 63
Table 63. Kill request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 64. Kill response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 65. Kill response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 66. Write Kill request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 67. Write Kill response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 68. Write Kill response format when Error_flag is set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 69. Lock Kill request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 70. Lock Kill response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 71. Lock Kill response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 72. Fast Read Single Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 73. Fast Read Single Block response format when Error_flag is NOT set . . . . . . . . . . . . . . . . 69
Table 74. Block Locking status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 75. Fast Read Single Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . 69
Table 76. Fast Inventory Initiated request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 77. Fast Inventory Initiated response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 78. Fast Initiate request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 79. Fast Initiate response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 80. Fast Read Multiple Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 81. Fast Read Multiple Block response format when Error_flag is NOT set. . . . . . . . . . . . . . . 73
Table 82. Block Locking status if Option_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 83. Fast Read Multiple Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . . 73
Table 84. Inventory Initiated request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 85. Inventory Initiated response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 86. Initiate request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 87. Initiate Initiated response format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 88. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 89. AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 90. DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 91. Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 92. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 93. CRC definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 94. AFI coding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 95. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Doc ID 17170 Rev 3 7/86
List of figures LRI1K
List of figures
Figure 1. Pad connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 2. 100% modulation waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 3. 10% modulation waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 4. 1 out of 256 coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 5. Detail of one time period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 6. 1 out of 4 coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 7. 1 out of 4 coding example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 8. SOF to select 1 out of 256 data coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 9. SOF to select 1 out of 4 data coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 10. EOF for either data coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 11. Logic 0, high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 12. Logic 0, high data rate x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 13. Logic 1, high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 14. Logic 1, high data rate x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 15. Logic 0, low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 16. Logic 0, low data rate x2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 17. Logic 1, low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 18. Logic 1, low data rate x2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 19. Logic 0, high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 20. Logic 1, high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 21. Logic 0, low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 22. Logic 1, low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 23. Start of frame, high data rate, one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 24. Start of frame, high data rate, one subcarrier x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 25. Start of frame, low data rate, one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 26. Start of frame, low data rate, one subcarrier x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 27. Start of frame, high data rate, two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 28. Start of frame, low data rate, two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 29. End of frame, high data rate, one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 30. End of frame, high data rate, one subcarrier x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 31. End of frame, low data rate, one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 32. End of frame, low data rate, one subcarrier x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 33. End of frame, high data rate, two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 34. End of frame, low data rate, two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 35. LRI1K decision tree for AFI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 36. LRI1K protocol timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 37. LRI1K state transition diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 38. Principle of comparison between the mask, the slot number and the UID . . . . . . . . . . . . . 41
Figure 39. Description of a possible anticollision sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 40. Stay Quiet frame exchange between VCD and LRI1K . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 41. READ Single Block frame exchange between VCD and LRI1K . . . . . . . . . . . . . . . . . . . . . 51
Figure 42. Write Single Block frame exchange between VCD and LRI1K. . . . . . . . . . . . . . . . . . . . . . 52
Figure 43. Lock Block frame exchange between VCD and LRI1K . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 44. Read Multiple Block frame exchange between VCD and LRI1K . . . . . . . . . . . . . . . . . . . . 55
Figure 45. Select frame exchange between VCD and LRI1K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 46. Reset to Ready frame exchange between VCD and LRI1K . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 47. Write AFI frame exchange between VCD and LRI1K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 48. Lock AFI frame exchange between VCD and LRI1K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8/86 Doc ID 17170 Rev 3
LRI1K List of figures
Figure 49. Write DSFID frame exchange between VCD and LRI1K . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 50. Lock DSFID frame exchange between VCD and LRI1K . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 51. Get System Info frame exchange between VCD and LRI1K . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 52. Get Multiple Block Security Status frame exchange between VCD and
LRI1K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 53. Kill frame exchange between VCD and LRI1K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 54. Write Kill frame exchange between VCD and LRI1K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 55. Lock Kill frame exchange between VCD and LRI1K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 56. Fast Read Single Block frame exchange between VCD and LRI1K. . . . . . . . . . . . . . . . . . 70
Figure 57. Fast Initiate frame exchange between VCD and LRI1K . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 58. Fast Read Multiple Block frame exchange between VCD and LRI1K . . . . . . . . . . . . . . . . 74
Figure 59. Initiate frame exchange between VCD and LRI1K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 60. LRI1K synchronous timing, transmit and receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Doc ID 17170 Rev 3 9/86
Description LRI1K
!)
!#
,2)+
!#
0OWER SUPPLY
REGULATOR
-ANCHESTER LOAD
MODULATOR
!3+
DEMODULATOR
BIT
%%02/-
MEMORY

1 Description

The LRI1K is a contactless memory powered by the received carrier electromagnetic wave. It is a 1024-bit electrically erasable programmable memory (EEPROM). The memory is organized as 32 blocks of 32 bits. The LRI1K is accessed via the 13.56 MHz carrier electromagnetic wave on which incoming data are demodulated from the received signal amplitude modulation (ASK: amplitude shift keying). The received ASK wave is 10% or 100% modulated with a data rate of 1.6 Kbit/s using the 1/256 pulse coding mode or a data rate of 26 Kbit/s using the 1/4 pulse coding mode.
Outgoing data are generated by the LRI1K load variation using Manchester coding with one or two subcarrier frequencies at 423 kHz and 484 kHz. Data are transferred from the LRI1K at 6.6 Kbit/s in low data rate mode and 26 Kbit/s fast data rate mode. The LRI1K supports 53 Kbit/s in high data rate mode with one subcarrier frequency at 423 kHz.
The LRI1K follows the ISO 15693 recommendation for radio-frequency power and signal interface.
Figure 1. Pad connections
Table 1. Signal names
Signal name Function
AC1 Antenna coil
AC0 Antenna coil
10/86 Doc ID 17170 Rev 3
LRI1K Description

1.1 Memory mapping

The LRI1K is divided into 32 blocks of 32 bits. Each block can be individually write-protected using the Lock command.
Table 2. LRI1K memory map
Add 0 7 8 15 16 23 24 31
0 User area
1 User area
2 User area
3 User area
4 User area
5 User area
6 User area
7 User area
8 User area
User area
User area
User area
28 User area
29 User area
30 User area
31 User area
UID 0 UID 1 UID 2 UID 3
UID 4 UID 5 UID 6 UID 7
AFI DSFID
Kill code
The User area consists of blocks that are always accessible in read mode. Write operations are possible if the addressed block is not protected. During a write operation, the 32 bits of the block are replaced by the new 32-bit value.
The LRI1K also has a 64-bit block that is used to store the 64-bit unique identifier (UID). The UID is compliant to the ISO 15963 description, and its value is used during the anticollision sequence (Inventory). This block is not accessible by the user and its value is written by ST on the production line.
The LRI1K also includes an AFI register in which the application family identifier is stored, and a DSFID register in which the data storage family identifier used in the anticollision algorithm is stored. The LRI1K has an additional 32-bit block in which the kill code is stored.
Doc ID 17170 Rev 3 11/86
Description LRI1K

1.2 Commands

The LRI1K supports the following commands:
Inventory, used to perform the anticollision sequence.
Stay Quiet, used to put the LRI1K in quiet mode, where it does not respond to any
inventory command.
Select, used to select the LRI1K. After this command, the LRI1K processes all
Read/Write commands with Select_flag set.
Reset To Ready, used to put the LRI1K in the ready state.
Read Block, used to output the 32 bits of the selected block and its locking status.
Write Block, used to write the 32-bit value in the selected block, provided that it is not
locked.
Lock Block, used to lock the selected block. After this command, the block cannot be
modified.
Read Multiple Blocks, used to read the selected blocks and send back their value.
Write AFI, used to write the 8-bit value in the AFI register.
Lock AFI, used to lock the AFI register.
Write DSFID, used to write the 8-bit value in the DSFID register.
Lock DSFID, used to lock the DSFID register.
Get System Info, used to provide the system information value
Get Multiple Block Security Status, used to send the security status of the selected
block.
Initiate, used to trigger the tag response to the Inventory Initiated sequence.
Inventory Initiated, used to perform the anticollision sequence triggered by the Initiate
command.
Kill, used to definitively deactivate the tag.
Write Kill, used to write the 32-bit Kill code value
Lock Kill, used to lock the Kill Code register.
Fast Initiate, used to trigger the tag response to the Inventory Initiated sequence.
Fast Inventory Initiated, used to perform the anticollision sequence triggered by the
Initiate command.
Fast Read Block, used to output the 32 bits of the selected block and its locking status.
Fast Read Multiple Blocks, used to read the selected blocks and send back their
value.
12/86 Doc ID 17170 Rev 3
LRI1K Description

1.3 Initial dialogue for vicinity cards

The dialog between the vicinity coupling device (VCD) and the vicinity integrated circuit card or VICC (LRI1K) takes place as follows:
activation of the LRI1K by the RF operating field of the VCD
transmission of a command by the VCD
transmission of a response by the LRI1K
These operations use the RF power transfer and communication signal interface described below (see Power transfer, Frequency and Operating field). This technique is called RTF (reader talk first).

1.3.1 Power transfer

Power is transferred to the LRI1K by radio frequency at 13.56 MHz via coupling antennas in the LRI1K and the VCD. The RF operating field of the VCD is transformed on the LRI1K antenna as an AC voltage which is rectified, filtered and internally regulated. The amplitude modulation (ASK) on this received signal is demodulated by the ASK demodulator.

1.3.2 Frequency

The ISO 15693 standard defines the carrier frequency (fc) of the operating field as
13.56 MHz ±7 kHz.

1.3.3 Operating field

The LRI1K operates continuously between H
The minimum operating field is H
The maximum operating field is H
A VCD must generate a field of at least H volume.
and H
min
and has a value of 150 mA/m rms.
min
and has a value of 5 A/m rms.
max
and not exceeding H
min
max
.
max
in the operating
Doc ID 17170 Rev 3 13/86
Communication signal from VCD to LRI1K LRI1K
AI06683
tRFF
tRFSBL
tRFR
105%
a
t
100%
95%
60%
5%
AI06655B
tRFF tRFSFL tRFR
hr
hf
ab t

2 Communication signal from VCD to LRI1K

Communications between the VCD and the LRI1K take place using the modulation principle of ASK (amplitude shift keying). Two modulation indexes are used, 10% and 100%. The LRI1K decodes both. The VCD determines which index is used.
The modulation index is defined as [a – b]/[a + b] where a is the peak signal amplitude and b the minimum signal amplitude of the carrier frequency.
Depending on the choice made by the VCD, a "pause" will be created as described in
Figure 2 and Figure 3.
The LRI1K is operational for any degree of modulation index between 10% and 30%.
Figure 2. 100% modulation waveform
Table 3. 10% modulation parameters
Symbol Parameter definition Value
hr 0.1 x (a – b) max
hf 0.1 x (a – b) max
Figure 3. 10% modulation waveform
14/86 Doc ID 17170 Rev 3
LRI1K Data rate and data coding
AI06656
0 1 2 3 . . . . . . . . 2 . . . . . . . . . . . . . . . . . . . . . 2 2 2 2
. . . . . . . . . 2 . . . . . . . . . . . . . . . . . . . . . 5 5 5 5
. . . . . . . . . 5 . . . . . . . . . . . . . . . . . . . . . 2 3 4 5
4.833 ms
18.88 µs
9.44 µs
Pulse Modulated Carrier

3 Data rate and data coding

The data coding implemented in the LRI1K uses pulse position modulation. Both data coding modes that are described in the ISO 15693 are supported by the LRI1K. The selection is made by the VCD and indicated to the LRI1K within the start of frame (SOF).

3.1 Data coding mode: 1 out of 256

The value of one single byte is represented by the position of one pause. The position of the pause on 1 of 256 successive time periods of 18.88 µs (256/f byte. In this case the transmission of one byte takes 4.833 ms and the resulting data rate is
1.65 Kbits/s (f
/8192).
C
Figure 4 illustrates this pulse position modulation technique. In this Figure, data E1h (225
decimal) is sent by the VCD to the LRI1K.
The pause occurs during the second half of the position of the time period that determines the value, as shown in Figure 5.
A pause during the first period transmits the data value 00h. A pause during the last period transmits the data value FFh (255 decimal).
), determines the value of the
C
Figure 4. 1 out of 256 coding mode
Doc ID 17170 Rev 3 15/86
Data rate and data coding LRI1K
AI06657
2 2 5
18.88 µs
9.44 µs
Pulse Modulated Carrier
2 2 6
2 2 4
. . . . . . .. . . . . . .
Time Period
one of 256
Figure 5. Detail of one time period
16/86 Doc ID 17170 Rev 3
LRI1K Data rate and data coding
AI06658
9.44 µs 9.44 µs
75.52 µs
28.32 µs 9.44 µs
75.52 µs
47.20µs 9.44 µs
75.52 µs
66.08 µs 9.44 µs
75.52 µs
Pulse position for "00"
Pulse position for "11"
Pulse position for "10" (0=LSB)
Pulse position for "01" (1=LSB)

3.2 Data coding mode: 1 out of 4

The value of 2 bits is represented by the position of one pause. The position of the pause on 1 of 4 successive time periods of 18.88 µs (256/f successive pairs of bits form a byte, where the least significant pair of bits is transmitted first.
In this case the transmission of one byte takes 302.08 µs and the resulting data rate is
26.48 Kbit/s (f
/512). Figure 6 illustrates the 1 out of 4 pulse position technique and coding.
C
Figure 7 shows the transmission of E1h (225d - 1110 0001b) by the VCD.
Figure 6. 1 out of 4 coding mode
) determines the value of the 2 bits. Four
C
Doc ID 17170 Rev 3 17/86
Data rate and data coding LRI1K
AI06659B
75.52 µs
75.52 µs
75.52 µs 75.52 µs
00
10
01 11
AI06661
37.76 µs
9.44 µs
9.44 µs
37.76 µs
Figure 7. 1 out of 4 coding example

3.3 VCD to LRI1K frames

Frames are delimited by a start of frame (SOF) and an end of frame (EOF). They are implemented using code violation. Unused options are reserved for future use.
The LRI1K is ready to receive a new command frame from the VCD 311.5 µs (t sending a response frame to the VCD.
The LRI1K takes a Power-On time of 0.1 ms after being activated by the powering field. After this delay, the LRI1K is ready to receive a command frame from the VCD.

3.4 Start of frame (SOF)

The SOF defines the data coding mode the VCD is to use for the following command frame.
The SOF sequence described in Figure 8 selects the 1 out of 256 data coding mode.
The SOF sequence described in Figure 9 selects the 1 out of 4 data coding mode.
The EOF sequence for either coding mode is described in Figure 10.
Figure 8. SOF to select 1 out of 256 data coding mode
) after
2
18/86 Doc ID 17170 Rev 3
LRI1K Data rate and data coding
AI06660
37.76µs
9.44µs
9.44µs
37.76µs
9.44µs
AI06662
9.44 µs
37.76 µs
9.44 µs
Figure 9. SOF to select 1 out of 4 data coding mode
Figure 10. EOF for either data coding mode
Doc ID 17170 Rev 3 19/86
Communications signal from LRI1K to VCD LRI1K

4 Communications signal from LRI1K to VCD

The LRI1K has several modes defined for some parameters, owing to which it can operate in different noise environments and meet different application requirements.

4.1 Load modulation

The LRI1K is capable of communication with the VCD via an inductive coupling area whereby the carrier is loaded to generate a subcarrier with frequency f generated by switching a load in the LRI1K.
The load-modulated amplitude received on the VCD antenna shall be at least 10 mV when measured as described in the test methods defined in International Standard ISO 10373-7.

4.2 Subcarrier

The LRI1K supports the one-subcarrier and two-subcarrier response formats. These formats are selected by the VCD using the first bit in the protocol header. When one subcarrier is used, the frequency f When two subcarriers are used, frequency f
484.28 kHz (f continuous phase relationship between f
C
of the subcarrier load modulation is 423.75 kHz (fC/32).
S1
is 423.75 kHz (fC/32), and frequency fS2 is
S1
/28). When using the two-subcarrier mode, the LRI1K generates a
and fS2.
S1
. The subcarrier is
S

4.3 Data rates

The LRI1K can respond using the low or the high data rate format. The selection of the data rate is made by the VCD using the second bit in the protocol header. It also supports the x2 mode available on all the Fast commands. Table 4 shows the different data rates produced by the LRI1K using the different response format combinations.
Table 4. Response data rate
Data rate One subcarrier Two subcarriers
Low
High
Standard commands 6.62 Kbits/s (f
Fast commands 13.24 Kbits/s (f
Standard commands 26.48 Kbits/s (f
Fast commands 52.97 Kbits/s (f
/2048) 6.67 Kbits/s (fc/2032)
c
/1024) not applicable
c
/512) 26.69 Kbits/s (fc/508)
c
/256) not applicable
c
20/86 Doc ID 17170 Rev 3
LRI1K Bit representation and coding
37.76µs
ai12076
18.88µs
ai12066
37.76µs
ai12077
18.88µs
ai12067

5 Bit representation and coding

Data bits are encoded using Manchester coding, according to the following schemes. For the low data rate, the same subcarrier frequency or frequencies is/are used, in this case the number of pulses is multiplied by 4 and all times are increased by this factor. For the Fast commands using one subcarrier, all pulse numbers and times are divided by 2.

5.1 Bit coding using one subcarrier

5.1.1 High data rate

A logic 0 starts with 8 pulses at 423.75 kHz (fC/32) followed by an unmodulated time of
18.88 µs as shown in Figure 11.
Figure 11. Logic 0, high data rate
For the Fast commands, a logic 0 starts with 4 pulses at 423.75 kHz (f
/32) followed by an
C
unmodulated time of 9.44 µs as shown in Figure 12.
Figure 12. Logic 0, high data rate x2
A logic 1 starts with an unmodulated time of 18.88 µs followed by 8 pulses at 423.75 kHz (f
/32) as shown in Figure 13.
C
Figure 13. Logic 1, high data rate
For the Fast commands, a logic 1 starts with an unmodulated time of 9.44 µs followed by 4 pulses at 423.75 kHz (f
/32) as shown in Figure 14.
C
Figure 14. Logic 1, high data rate x2
Doc ID 17170 Rev 3 21/86
Bit representation and coding LRI1K
151.04µs
ai12068
75.52µs
ai12069
151.04µs
ai12070
75.52µs
ai12071

5.1.2 Low data rate

A logic 0 starts with 32 pulses at 423.75 kHz (fC/32) followed by an unmodulated time of
75.52 µs as shown in Figure 15.
Figure 15. Logic 0, low data rate
For the fast commands, a logic 0 starts with 16 pulses of 423,75 kHz (f
/32) followed by an
C
unmodulated time of 37,76 µs as shown in Figure 16.
Figure 16. Logic 0, low data rate x2
A logic 1 starts with an unmodulated time of 75,52 µs followed by 32 pulses of 423,75 kHz (f
/32) as shown in Figure 17.
C
Figure 17. Logic 1, low data rate
For the Fast commands, a logic 1 starts with an unmodulated time of 37.76 µs followed by 16 pulses at 423.75 kHz (f
/32) as shown in Figure 18.
C
Figure 18. Logic 1, low data rate x2
22/86 Doc ID 17170 Rev 3
LRI1K Bit representation and coding
37.46µs
ai12074
37.46µs
ai12073
149.84µs
ai12072
149.84µs
ai12075

5.2 Bit coding using two subcarriers

5.2.1 High data rate

A logic 0 starts with 8 pulses at 423.75 kHz (fC/32) followed by 9 pulses at 484.28 kHz (f
/28) as shown in Figure 19. For the Fast commands, the x2 mode is not available.
C
Figure 19. Logic 0, high data rate
A logic 1 starts with 9 pulses at 484.28 kHz (f (f
/32) as shown in Figure 20. For the Fast commands, the x2 mode is not available.
C
Figure 20. Logic 1, high data rate

5.2.2 Low data rate

A logic 0 starts with 32 pulses at 423.75 kHz (fC/32) followed by 36 pulses at 484.28 kHz (f
/28) as shown in Figure 21. For the Fast commands, the x2 mode is not available.
C
Figure 21. Logic 0, low data rate
A logic 1 starts with 36 pulses at 484.28kHz (fC/28) followed by 32 pulses at 423.75kHz (f
/32) as shown in Figure 22. For the fast commands, the x2 mode is not available.
C
Figure 22. Logic 1, low data rate
/28) followed by 8 pulses at 423.75 kHz
C
Doc ID 17170 Rev 3 23/86
LRI1K to VCD frames LRI1K
113.28µs
ai12078
37.76µs
56.64µs
ai12079
18.88µs

6 LRI1K to VCD frames

Frames are delimited by an SOF and an EOF. They are implemented using code violation. Unused options are reserved for future use. For the low data rate, the same subcarrier frequency or frequencies is/are used. In this case the number of pulses is multiplied by 4. For the Fast commands using one subcarrier, all pulse numbers and times are divided by 2.

6.1 SOF when using one subcarrier

6.1.1 High data rate

The SOF includes an unmodulated time of 56.64 µs followed by 24 pulses at 423.75 kHz (f
/32), and a logic 1 that consists of an unmodulated time of 18.88 µs followed by 8 pulses
C
at 423.75 kHz. The SOF is shown in Figure 23.
Figure 23. Start of frame, high data rate, one subcarrier
For the Fast commands, the SOF comprises an unmodulated time of 28.32 µs, followed by 12 pulses at 423.75 kHz (f
/32), and a logic 1 that consists of an unmodulated time of
C
9.44 µs followed by 4 pulses at 423.75 kHz as shown in Figure 24.
Figure 24. Start of frame, high data rate, one subcarrier x2
24/86 Doc ID 17170 Rev 3
LRI1K LRI1K to VCD frames
453.12µs
ai12080
151.04µs
226.56µs
ai12081
75.52µs
112.39µs
ai12082
37.46µs
449.56µs
ai12083
149.84µs

6.1.2 Low data rate

SOF comprises an unmodulated time of 226.56 µs, followed by 96 pulses at 423.75 kHz (f
/32), and a logic 1 that consists of an unmodulated time of 75.52 µs followed by 32 pulses
C
at 423.75 kHz as shown in Figure 25.
Figure 25. Start of frame, low data rate, one subcarrier
For the Fast commands, the SOF comprises an unmodulated time of 113.28 µs followed by 48 pulses at 423.75 kHz (f followed by 16 pulses at 423.75 kHz as shown in Figure 26.
Figure 26. Start of frame, low data rate, one subcarrier x2
/32), and a logic 1 that includes an unmodulated time of 37.76 µs
C

6.2 SOF when using two subcarriers

6.2.1 High data rate

The SOF comprises 27 pulses at 484.28 kHz (fC/28), followed by 24 pulses at 423.75 kHz (f
/32), and a logic 1 that includes 9 pulses at 484.28 kHz followed by 8 pulses at 423.75
C
kHz as shown in Figure 27.
For the Fast commands, the x2 mode is not available.
Figure 27. Start of frame, high data rate, two subcarriers

6.2.2 Low data rate

The SOF comprises 108 pulses at 484.28 kHz (fC/28) followed by 96 pulses at 423.75 kHz (f
/32), and a logic 1 that includes 36 pulses at 484.28 kHz followed by 32 pulses at
C
423.75 kHz as shown in Figure 28.
For the Fast commands, the x2 mode is not available.
Figure 28. Start of frame, low data rate, two subcarriers
Doc ID 17170 Rev 3 25/86
LRI1K to VCD frames LRI1K
113.28µs
ai12084
37.76µs
56.64µs
ai12085
18.88µs
453.12µs
ai12086
151.04µs
226.56µs
ai12087
75.52µs

6.3 EOF when using one subcarrier

6.3.1 High data rate

The EOF comprises a logic 0 that includes 8 pulses at 423.75 kHz and an unmodulated time of 18.88 µs, followed by 24 pulses at 423.75 kHz (f
56.64 µs as shown in Figure 29.
Figure 29. End of frame, high data rate, one subcarrier
For the Fast commands, the EOF comprises a logic 0 that includes 4 pulses at 423.75 kHz and an unmodulated time of 9.44 µs, followed by 12 pulses at 423.75 kHz (f unmodulated time of 28.32 µs as shown in Figure 30.
Figure 30. End of frame, high data rate, one subcarrier x2
/32) and by an unmodulated time of
C
/32) and an
C

6.3.2 Low data rate

The EOF comprises a logic 0 that includes 32 pulses at 423.75 kHz and an unmodulated time of 75.52 µs, followed by 96 pulses at 423.75 kHz (f
226.56 µs as shown in Figure 31.
Figure 31. End of frame, low data rate, one subcarrier
For the Fast commands, the EOF comprises a logic 0 that includes 16 pulses at 423.75 kHz and an unmodulated time of 37.76 µs, followed by 48 pulses at 423.75 kHz (f unmodulated time of 113.28 µs as shown in Figure 32.
Figure 32. End of frame, low data rate, one subcarrier x2
/32) and an unmodulated time of
C
/32) and an
C
26/86 Doc ID 17170 Rev 3
LRI1K LRI1K to VCD frames
112.39µs
ai12088
37.46µs
449.56µs
ai12089
149.84µs

6.4 EOF when using two subcarriers

6.4.1 High data rate

The EOF comprises a logic 0 that includes 8 pulses at 423.75 kHz and 9 pulses at
484.28 kHz, followed by 24 pulses at 423.75 kHz (f (f
/28) as shown in Figure 33.
C
For the Fast commands, the x2 mode is not available.
Figure 33. End of frame, high data rate, two subcarriers

6.4.2 Low data rate

The EOF comprises a logic 0 that includes 32 pulses at 423.75 kHz and 36 pulses at
484.28 kHz, followed by 96 pulses at 423.75 kHz (f (f
/28) as shown in Figure 34
C
For the fast commands, the x2 mode is not available.
/32) and 27 pulses at 484.28 kHz
C
/32) and 108 pulses at 484.28 kHz
C
Figure 34. End of frame, low data rate, two subcarriers
Doc ID 17170 Rev 3 27/86
Unique identifier (UID) LRI1K

7 Unique identifier (UID)

The LRI1Ks are uniquely identified by a 64-bit Unique Identifier (UID). This UID complies with ISO/IEC 15963 and ISO/IEC 7816-6. The UID is a read-only code, and comprises:
the 8 MSBs are E0h
the IC manufacturer code of ST 02h, on 8 bits (ISO/IEC 7816-6/AM1)
a unique serial number on 48 bits.
Table 5. UID format
MSB LSB
63 56 55 48 47 0
E0h 02h Unique serial number
With the UID each LRI1K can be addressed uniquely and individually during the anticollision loop and for one-to-one exchanges between a VCD and an LRI1K.
28/86 Doc ID 17170 Rev 3
LRI1K Application family identifier (AFI)
!)
)NVENTORY2EQUEST
RECEIVED
.O
.OANSWER
9E S
.O
!&)VALUE

9E S
.O
!&)&LAG
SET
9E S
!NSWERGIVENBYTHE,2)+
TOTHE)NVENTORYREQUEST
!&)VALUE )NTERNAL
VALUE

8 Application family identifier (AFI)

The AFI (application family identifier) represents the type of application targeted by the VCD and is used to identify, among all the LRI1Ks present, only the LRI1Ks that meet the required application criteria.
Figure 35. LRI1K decision tree for AFI
The AFI is programmed by the LRI1K issuer (or purchaser) in the AFI register. Once programmed and Locked, it can no longer be modified.
The most significant nibble of the AFI is used to code one specific or all application families.
The least significant nibble of the AFI is used to code one specific or all application subfamilies. Subfamily codes different from 0 are proprietary. (See ISO 15693-3 documentation.)
The initial delivery state AFI value is 00h.
Doc ID 17170 Rev 3 29/86
Data storage format identifier (DSFID) LRI1K

9 Data storage format identifier (DSFID)

The data storage format identifier indicates how the data is structured in the LRI1K memory. The logical organization of data can be known instantly using the DSFID.
It can be programmed and locked using the Write DSFID and Lock DSFID commands, respectively. It is coded on one byte.

9.1 CRC

The CRC used in the LRI1K is calculated as per the definition in ISO/IEC 13239.
The initial register contents are all ones: "FFFF".
The two-byte CRC is appended to each request and response, within each frame, before the EOF. The CRC is calculated on all the bytes between the SOF and the CRC field.
Upon reception of a request from the VCD, the LRI1K verifies that the CRC value is valid. If it is invalid, the LRI1K discards the frame and does not answer to the VCD.
Upon reception of a response from the LRI1K, it is recommended that the VCD verifies whether the CRC value is valid. If it is invalid, actions to be performed are left to the discretion of the VCD designers.
The CRC is transmitted least significant byte first.
Each byte is transmitted least significant bit first.
Table 6. CRC transmission rules
LSByte MSByte
LSBit MSBit LSBit MSBit
CRC 16 (8bits) CRC 16 (8 bits)
30/86 Doc ID 17170 Rev 3
LRI1K LRI1K protocol description

10 LRI1K protocol description

The transmission protocol (or simply protocol) defines the mechanism used to exchange instructions and data between the VCD and the LRI1K, in both directions. It is based on the concept of "VCD talks first".
This means that an LRI1K will not start transmitting unless it has received and properly decoded an instruction sent by the VCD. The protocol is based on an exchange of:
a request from the VCD to the LRI1K
a response from the LRI1K to the VCD
Each request and each response are contained in a frame. The frame delimiters (SOF, EOF) are described in Section 6: LRI1K to VCD frames.
Each request consists of:
a request SOF (see Figure 8 and Figure 9)
flags
a command code
parameters, depending on the command
application data
a 2-byte CRC
a request EOF (see Figure 10)
Each response consists of:
an answer SOF (see Figure 23 to Figure 28)
flags
parameters, depending on the command
application data
a 2-byte CRC
an Answer EOF (see Figure 29 to Figure 34)
The protocol is bit-oriented. The number of bits transmitted in a frame is a multiple of eight (8), i.e. an integer number of bytes.
A single-byte field is transmitted least significant bit (LSBit) first. A multiple-byte field is transmitted least significant byte (LSByte) first, with each byte transmitted least significant bit (LSBit) first.
The setting of the flags indicates the presence of the optional fields. When the flag is set (to one), the field is present. When the flag is reset (to zero), the field is absent.
Table 7. VCD request frame format
Request SOF Request Flags
Table 8. LRI1K response frame format
Response
SOF
Response
Flags
Command
code
Parameters Data 2 byte CRC
Parameters Data 2 byte CRC
Request
EOF
Response
EOF
Doc ID 17170 Rev 3 31/86
LRI1K protocol description LRI1K
Figure 36. LRI1K protocol timing
Request
VCD
frame
(Ta bl e 7 )
LRI1K
Timing t
Response frame
(Ta bl e 8 )
1
Request
frame
(Ta bl e 7 )
Response
frame (Ta bl e 8 )
t
2
t
1
t
2
32/86 Doc ID 17170 Rev 3
LRI1K LRI1K states

11 LRI1K states

An LRI1K can be in one of 4 states:
Power-off
Ready
Quiet
Selected
Transitions between these states are specified in Figure 37: LRI1K state transition diagram and Table 9: LRI1K response depending on request flags.

11.1 Power-off state

The LRI1K is in the Power-off state when it does not receive enough energy from the VCD.

11.2 Ready state

The LRI1K is in the Ready state when it receives enough energy from the VCD. When in the Ready state, the LRI1K answers any request where the Select_flag is not set.

11.3 Quiet state

When in the Quiet state, the LRI1K answers any request except for Inventory requests with the Address_flag set.

11.4 Selected state

In the Selected state, the LRI1K answers any request in all modes (see Section 12: Modes):
request in Select mode with the Select flag set
request in Addressed mode if the UID matches
request in Non-Addressed mode as it is the mode for general requests
Doc ID 17170 Rev 3 33/86
LRI1K states LRI1K
AI06681
Power Off
In field
Out of field
Ready
Quiet
Selected
Any other Command
where Select_Flag
is not set
Out of field
Out of field
Stay quiet(UID)
Select (UID)
Any other command
Any other command where the
Address_Flag is set AND
where Inventory_Flag is not set
Stay quiet(UID)
Select (UID)
Reset to ready where
Select_Flag is set or
Select(different UID)
Reset to ready
Table 9. LRI1K response depending on request flags
Address_flag Select_flag
Flags
1
Addressed0Non addressed1Selected0Non selected
LRI1K in Ready or Selected state (Devices in Quiet state don’t
XX
answer)
LRI1K in Selected state X X
LRI1K in Ready, Quiet or Selected state (the device which match the
XX
UID)
Error (03h) X X
Figure 37. LRI1K state transition diagram
34/86 Doc ID 17170 Rev 3
1. The intention of the state transition method is that only one LRI1K should be in the selected state at a time.
LRI1K Modes

12 Modes

The term “mode” refers to the mechanism used in a request to specify the set of LRI1Ks that will answer the request.

12.1 Addressed mode

When the Address_flag is set to 1 (Addressed mode), the request contains the Unique ID (UID) of the addressed LRI1K.
Any LRI1K that receives a request with the Address_flag set to 1 compares the received Unique ID to its own. If it matches, then the LRI1K executes the request (if possible) and returns a response to the VCD as specified in the command description.
If its UID does not match, then it remains silent.

12.2 Non-Addressed mode (general request)

When the Address_flag is set to 0 (Non-Addressed mode), the request does not contain a Unique ID. Any LRI1K receiving a request with the Address_flag set to 0 executes it and returns a response to the VCD as specified in the command description.

12.3 Select mode

When the Select_flag is set to 1 (Select mode), the request does not contain an LRI1K Unique ID. The LRI1K in the Selected state that receives a request with the Select_flag set to 1 executes it and returns a response to the VCD as specified in the command description.
Only LRI1Ks in the Selected state answer to a request where the Select Flag is set to 1.
The system design ensures in theory that only one LRI1K can be in the Select state at a time.
Doc ID 17170 Rev 3 35/86
Request format LRI1K

13 Request format

The request consists of:
an SOF
flags
a command code
parameters and data
a CRC
an EOF
Table 10. General request format
S O F

13.1 Request flags

In a request, the "flags" field specifies the actions to be performed by the LRI1K and whether corresponding fields are present or not.
Request flags Command code Parameters Data CRCEO
F
The flags field consists of eight bits.
The bit 3 (Inventory_flag) of the request flag defines the contents of the 4 MSBs (bits 5 to 8).
When bit 3 is reset (0), bits 5 to 8 define the LRI1K selection criteria.
When bit 3 is set (1), bits 5 to 8 define the LRI1K Inventory parameters.
Table 11. Definitions of request flags 1 to 4
Bit No Flag Level Description
Bit 1 Subcarrier_flag
Bit 2 Data_rate_flag
(1)
(2)
Bit 3 Inventory flag
Bit 4 Protocol Extension flag 0 No Protocol format extension
1. Subcarrier_flag refers to the LRI1K-to-VCD communication.
2. Data_rate_flag refers to the LRI1K-to-VCD communication
0 A single subcarrier frequency is used by the LRI1K
1 Two subcarriers are used by the LRI1K
0 Low data rate is used
1 High data rate is used
0 The meaning of Flags 5 to 8 is described in Ta b le 1 2
1 The meaning of Flags 5 to 8 is described in Ta b le 1 3
36/86 Doc ID 17170 Rev 3
LRI1K Request format
Table 12. Request flags 5 to 8 when bit 3 = 0
Bit No Flag Level Description
Request is executed by any LRI1K according to the setting of
Bit 5 Select_flag
(1)
Bit 6 Address_flag
Bit 7 Option flag 0
Bit 8 RFU 0
1. If the Select_flag is set to 1, the Address_flag is set to 0 and the UID field is not present in the request.
Table 13. Request flags 5 to 8 when bit 3 = 1
Bit No Flag Level Description
0
Address_flag
1 Request is executed only by the LRI1K in Selected state
Request is not addressed. UID field is not present. The request is
0
executed by all LRI1Ks.
(1)
Request is addressed. UID field is present. The request is
1
executed only by the LRI1K whose UID matches the UID specified in the request.
Bit 5 AFI flag
Bit 6 Nb_slots flag
Bit 7 Option flag 0
Bit 8 RFU 0
0 AFI field is not present
1 AFI field is present
0 16 slots
11 slot
Doc ID 17170 Rev 3 37/86
Response format LRI1K

14 Response format

The response consists of:
an SOF
flags
parameters and data
a CRC
an EOF
Table 14. General response format
S
OFResponse flags Parameters Data CRC

14.1 Response flags

In a response, the flags indicate how actions have been performed by the LRI1K and whether corresponding fields are present or not. The response flags consist of eight bits.
Table 15. Definitions of response flags 1 to 8
Bit No. Flag Level Description
E O F
Bit 1 Error_flag
0 No error
1 Error detected. Error code is in the "Error" field.
Bit 2 RFU 0
Bit 3 RFU 0
Bit 4 Extension flag 0 No extension
Bit 5 RFU 0
Bit 6 RFU 0
Bit 7 RFU 0
Bit 8 RFU 0
38/86 Doc ID 17170 Rev 3
LRI1K Response format

14.2 Response error code

If the Error_flag is set by the LRI1K in the response, the Error code field is present and provides information about the error that occurred.
Error codes not specified in Ta ble 1 6 are reserved for future use.
Table 16. Response error code definition
Error code Meaning
03h The command option is not supported
0F Error with no information given or a specific error code is not supported.
10h The specified block is not available (does not exist).
11h The specified block is already locked and thus cannot be locked again
12h The specified block is locked and its contents cannot be changed.
13h The specified block was not successfully programmed.
14h The specified block was not successfully locked.
Doc ID 17170 Rev 3 39/86
Anticollision LRI1K

15 Anticollision

The purpose of the anticollision sequence is to inventory the LRI1Ks present in the VCD field using their unique ID (UID).
The VCD is the master of communications with one or several LRI1Ks. It initiates LRI1K communication by issuing the Inventory request.
The LRI1K sends its response in the determined slot or does not respond.

15.1 Request parameters

When issuing the Inventory command, the VCD:
sets the Nb_slots_flag as desired,
adds the mask length and the mask value after the command field,
The mask length is the number of significant bits of the mask value.
The mask value is contained in an integer number of bytes. The mask length indicates the number of significant bits. The LSB is transmitted first.
If the mask length is not a multiple of 8 (bits), as many 0-bits as required will be added to the mask value MSB so that the mask value is contained in an integer number of bytes.
The next field starts on the next byte boundary.
Table 17. Inventory request format
MSB LSB
SOF
Request_
flags
8 bits 8 bits 8 bits 8 bits 0 to 8 bytes 16 bits
Command Optional AFI
Mask
length
Mask value CRC EOF
In the example of Ta ble 1 8 and Figure 38, the mask length is 11 bits. Five 0-bits are added to the mask value MSB. The 11-bit Mask and the current slot number are compared to the UID.
Table 18. Example of the addition of 0-bits to an 11-bit mask value
(b15) MSB LSB (b0)
0000 0 100 1100 1111
0-bits added 11-bit mask value
40/86 Doc ID 17170 Rev 3
LRI1K Anticollision
AI06682
Mask value received in the Inventory command 0000 0100 1100 1111b16 bits
The Mask value less the padding 0s is loaded into the Tag comparator
100 1100 1111b11 bits
The Slot counter is calculated
xxxxNb_slots_flags = 0 (16 slots), Slot Counter is 4 bits
The Slot counter is concatened to the Mask value
xxxx 100 1100 1111
b
Nb_slots_flags = 0 15 bits
The concatenated result is compared with the least significant bits of the Tag UID.
xxxx xxxx ..... xxxx xxxx x xxx xxxx xxxx xxxx 64 bits
LSBMSB
b
LSBMSB
LSBMSB
LSBMSB
b0b63
CompareBits ignored
UID
4 bits
Figure 38. Principle of comparison between the mask, the slot number and the UID
The AFI field is present if the AFI_flag is set.
The pulse is generated according to the definition of the EOF in ISO/IEC 15693-2.
The first slot starts immediately after the reception of the request EOF. To switch to the next slot, the VCD sends an EOF.
The following rules and restrictions apply:
if no LRI1K answer is detected, the VCD may switch to the next slot by sending an EOF,
if one or more LRI1K answers are detected, the VCD waits until the complete frame
has been received before sending an EOF for switching to the next slot.
Doc ID 17170 Rev 3 41/86
Request processing by the LRI1K LRI1K

16 Request processing by the LRI1K

Upon reception of a valid request, the LRI1K performs the following algorithm:
NbS is the total number of slots (1 or 16)
SN is the current slot number (0 to 15)
LSB (value, n) function returns the n Less Significant Bits of value
MSB (value, n) function returns the n Most Significant Bits of value
"&" is the concatenation operator
Slot_Frame is either an SOF or an EOF
SN = 0 if (Nb_slots_flag)
then NbS = 1
SN_length = 0 endif
else NbS = 16
SN_length = 4 endif
label1: if LSB(UID, SN_length + Mask_length) =
LSB(SN,SN_length)&LSB(Mask,Mask_length)
then answer to inventory request
endif
wait (Slot_Frame)
if Slot_Frame = SOF
then Stop Anticollision
decode/process request exit endif
if Slot_Frame = EOF
if SN < NbS-1
then SN = SN + 1
goto label1 exit endif
endif
42/86 Doc ID 17170 Rev 3
LRI1K Explanation of the possible cases

17 Explanation of the possible cases

Figure 39 summarizes the main possible cases that can occur during an anticollision
sequence when the slot number is 16.
The different steps are:
The VCD sends an Inventory request, in a frame terminated by an EOF. The number of
slots is 16.
LRI1K 1 transmits its response in Slot 0. It is the only one to do so, therefore no
collision occurs and its UID is received and registered by the VCD;
The VCD sends an EOF in order to switch to the next slot.
In slot 1, two LRI1Ks, LRI1K 2 and LRI1K 3 transmit a response, thus generating a
collision. The VCD records the event and remembers that a collision was detected in Slot 1.
The VCD sends an EOF in order to switch to the next slot.
In Slot 2, no LRI1K transmits a response. Therefore the VCD does not detect any
LRI1K SOF and decides to switch to the next slot by sending an EOF.
In slot 3, there is another collision caused by responses from LRI1K 4 and LRI1K 5
The VCD then decides to send a request (for instance a Read Block) to LRI1K 1 whose
UID has already been correctly received.
All LRI1Ks detect an SOF and exit the anticollision sequence. They process this
request and since the request is addressed to LRI1K 1, only LRI1K 1 transmits a response.
All LRI1Ks are ready to receive another request. If it is an Inventory command, the slot
numbering sequence restarts from 0.
Note: The decision to interrupt the anticollision sequence is made by the VCD. It could have
continued to send EOFs until Slot 16 and only then sent the request to LRI1K 1.
Doc ID 17170 Rev 3 43/86
Explanation of the possible cases LRI1K
!)
3LOT 3LOT 3LOT 3LOT
6#$ 3/&
)NVENTORY
2EQUEST
%/& % /& %/& %/& 3/&
2EQUESTTO
,2)+
%/&
2ESPONSE
2ESPONSE
,2)+
2ESPONSE
FROM
,2)+
2ESPONSE
2ESPONSE
2ESPONSE
4IMING T T T T T T T T
#OMMENT
.O
COLLISION
#OLLISION
.O
2ESPONSE
#OLLISION
4IME
Figure 39. Description of a possible anticollision sequence
44/86 Doc ID 17170 Rev 3
LRI1K Inventory Initiated command

18 Inventory Initiated command

The LRI1K provides a special feature to improve the inventory time response of moving tags using the Initiate_flag value. This flag, controlled by the Initiate command, allows tags to answer to Inventory Initiated commands.
For applications in which multiple tags are moving in front of a reader, it is possible to miss tags using the standard inventory command. The reason is that the inventory sequence has to be performed on a global tree search. For example, a tag with a particular UID value may have to wait the run of a long tree search before being inventoried. If the delay is too long, the tag may be out of the field before it has been detected.
Using the Initiate command, the inventory sequence is optimized. When multiple tags are moving in front of a reader, the ones which are within the reader field will be initiated by the Initiate command. In this case, a small batch of tags will answer to the Inventory Initiated command which will optimize the time necessary to identify all the tags. When finished, the reader has to issue a new Initiate command in order to initiate a new small batch of tags which are new inside the reader field.
It is also possible to reduce the inventory sequence time using the Fast Initiate and Fast Inventory Initiated commands. These commands allow the LRI1Ks to increase their response data rate by a factor of 2, up to 53kbit/s.
Doc ID 17170 Rev 3 45/86
Timing definition LRI1K

19 Timing definition

19.1 t1: LRI1K response delay

Upon detection of the rising edge of the EOF received from the VCD, the LRI1K waits for a time t slot during an inventory process. Values of t
Figure 10 on page 19.

19.2 t2: VCD new request delay

t2 is the time after which the VCD may send an EOF to switch to the next slot when one or more LRI1K responses have been received during an Inventory command. It starts from the reception of the EOF from the LRI1Ks.
The EOF sent by the VCD may be either 10% or 100% modulated regardless of the modulation index used for transmitting the VCD request to the LRI1K.
t
is also the time after which the VCD may send a new request to the LRI1K as described in
2
Table 36: LRI1K protocol timing.
before transmitting its response to a VCD request or before switching to the next
1nom
are given in Ta bl e 19 . The EOF is defined in
1
Values of t
are given in Ta bl e 1 9 .
2

19.3 t3: VCD new request delay in the absence of a response from the LRI1K

t3 is the time after which the VCD may send an EOF to switch to the next slot when no LRI1K response has been received.
The EOF sent by the VCD may be either 10% or 100% modulated regardless of the modulation index used for transmitting the VCD request to the LRI1K.
From the time the VCD has generated the rising edge of an EOF:
If this EOF is 100% modulated, the VCD waits a time at least equal to t
sending a new EOF.
If this EOF is 10% modulated, the VCD waits a time at least equal to the sum of t
the LRI1K nominal response time (which depends on the LRI1K data rate and subcarrier modulation mode) before sending a new EOF.
Table 19. Timing values
Minimum (min) values Nominal (nom) values Maximum (max) values
t
1
t
2
t
3
1. The tolerance of specific timings is ± 32/f
2. t
does not apply for write alike requests. Timing conditions for write alike requests are defined in the
1max
command description.
is the time taken by the LRI1K to transmit an SOF to the VCD. t
3. t
SOF
High data rate or Low data rate.
318.6 µs 320.9 µs 323.3 µs
309.2 µs No t
(2)
t
1max
+ t
SOF
(3)
(1)
nom
No t
nom
.
C
depends on the current data rate:
SOF
3min
No t
No t
before
max
max
3min
+
46/86 Doc ID 17170 Rev 3
LRI1K Commands codes

20 Commands codes

The LRI1K supports the commands described in this section. Their codes are given in
Ta bl e 2 0 .
Table 20. Command codes
Command code
standard
01h Inventory A6h Kill
02h Stay Quiet B1h Write Kill
20h Read Single Block B2h Lock Kill
21h Write Single Block C0h Fast Read Single Block
22h Lock Block C1h Fast Inventory Initiated
23h Read Multiple Block C2h Fast Initiate
25h Select C3h Fast Read Multiple Block
26h Reset to Ready D1h Inventory Initiated
27h Write AFI D2h Initiate
28h Lock AFI
29h Write DSFID
2Ah Lock DSFID
2Bh Get System Info
2Ch
Function
Get Multiple Block Security Status
Command code
custom
Function
Doc ID 17170 Rev 3 47/86
Commands codes LRI1K

20.1 Inventory

When receiving the Inventory request, the LRI1K runs the anticollision sequence. The Inventory_flag is set to 1. The meaning of flags 5 to 8 is shown in Table 13: Request flags 5
to 8 when bit 3 = 1.
The request contains:
the flags,
the Inventory command code (see Table 20: Command codes)
the AFI if the AFI flag is set
the mask length
the mask value
the CRC
The LRI1K does not generate any answer in case of error.
Table 21. Inventory request format
Request
SOF
Request
flags
Inventory
Optional
AFI
Mask
length
Mask value CRC16
Request
EOF
8 bits 01h 8 bits 8 bits 0 - 64 bits 16 bits
The response contains:
the flags
the Unique ID
Table 22. Inventory response format
Response
SOF
Response
flags
DSFID UID CRC16
Response
EOF
8 bits 8 bits 64 bits 16 bits
During an Inventory process, if the VCD does not receive an RF LRI1K response, it waits a time t
before sending an EOF to switch to the next slot. t3 starts from the rising edge of the
3
request EOF sent by the VCD.
If the VCD sends a 100% modulated EOF, the minimum value of t
t
min = 4384/fC (323.3µs) + t
3
If the VCD sends a 10% modulated EOF, the minimum value of t3 is: t
min = 4384/fC (323.3µs) + t
3
SOF
NRT
is:
3
where:
t
t
t
NRT
is the time required by the LRI1K to transmit an SOF to the VCD
SOF
is the nominal response time of the LRI1K
NRT
and t
are dependent on the LRI1K-to-VCD data rate and subcarrier modulation
SOF
mode.
48/86 Doc ID 17170 Rev 3
LRI1K Commands codes

20.2 Stay Quiet

On receiving the Stay Quiet command, the LRI1K enters the Quiet state and does NOT send back a response. There is NO response to the Stay Quiet command even if an error occurs.
When in the Quiet state:
the LRI1K does not process any request if the Inventory_flag is set,
the LRI1K processes any Addressed request
The LRI1K exits the Quiet state when:
it is reset (power off),
receiving a Select request. It then goes to the Selected state,
receiving a Reset to Ready request. It then goes to the Ready state.
Table 23. Stay Quiet request format
Request
SOF
Request flags Stay Quiet UID CRC16
Request
EOF
8 bits 02h 64 bits 16 bits
The Stay Quiet command must always be executed in the Addressed mode (Select_flag is reset to 0 and Address_flag is set to 1).
Figure 40. Stay Quiet frame exchange between VCD and LRI1K
VCD SOF
Stay Quiet
request
EOF
LRI1K
Timing
Doc ID 17170 Rev 3 49/86
Commands codes LRI1K

20.3 Read Single Block

On receiving the Read Single Block command, the LRI1K reads the requested block and sends back its 32 bits value in the response. The Option_flag is supported.
Table 24. Read Single Block request format
Request
SOF
Request_flags
8 bits 20h
Read
Single
Block
UID
64 bits 8 bits 16 bits
Block
number
CRC16
Request parameters:
Option_flag
UID (Optional)
Block number
Table 25. Read Single Block response format when Error_flag is NOT set
Response
SOF
Response_
flags
Block
locking
status
Data CRC16
Response
8 bits 8 bits 32 bits 16 bits
Response parameter:
Block Locking Status if Option_flag is set (see Table 26: Block Locking status)
4 bytes of block data
Table 26. Block Locking status
Request
EOF
EOF
b
b
7
b
6
b
5
b
4
b
3
2
all 0
Table 27. Read Single Block response format when Error_flag is set
Response SOF
Response_
Flags
Error code CRC16 Response EOF
8 bits 8 bits 16 bits
Response parameter:
Error code as Error_flag is set:
0Fh: other error
10h: block address not available
50/86 Doc ID 17170 Rev 3
b
1
0: Current Block not locked 1: Current Block locked
b
0
LRI1K Commands codes
Figure 41. READ Single Block frame exchange between VCD and LRI1K
VCD SOF
Read Single
Block request
EOF
LRI1K <-t
-> SOF
1
Read Single
Block response
EOF
Doc ID 17170 Rev 3 51/86
Commands codes LRI1K

20.4 Write Single Block

On receiving the Write Single Block Command, the LRI1K writes the data contained in the request to the requested block and reports whether the write operation was successful in the response. The Option_flag is supported.
During the write cycle t Otherwise, the LRI1K may not program correctly the data into the memory. The t equal to t
Table 28. Write Single Block request format
Request
SOF
+ 18 × 302µs.
1nom
Request_
flags
, there should be no modulation (neither 100% nor 10%).
W
Write Single
Block
UID
Block
number
Data CRC16
W
8 bits 21h 64 bits 8 bits 32 bits 16 bits
Request parameters:
UID (Optional)
Block number
Data
Table 29. Write Single Block response format when Error_flag is NOT set
Response SOF Response_flags CRC16 Response EOF
8 bits 16 bits
Response parameter:
No parameter. The response is sent back after the write cycle.
Table 30. Write Single Block response format when Error_flag is set
time is
Request
EOF
Response SOF Response_flags Error code CRC16 Response EOF
8 bits 8 bits 16 bits
Response parameter:
Error code as Error_flag is set:
10h: block address not available
12h: block is locked
13h: block not programmed
Figure 42. Write Single Block frame exchange between VCD and LRI1K
VCD SOF
LRI1K <-t
LRI1K
52/86 Doc ID 17170 Rev 3
Write Single
Block request
EOF
-> SOF
1
Write Single
Block response
EOF Write sequence when error
<------------ tW ------------><- t1 -> SOF
Write Single
Block response
EOF
LRI1K Commands codes

20.5 Lock Block

On receiving the Lock Block command, the LRI1K permanently locks the selected block.
During the write cycle t Otherwise, the LRI1K may not lock correctly the memory block. The t
, there should be no modulation (neither 100% nor 10%).
W
time is equal to t
W
+ 18 × 302µs.
Table 31. Lock Single Block request format
Request
SOF
Request_
flags
Lock Block
UID
Block
number
CRC16
8 bits 22h 64 bits 8 bits 16 bits
Request parameters:
UID (Optional)
Block number
Table 32. Lock Block response format when Error_flag is NOT set
Response SOF Response_flags CRC16 Response EOF
8 bits 16 bits
Response parameter:
No parameter.
Table 33. Lock Block response format when Error_flag is set
1nom
Request
EOF
Response
SOF
Response_flags Error code CRC16
8 bits 8 bits 16 bits
Response parameter:
Error code as Error_flag is set:
10h: block address not available
11h: block is locked
14h: block not locked
Figure 43. Lock Block frame exchange between VCD and LRI1K
VCD SOF
LRI1K
LRI1K
Lock Block
request
EOF
<-t1-> SOF
Lock Block
response
<------------ tW ------------><- t1 -> SOF
EOF
Response
EOF
Lock sequence when
error
Lock Block
response
EOF
Doc ID 17170 Rev 3 53/86
Commands codes LRI1K

20.6 Read Multiple Block

When receiving the Read Multiple Block command, the LRI1K reads the selected blocks and sends back their values in multiples of 32 bits in the response. The blocks are numbered from '00h’ to '1Fh' in the request.
The “number of blocks” value corresponds to the number of blocks to be read after the first block. For example, if the “number of blocks” field contains the value 06h, 7 blocks will be read. The maximum number of blocks that can be read is 32.
During Sequential Block Read, when the block address reaches 32, it rolls over to 0. The Option_flag is supported.
Table 34. Read Multiple Block request format
Request
SOF
Request_
flags
8 bits 23h
Read
Multiple
Block
First
UID
block
number
64 bits 8 bits 8 bits 16 bits
Number
of
blocks
CRC16
Request parameters:
Option_flag
UID (Optional)
First block number
Number of blocks
Table 35. Read Multiple Block response format when Error_flag is NOT set
Response
SOF
Response_
flags
8 bits 8 bits
1. Repeated as needed.
Block
Locking
Status
(1)
Data CRC16
(1)
32 bits
16 bits
Response parameter:
Block Locking Status if Option_flag is set (see Table 36: Block Locking status)
N blocks of data
Table 36. Block Locking status
Request
EOF
Response
EOF
b
b
7
b
6
b
5
b
4
b
3
2
All 0
Table 37. Read Multiple Block response format when Error_flag is set
Response SOF Response_flags Error code CRC16 Response EOF
8 bits 8 bits 16 bits
54/86 Doc ID 17170 Rev 3
b
1
0: Current Block not locked 1: Current Block locked
b
0
LRI1K Commands codes
Response parameter:
Error code as Error_flag is set:
0Fh: other error
10h: block address not available
Figure 44. Read Multiple Block frame exchange between VCD and LRI1K
VCD SOF
LRI1K
Read Multiple Block request
EOF
<-t1-> SOF
Read Multiple
Block
response
EOF
Doc ID 17170 Rev 3 55/86
Commands codes LRI1K

20.7 Select

When receiving the Select command:
if the UID is equal to its own UID, the LRI1K enters or stays in the Selected state and
sends a response.
if the UID does not match its own, the selected LRI1K returns to the Ready state and
does not send a response.
The LRI1K answers an error code only if the UID is equal to its own UID. If not, no response is generated.
Table 38. Select request format
Request
SOF
Request_
flags
Select UID CRC16
Request
EOF
8 bits 25h 64 bits 16 bits
Request parameter:
UID
Table 39. Select Block response format when Error_flag is NOT set
Response SOF Response_flags CRC16 Response EOF
8 bits 16 bits
Response parameter:
No parameter.
Table 40. Select response format when Error_flag is set
Response SOF Response_flags Error code CRC16 Response EOF
8 bits 8 bits 16 bits
Response parameter:
Error code as Error_flag is set:
0Fh: other error
Figure 45. Select frame exchange between VCD and LRI1K
VCD SOF
LRI1K
Select
request
EOF
<-t1-> SOF
56/86 Doc ID 17170 Rev 3
Select
response
EOF
LRI1K Commands codes

20.8 Reset to Ready

On receiving a Reset to Ready command, the LRI1K returns to the Ready state. In the Addressed mode, the LRI1K answers an error code only if the UID is equal to its own UID. If not, no response is generated.
Table 41. Reset to Ready request format
Request
SOF
Request_
flags
Reset to Ready
UID CRC16
8 bits 26h 64 bits 16 bits
Request parameter:
UID (Optional)
Table 42. Reset to Ready response format when Error_flag is NOT set
Response
SOF
Response_flags CRC16
8 bits 16 bits
Response parameter:
No parameter.
Table 43. Reset to ready response format when Error_flag is set
Response SOF
Response_
flags
Error code CRC16 Response EOF
8 bits 8 bits 16 bits
Request
EOF
Response
EOF
Response parameter:
Error code as Error_flag is set:
0Fh: other error
Figure 46. Reset to Ready frame exchange between VCD and LRI1K
VCD SOF
LRI1K
Reset to Ready
request
Doc ID 17170 Rev 3 57/86
EOF
<-t1-> SOF
Reset to Ready
response
EOF
Commands codes LRI1K

20.9 Write AFI

On receiving the Write AFI request, the LRI1K writes the AFI byte value into its memory.
During the write cycle t Otherwise, the LRI1K may not write correctly the AFI value into the memory. The t equal to t
Table 44. Write AFI request format
Request
SOF
+ 18 × 302µs.
1nom
Request
_flags
, there should be no modulation (neither 100% nor 10%).
W
Write AFI
UID AFI CRC16
W
Request
8 bits 27h 64 bits 8 bits 16 bits
Request parameters:
UID (Optional)
AFI
Table 45. Write AFI response format when Error_flag is NOT set
Response SOF Response_flags CRC16 Response EOF
8 bits 16 bits
Response parameter:
No parameter.
Table 46. Write AFI response format when Error_flag is set
time is
EOF
Response SOF Response_flags Error code CRC16 Response EOF
8 bits 8 bits 16 bits
Response parameter:
Error code as Error_flag is set:
12h: block is locked
13h: block not programmed
Figure 47. Write AFI frame exchange between VCD and LRI1K
VCD SOF
LRI1K
LRI1K
Write AFI
request
EOF
<-t1-> SOF
Write AFI response
<------------ tW ------------><- t1 -> SOF
Write sequence when
EOF
Write AFI response
error
EOF
58/86 Doc ID 17170 Rev 3
LRI1K Commands codes

20.10 Lock AFI

On receiving the Lock AFI request, the LRI1K locks the AFI value permanently.
During the write cycle t Otherwise, the LRI1K may not Lock correctly the AFI value in memory. The t to t
Table 47. Lock AFI request format
Request SOF
+ 18 × 302 µs.
1nom
Request_
flags
, there should be no modulation (neither 100% nor 10%).
W
time is equal
W
Lock AFI UID CRC16 Request EOF
8 bits 28h 64 bits 16 bits
Request parameter:
UID (Optional)
Table 48. Lock AFI response format when Error_flag is NOT set
Response SOF Response_flags CRC16 Response EOF
8 bits 16 bits
Response parameter:
No parameter.
Table 49. Lock AFI response format when Error_flag is set
Response SOF Response_flags Error code CRC16 Response EOF
8 bits 8 bits 16 bits
Response parameter:
Error code as Error_flag is set:
11h: block is locked
14h: block not locked
Figure 48. Lock AFI frame exchange between VCD and LRI1K
VCD SOF
LRI1K
LRI1K
Lock AFI
request
EOF
<-t1-> SOF
Lock AFI
response
<------------ tW ------------><- t1 -> SOF
EOF
Lock sequence when
error
Lock AFI
response
EOF
Doc ID 17170 Rev 3 59/86
Commands codes LRI1K

20.11 Write DSFID

On receiving the Write DSFID request, the LRI1K writes the DSFID byte value into its memory.
During the write cycle t Otherwise, the LRI1K may not write correctly the DSFID value in memory. The t equal to t
Table 50. Write DSFID request format
Request
SOF
+ 18 × 302µs.
1nom
Request_
flags
, there should be no modulation (neither 100% nor 10%).
W
Write
DSFID
UID DSFID CRC16
time is
W
8 bits 29h 64 bits 8 bits 16 bits
Request parameters:
UID (Optional)
DSFID
Table 51. Write DSFID response format when Error_flag is NOT set
Response SOF Response_flags CRC16 Response EOF
8 bits 16 bits
Response parameter:
No parameter.
Table 52. Write DSFID response format when Error_flag is set
Request
EOF
Response SOF
Response_
flags
Error code CRC16 Response EOF
8 bits 8 bits 16 bits
Response parameter:
Error code as Error_flag is set:
12h: block is locked
13h: block not programmed
Figure 49. Write DSFID frame exchange between VCD and LRI1K
Write
VCD SOF
LRI1K
LRI1K
DSFID
request
EOF
<-t1-> SOF
Write DSFID
response
<------------ tW ------------><- t1 -> SOF
EOF
Write sequence when
error
Write DSFID
response
EOF
60/86 Doc ID 17170 Rev 3
LRI1K Commands codes

20.12 Lock DSFID

On receiving the Lock DSFID request, the LRI1K locks the DSFID value permanently.
During the write cycle t Otherwise, the LRI1K may not lock correctly the DSFID value in memory. The t equal to t
Table 53. Lock DSFID request format
Request SOF
+ 18 × 302µs.
1nom
Request_
, there should be no modulation (neither 100% nor 10%).
W
flags
Lock DSFID UID CRC16 Request EOF
time is
W
8 bits 2Ah 64 bits 16 bits
Request parameter:
UID (Optional)
Table 54. Lock DSFID response format when Error_flag is NOT set
Response SOF Response_flags CRC16 Response EOF
8 bits 16 bits
Response parameter:
No parameter.
Table 55. Lock DSFID response format when Error_flag is set
Response SOF
Response_
flags
Error code CRC16 Response EOF
8 bits 8 bits 16 bits
Response parameter:
Error code as Error_flag is set:
11h: block is locked
14h: block not locked
Figure 50. Lock DSFID frame exchange between VCD and LRI1K
Lock
VCD SOF
LRI1K
LRI1K
DSFID
request
EOF
<-t1-> SOF
Lock DSFID
response
<------------ tW ------------><- t1 -> SOF
EOF
Lock sequence when
error
Lock DSFID
response
EOF
Doc ID 17170 Rev 3 61/86
Commands codes LRI1K

20.13 Get System Info

When receiving the Get System Info command, the LRI1K sends back its information data in the response.The Option_flag is supported and must be reset to 0. The Get System Info can be issued in both Addressed and Non Addressed modes.
Table 56. Get System Info request format
Request SOF
Request_
flags
Get System
Info
UID CRC16 Request EOF
8 bits 2Bh 64 bits 16 bits
Request parameter:
UID (Optional)
Table 57. Get System Info response format when Error_flag is NOT set
Response
SOF
Response_
flags
Information
flags
UID DSFID AFI
Memory
size
00h 0Fh 64 bits 8 bits 8 bits 031Fh 010000xx
IC
reference
CRC16
16 bits
b
Response
EOF
Response parameters:
Information Flags set to 0Fh. DSFID, AFI, Memory Size and IC reference fields are
present.
UID code on 64 bits
DSFID value
AFI value
memory size. The LRI1K provides 32 blocks (1Fh) of 4 bytes (03h).
IC Reference. Only the 6 MSBs are significant. The product code of the LRI1K is
01 0000
Table 58. Get System Info response format when Error_flag is set
=16
b
d
Response SOF Response_flags Error code CRC16 Response EOF
01h 8 bits 16 bits
Response parameter:
Error code as Error_flag is set:
03h: Option not supported
0Fh: other error
Figure 51. Get System Info frame exchange between VCD and LRI1K
VCD SOF
Get System Info request
EOF
LRI1K
62/86 Doc ID 17170 Rev 3
<-t1-> SOF
Get System Info
response
EOF
LRI1K Commands codes

20.14 Get Multiple Block Security Status

When receiving the Get Multiple Block Security Status command, the LRI1K sends back the block security statuses. The blocks are numbered from '00h’ to '1Fh' in the request. The “Number of blocks” value corresponds to the number of blocks whose security statuses are requested after the first block. For example, if the “number of blocks” field contains the value 06h, the security statuses of 7 blocks will be output.
The address of the last block whose security status is requested must not exceed 1Fh. In other words, “First block number” + “Number of blocks” must not exceed 1Fh. In request, option flag must be set to 0.
Table 59. Get Multiple Block Security Status request format
Request
SOF
Get Multiple
Request_
flags
8 bits 2Ch
Block
Security
Status
UID
64 bits 8 bits 8 bits 16 bits
First
block
number
Number
of
blocks
CRC16
Request
EOF
Request parameters:
UID (Optional)
First block number
Number of blocks
Table 60. Get Multiple Block Security Status response format when Error_flag is
NOT set
Response SOF Response_flags
8 bits 8 bits
1. Repeated as needed.
Block Locking
Status
(1)
CRC16 Response EOF
16 bits
Response parameters:
Block Locking Status (see Table 61: Block Locking status)
N block of data
Table 61. Block Locking status
b
Table 62. Get Multiple Block Security Status response format when Error_flag is
b
7
b
6
b
5
All 0
b
4
b
3
b
2
1
b
0
0: Current block not locked 1: Current block locked
set
Response SOF Response_flags Error code CRC16 Response EOF
8 bits 8 bits 16 bits
Doc ID 17170 Rev 3 63/86
Commands codes LRI1K
Response parameter:
Error code as Error_flag is set:
03h: Option not supported
0Fh: other error
Figure 52. Get Multiple Block Security Status frame exchange between VCD and
LRI1K
Get Multiple
VCD SOF
LRI1K
Block Security
Status
EOF
<-t1-> SOF
Get Multiple
Block Security
Status
EOF
64/86 Doc ID 17170 Rev 3
LRI1K Commands codes

20.15 Kill

On receiving the Kill command, in the Addressed mode only, the LRI1K compares the kill code with the data contained in the request and reports whether the operation was successful in the response. If the command is received in the Non Addressed or the Selected mode, the LRI1K returns an error response.
During the comparison cycle equal to t 10%). Otherwise, the LRI1K may not match the kill code correctly. The t t
+ 18 × 302µs. After a successful Kill command, the LRI1K is deactivated and does not
1nom
, there should be no modulation (neither 100% nor
W
time is equal to
W
interpret any other command.
Table 63. Kill request format
Request
SOF
Request_
flags
Kill
IC Mfg
code
UID
Kill
access
Kill code CRC16
Request
8 bits A6h 02h 64 bits 00h 32 bits 16 bits
Request parameters:
UID
Kill Code
Table 64. Kill response format when Error_flag is NOT set
Response SOF Response_flags CRC16 Response EOF
8 bits 16 bits
Response parameter:
No parameter. The response is send back after the writing cycle
Table 65. Kill response format when Error_flag is set
EOF
Response SOF Response_flags Error code CRC16 Response EOF
8 bits 8 bits 16 bits
Response parameter:
Error code as Error_flag is set:
0Fh: other error
14h: LRI1K not killed
Figure 53. Kill frame exchange between VCD and LRI1K
VCD SOF Kill request EOF
LRI1K <-t
-> SOF Kill response EOF
1
LRI1K <------------ t
Doc ID 17170 Rev 3 65/86
------------><- t1 -> SOF Kill response EOF
W
Kill sequence when
error
Commands codes LRI1K

20.16 Write Kill

On receiving the Write Kill command, the LRI1K writes the kill code with the data contained in the request and reports whether the operation was successful in the response. The Option_flag is supported. After a successful write, the kill code must be locked by a Lock Kill command to activate the protection.
During the write cycle t Otherwise, the LRI1K may not correctly program the data to the memory. The t equal to t
Table 66. Write Kill request format
Request
SOF
+ 18 × 302 µs.
1nom
Request_
flags
, there should be no modulation (neither 100% nor 10%).
W
Write
Kill
IC Mfg
code
UID
Kill
access
Kill code CRC16
time is
W
8 bits B1h 02h 64 bits 00h 32 bits 16 bits
Request parameters:
UID (Optional)
Kill Address (00h = Kill, other = Error)
Data
Table 67. Write Kill response format when Error_flag is NOT set
Response SOF Response_flags CRC16 Response EOF
8 bits 16 bits
No parameter. The response is send back after the write cycle.
Table 68. Write Kill response format when Error_flag is set
Request
EOF
Response SOF Response_flags Error code CRC16 Response EOF
8 bits 8 bits 16 bits
Response parameter:
Error code as Error_flag is set:
10h: block address not available
12h: block is locked
13h: block not programmed
Figure 54. Write Kill frame exchange between VCD and LRI1K
VCD SOF
LRI1K <-t
LRI1K <------------ t
66/86 Doc ID 17170 Rev 3
Write Kill
request
EOF
-> SOF
1
W
Write Kill response
EOF
------------><- t1 -> SOF
Write sequence when
error
Write Kill
response
EOF
LRI1K Commands codes

20.17 Lock Kill

On receiving the Lock Kill command, the LRI1K locks the Kill code permanently. The Option_flag is supported. RFU bit 8 of the request flag must be set to ‘1’.
During the write cycle t Otherwise, the LRI1K may not lock the memory block correctly. The t t
+ 18 × 302 µs.
1nom
Table 69. Lock Kill request format
Request
SOF
Request_
flags
, there should be no modulation (neither 100% nor 10%).
W
Lock
Kill
IC Mfg
code
UID
Kill
access
time is equal to
W
Protect
Status
CRC16
Request
8 bits B2h 02h 64 bits 00f 8 bits 16 bits
Request parameters:
UID (Optional)
Kill Address (bit 8 = ‘1’: 00h = KILL, other = Error)
Protect status (see table below)
b
7
b
6
00000001
Table 70. Lock Kill response format when Error_flag is NOT set
Response SOF Response_flags CRC16 Response EOF
b
5
b
4
b
3
8 bits 16 bits
b
2
b
1
EOF
b
0
Response parameter:
No parameter.
Table 71. Lock Kill response format when Error_flag is set
Response SOF Response_flags Error code CRC16 Response EOF
8 bits 8 bits 16 bits
Response parameter:
Error code as Error_flag is set:
10h: block address not available
11h: block is locked
14h: block not locked
Doc ID 17170 Rev 3 67/86
Commands codes LRI1K
Figure 55. Lock Kill frame exchange between VCD and LRI1K
VCD SOF
LRI1K
LRI1K
Lock Kill
request
EOF
<-t1-> SOF
Lock Kill
response
<------------ tW ------------><- t1 -> SOF
Lock sequence when
EOF
Lock Kill
response
error
EOF
68/86 Doc ID 17170 Rev 3
LRI1K Commands codes

20.18 Fast Read Single Block

On receiving the Fast Read Single Block command, the LRI1K reads the requested block and sends back its 32-bit value in the response. The Option_flag is supported. The data rate of the response is multiplied by 2.
Table 72. Fast Read Single Block request format
Request
SOF
Request_
flags
Fast Read
Single
Block
8 bits C0h 02h
IC Mfg
code
UID
64 bits 8 bits 16 bits
Block
number
CRC16
Request
Request parameters:
Option_flag
UID (Optional)
Block number
Table 73. Fast Read Single Block response format when Error_flag is NOT set
Response
SOF
Response_
flags
Block locking
status
Data CRC16
Response
EOF
8 bits 8 bits 32 bits 16 bits
Response parameter:
Block Locking Status if Option_flag is set
4 bytes of Block Data
Table 74. Block Locking status
EOF
b
7
Table 75. Fast Read Single Block response format when Error_flag is set
Response SOF
b
6
b
5
Response_
flags
b
All 0
4
b
3
b
2
b
1
b
0
0: Current Block not locked 1: Current Block locked
Error code CRC16 Response EOF
8 bits 8 bits 16 bits
Response parameter:
Error code as Error_flag is set:
0Fh: other error
10h: block address not available
Doc ID 17170 Rev 3 69/86
Commands codes LRI1K
Figure 56. Fast Read Single Block frame exchange between VCD and LRI1K
VCD SOF
LRI1K
Fast Read Single
Block request
EOF
<-t1-> SOF
Fast Read Single
Block response
EOF
70/86 Doc ID 17170 Rev 3
LRI1K Commands codes

20.19 Fast Inventory Initiated

Before receiving the Fast Inventory Initiated command, the LRI1K must have received an Initiate or a Fast Initiate command in order to set the Initiate_ flag. If not, the LRI1K does not answer to the Fast Inventory Initiated command.
On receiving the Fast Inventory Initiated request, the LRI1K runs the anticollision sequence. The Inventory_flag must be set to 1. The Meaning of Flags 5 to 8 is shown in Ta bl e 1 3 :
Request flags 5 to 8 when bit 3 = 1. The data rate of the response is multiplied by 2.
The request contains:
the flags,
the Inventory command code
the AFI option is not supported, AFI flag must be set to 0
the mask length
the mask value
the CRC
The LRI1K does not generate any answer if an error occurs.
Table 76. Fast Inventory Initiated request format
Request
SOF
Request
Flags
Fast
Inventory
Initiated
IC Mfg
Code
Optiona
l AFI
Mask
length
Mask value CRC16
Request
EOF
8 bits C1h 02h 8 bits 8 bits 0 - 64 bits 16 bits
The response contains:
The flags
the Unique ID
Table 77. Fast Inventory Initiated response format
Response SOF Response Flags DSFID UID CRC16 Response EOF
8 bits 00h 64 bits 16 bits
During an Inventory process, if the VCD does not receive an RF LRI1K response, it waits a time t
before sending an EOF to switch to the next slot. t3 starts from the rising edge of the
3
request EOF sent by the VCD.
If the VCD sends a 100% modulated EOF, the minimum value of t
t
min = 4384/fC (323.3 µs) + t
3
If the VCD sends a 10% modulated EOF, the minimum value of t3 is: t
min = 4384/fC (323.3 µs) + t
3
SOF
NRT
is:
3
where:
t
t
t
NRT
is the time required by the LRI1K to transmit an SOF to the VCD
SOF
is the nominal response time of the LRI1K
NRT
and t
are dependent on the LRI1K-to-VCD data rate and subcarrier modulation
SOF
mode.
Doc ID 17170 Rev 3 71/86
Commands codes LRI1K

20.20 Fast Initiate

On receiving the Fast Initiate command, the LRI1K sets the internal Initiate_flag and sends back a response. The command has to be issued in the Non Addressed mode only (Select_flag is reset to 0 and Address_flag is reset to 0). If an error occurs, the LRI1K does not generate any answer. The Initiate_flag is reset after a power off of the LRI1K. The data rate of the response is multiplied by 2.
The request contains:
No data
Table 78. Fast Initiate request format
Request SOF Request Flags Fast Initiate IC Mfg code CRC16 Request EOF
8 bits C2h 02h 16 bits
The response contains:
the flags
the Unique ID
Table 79. Fast Initiate response format
Response
SOF
Response_
flags
DSFID UID CRC16
8 bits 00h 64 bits 16 bits
Figure 57. Fast Initiate frame exchange between VCD and LRI1K
VCD SOF
LRI1K
Fast Initiate
request
EOF
<-t1-> SOF
Fast Initiate
response
EOF
Response
EOF
72/86 Doc ID 17170 Rev 3
LRI1K Commands codes

20.21 Fast Read Multiple Block

When receiving the Fast Read Multiple Block command, the LRI1K reads the selected blocks and sends back their value in multiples of 32 bits in the response. The blocks are numbered from '00h’ to '1Fh' in the request.
The “Number of blocks” value corresponds to the number of blocks to be read after the first block. For example, if the “number of blocks” field contains the value 06h, 7 blocks will be read. The maximum number of blocks that can be read is 32.
During Sequential Block Read, when the block address reaches 32, it rolls over to 0. The Option_flag is supported. The data rate of the response is multiplied by 2.
Table 80. Fast Read Multiple Block request format
Request
SOF
Fast
Request_
flags
Read
Multiple
Block
8 bits C3h 02h
IC Mfg
code
UID
64 bits 8 bits 8 bits 16 bits
First
block
number
Number
of
blocks
CRC16
Request
EOF
Request parameters:
Option_flag
UID (Optional)
First block number
Number of blocks
Table 81. Fast Read Multiple Block response format when Error_flag is NOT set
Response
SOF
1. Repeated as needed.
Response_
Block Locking
flags
8 bits 8 bits
Status
(1)
Data CRC16
(1)
32 bits
16 bits
Response
EOF
Response parameters:
Block Locking Status if Option_flag is set
N block of data
Table 82. Block Locking status if Option_flag is set
b
Table 83. Fast Read Multiple Block response format when Error_flag is set
b
7
b
6
b
5
All 0
b
4
b
3
b
2
1
b
0
0: Current block not locked 1: Current block locked
Response SOF Response_flags Error code CRC16 Response EOF
8 bits 8 bits 16 bits
Doc ID 17170 Rev 3 73/86
Commands codes LRI1K
Response parameter:
Error code as Error_flag is set:
0Fh: other error
10h: block address not available
Figure 58. Fast Read Multiple Block frame exchange between VCD and LRI1K
Fast Read
VCD SOF
LRI1K
Multiple
Block
request
EOF
<-t1-> SOF
Fast Read
Multiple Block
response
EOF
74/86 Doc ID 17170 Rev 3
LRI1K Commands codes

20.22 Inventory Initiated

Before receiving the Inventory Initiated command, the LRI1K must have received an Initiate or a Fast Initiate command in order to set the Initiate_ flag. If not, the LRI1K does not answer to the Inventory Initiated command.
On receiving the Inventory Initiated request, the LRI1K runs the anticollision sequence. The Inventory_flag must be set to 1. The Meaning of Flags 5 to 8 is given in Table 13: Request
flags 5 to 8 when bit 3 = 1.
The request contains:
the flags,
the Inventory command code
he AFI option is not supported, AFI flag must be set to 0
the mask length
the mask value
the CRC
The LRI1K does not generate any answer if an error occurs.
Table 84. Inventory Initiated request format
Request
SOF
Request
Flags
Inventory
Initiated
IC Mfg
code
Optiona
l AFI
Mask
length
Mask value CRC16
Request
EOF
8 bits D1h 02h 8 bits 8 bits 0 - 64 bits 16 bits
The response contains:
the flags
the Unique ID
Table 85. Inventory Initiated response format
Response
SOF
Response
Flags
DSFID UID CRC16
Response
EOF
8 bits 00h 64 bits 16 bits
During an Inventory process, if the VCD does not receive an RF LRI1K response, it waits a time t
before sending an EOF to switch to the next slot. t3 starts from the rising edge of the
3
request EOF sent by the VCD.
If the VCD sends a 100% modulated EOF, the minimum value of t
t
min = 4384/fC (323.3 µs) + t
3
If the VCD sends a 10% modulated EOF, the minimum value of t3 is: t
min = 4384/fC (323.3 µs) + t
3
SOF
NRT
is:
3
where:
t
t
t
NRT
is the time required by the LRI1K to transmit an SOF to the VCD
SOF
is the nominal response time of the LRI1K
NRT
and t
are dependent on the LRI1K-to-VCD data rate and subcarrier modulation
SOF
mode.
Doc ID 17170 Rev 3 75/86
Commands codes LRI1K

20.23 Initiate

On receiving the Initiate command, the LRI1K sets the internal Initiate_flag and sends back a response. The command has to be issued in the Non Addressed mode only (Select_flag is reset to 0 and Address_flag is reset to 0). If an error occurs, the LRI1K does not generate any answer. The Initiate_flag is reset after a power off of the LRI1K.
The request contains:
No data
Table 86. Initiate request format
Request SOF Request Flags Initiate IC Mfg code CRC16 Request EOF
8 bits D2h 02h 16 bits
The response contain:
the flags
the Unique ID
Table 87. Initiate Initiated response format
Response
SOF
Response
Flags
DSFID UID CRC16
8 bits 00h 64 bits 16 bits
Figure 59. Initiate frame exchange between VCD and LRI1K
VCD SOF
LRI1K
Initiate
request
EOF
<-t1-> SOF
Initiate
response
Response
EOF
EOF
76/86 Doc ID 17170 Rev 3
LRI1K Maximum rating

21 Maximum rating

Stressing the device above the rating listed in the absolute maximum ratings table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.
Table 88. Absolute maximum ratings
Symbol Parameter Min. Max. Unit
T
STG
t
STG
I
CC
V
MAX
V
ESD
1. AEC-Q100-002 (compliant with JEDEC Std JESD22-A114A, C1=100pF, R1=1500 Ohms, R2=500 Ohms).
2. Human body model.
3. Machine model.
Storage temperature
Storage time
Supply current on AC0 / AC1 –20 20 mA
Input voltage on AC0 / AC1 –7 7 V
Electrostatic discharge
(1)
voltage
Wafer (kept in its antistatic bag)
Wafer (kept in its antistatic bag)
(3)
(2)
)
)
UFDFPN8 (HBM
UFDFPN8 (MM
15 25 °C
23 months
–1000 1000 V
–100 100 V
Doc ID 17170 Rev 3 77/86
DC and AC parameters LRI1K

22 DC and AC parameters

This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC Characteristic tables that follow are derived from tests performed under the Measurement Conditions summarized in the relevant tables. Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parameters.
Table 89. AC characteristics
Symbol Parameter Condition Min Typ Max Unit
(1) (2)
f
CC
MI
CARRIER
t
RFR,tRFF
t
RFSBL
MI
CARRIER
t
RFR,tRFF
t
RFSBL
t
JIT
t
MIN CD
f
SH
f
SL
t
1
t
2
t
W
= –20 to 85°C.
1. T
A
2. All timing measurements were performed on a reference antenna with the following characteristics:
External size: 75 mm × 48 mm Number of turns: 6 Width of conductor: 1 mm Space between 2 conductors: 0.4 mm Value of the tuning capacitor: 21 pF (LRI1K-SBN18) Value of the coil: 4.3 µH Tuning frequency: 13.8 MHz.
External RF signal frequency 13.553 13.56 13.567 MHz
10% carrier modulation index MI=(A-B)/(A+B) 10 30 %
10% rise and fall time 0.5 3.0 µs
10% minimum pulse width for bit 7.1 9.44 µs
100% carrier modulation index MI=(A-B)/(A+B) 95 100 %
100% rise and fall time 0.5 3.5 µs
100% minimum pulse width for bit 7.1 9.44 µs
Bit pulse jitter –2 +2 µs
Minimum time from carrier generation to first data
From H-field min 0.1 1 ms
Subcarrier frequency high FCC/32 423.75 kHz
Subcarrier frequency low FCC/28 484.28 kHz
Time for LRI1K response 4224/F
Time between command 4224/F
Programming time (including internal verify time)
S
S
318.6 320.9 323.3 µs
309 311.5 314 µs
5.8 ms
78/86 Doc ID 17170 Rev 3
LRI1K DC and AC parameters
AI06680
AB
t
RFF
t
RFR
t
RFSBL
t
MAX t
MIN CD
f
CC
Table 90. DC characteristics
(1)
Symbol Parameter Test conditions Min. Typ. Max. Unit
V
V
Regulated voltage 1.5 3.0 V
CC
Retromodulated induced
RET
voltage
ISO10373-7 10 mV
Read VCC= 3.0 V 50 µA
I
Supply current
CC
C
1. T
Table 91. Operating conditions
Internal tuning capacitor f = 13.56 MHz for W4/1 21 pF
TUN
= –20 to 85°C.
A
Write V
= 3.0 V 150 µA
CC
Symbol Parameter Min. Max. Unit
T
A
Ambient operating temperature –20 85 °C
Figure 60. LRI1K synchronous timing, transmit and receive
Figure 60 shows an ASK modulated signal, from the VCD to the LRI1K. The test condition
for the AC/DC parameters are:
Close coupling condition with tester antenna (1mm)
LRI1K performance measured at the tag antenna
Doc ID 17170 Rev 3 79/86
Part numbering LRI1K

23 Part numbering

Table 92. Ordering information scheme
Example: LRI1K - SBN18/ 1 GE
Device type
LRI1K
Package
SBN18 = 180 µm ± 15 µm bumped and sawn wafer on 8-inch frame
Tuning capacitance
1 = 21 pF
Customer code given by ST
GE = generic product
xx = customer code after personalization
For further information on any aspect of this device, please contact your nearest ST sales office.
80/86 Doc ID 17170 Rev 3
LRI1K Anticollision algorithm (Informative)

Appendix A Anticollision algorithm (Informative)

The following pseudocode describes how anticollision could be implemented on the VCD, using recursivity.

A.1 Algorithm for pulsed slots

function push (mask, address); pushes on private stack
function pop (mask, address); pops from private stack
function pulse_next_pause; generates a power pulse
function store(LRI1K_UID); stores LRI1K_UID
function poll_loop (sub_address_size as integer)
pop (mask, address) mask = address & mask; generates new mask
; send the request mode = anticollision send_request (Request_cmd, mode, mask length, mask value) for sub_address = 0 to (2^sub_address_size - 1)
pulse_next_pause if no_collision_is_detected ; LRI1K is inventoried
then
store (LRI1K_UID)
else ; remember a collision was detected
push(mask,address)
endif
next sub_address
if stack_not_empty ; if some collisions have been detected and
then ; not yet processed, the function calls itself
poll_loop (sub_address_size); recursively to process the
last stored collision
endif
end poll_loop
main_cycle:
mask = null address = null push (mask, address) poll_loop(sub_address_size)
end_main_cycle
Doc ID 17170 Rev 3 81/86
CRC (Informative) LRI1K

Appendix B CRC (Informative)

B.1 CRC error detection method

The cyclic redundancy check (CRC) is calculated on all data contained in a message, from the start of the Flags through to the end of Data. The CRC is used from VCD to LRI1K and from LRI1K to VCD.
Table 93. CRC definition
CRC definition
CRC type Length Polynomial Direction Preset Residue
ISO/IEC 13239 16 bits X16 + X12 + X5 + 1 = 8408h Backward FFFFh F0B8h
To add extra protection against shifting errors, a further transformation on the calculated CRC is made. The one’s complement of the calculated CRC is the value attached to the message for transmission.
To check received messages the 2 CRC bytes are often also included in the re-calculation, for ease of use. In this case, the expected value for the generated CRC is the residue F0B8h.

B.2 CRC calculation example

This example in C language illustrates one method of calculating the CRC on a given set of bytes comprising a message.

C-Example to calculate or check the CRC16 according to ISO/IEC 13239

#define POLYNOMIAL8408h// x^16 + x^12 + x^5 + 1 #define PRESET_VALUEFFFFh #define CHECK_VALUEF0B8h
#define NUMBER_OF_BYTES4// Example: 4 data bytes #define CALC_CRC1 #define CHECK_CRC0
void main() { unsigned int current_crc_value; unsigned char array_of_databytes[NUMBER_OF_BYTES + 2] = {1, 2, 3, 4, 91h, 39h}; int number_of_databytes = NUMBER_OF_BYTES; int calculate_or_check_crc; int i, j; calculate_or_check_crc = CALC_CRC; // calculate_or_check_crc = CHECK_CRC;// This could be an other example if (calculate_or_check_crc == CALC_CRC) {
82/86 Doc ID 17170 Rev 3
LRI1K CRC (Informative)
number_of_databytes = NUMBER_OF_BYTES; } else // check CRC { number_of_databytes = NUMBER_OF_BYTES + 2; }
current_crc_value = PRESET_VALUE;
for (i = 0; i < number_of_databytes; i++) { current_crc_value = current_crc_value ^ ((unsigned int)array_of_databytes[i]);
for (j = 0; j < 8; j++) { if (current_crc_value & 0001h) { current_crc_value = (current_crc_value >> 1) ^ POLYNOMIAL; } else { current_crc_value = (current_crc_value >> 1); } } }
if (calculate_or_check_crc == CALC_CRC) { current_crc_value = ~current_crc_value;
printf ("Generated CRC is 0x%04X\n", current_crc_value);
// current_crc_value is now ready to be appended to the data stream // (first LSByte, then MSByte) } else // check CRC { if (current_crc_value == CHECK_VALUE) { printf ("Checked CRC is ok (0x%04X)\n", current_crc_value); } else { printf ("Checked CRC is NOT ok (0x%04X)\n", current_crc_value); } } }
Doc ID 17170 Rev 3 83/86
CRC (Informative) LRI1K

B.3 Application family identifier (AFI) (informative)

The AFI (application family identifier) represents the type of application targeted by the VCD and is used to extract from all the LRI1K present only the LRI1K meeting the required application criteria.
It is programmed by the LRI1K issuer (the purchaser of the LRI1K). Once locked, it cannot be modified.
The most significant nibble of the AFI is used to code one specific or all application families, as defined in Ta b le 9 4 .
The least significant nibble of the AFI is used to code one specific or all application subfamilies. Subfamily codes different from 0 are proprietary.
Table 94. AFI coding
(1)
AFI
most
significant
nibble
‘0’ ‘0’ All families and subfamilies No applicative preselection
‘X’ '0 'All subfamilies of family X Wide applicative preselection
'X '‘Y’ Only the Y
‘0’ ‘Y’ Proprietary subfamily Y only
‘1 '‘0’, ‘Y’ Transport Mass transit, Bus, Airline etc.
'2 '‘0’, ‘Y’ Financial IEP, Banking, Retail etc.
'3 '‘0’, ‘Y’ Identification Access Control etc.
'4 '‘0’, ‘Y’ Telecommunication Public Telephony, GSM etc.
‘5’ ‘0’, ‘Y’ Medical
'6 '‘0’, ‘Y’ Multimedia Internet services etc.
'7 '‘0’, ‘Y’ Gaming
8 '‘0’, ‘Y’ Data storage Portable Files etc.
'9 '‘0’, ‘Y’ Item management
'A '‘0’, ‘Y’ Express parcels
AFI
least
significant
nibble
Meaning
VICCs respond from
th
subfamily of family X
Examples / Note
'B '‘0’, ‘Y’ Postal services
'C '‘0’, ‘Y’ Airline bags
'D '‘0’, ‘Y’ RFU
'E '‘0’, ‘Y’ RFU
‘F’ ‘0’, ‘Y’ RFU
1. X = '1' to 'F', Y = '1' to 'F.
84/86 Doc ID 17170 Rev 3
LRI1K Revision history

Revision history

Table 95. Document revision history
Date Revision Changes
08-Mar-2010 1 Initial release.
Removed Option-flag indication in Section 20.5: Lock Block,
Section 20.9: Write AFI, Section 20.10: Lock AFI, Section 20.11: Write DSFID, Section 20.12: Lock DSFID, Section 20.15: Kill.
Added Option-flag indication in Section 20.14: Get Multiple Block
04-Oct-2010 2
08-Nov-2010 3 Updated document status from preliminary status to active.
Security Status.
Updated error code in Section 20.15; Table 65: Kill response format
when Error_flag is set.
Updated AFI option in Section 20.19: Fast Inventory Initiated and
Section 20.22: Inventory Initiated.
Updated footnote in Table 88: Absolute maximum ratings.
Doc ID 17170 Rev 3 85/86
LRI1K
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
86/86 Doc ID 17170 Rev 3
Loading...