ST LMV321, LMV358, LMV324 User Manual

查询LMV358IYD供应商
Features
Operating range from V
Rail-to-rail input and output
Extended V
(VDD - 0.2 V to VCC + 0.2 V)
icm
Low supply current (145 µA)
Gain bandwidth product (1 MHz)
ESD tolerance (2 kV)
Latch-up immunity
Available in SOT23-5 micropackage
CC
LMV321-LMV358-LMV324
Low cost low power input/output rail-to-rail
operational amplifiers
LMV321ILT
(SOT23-5)
Non Inverting Input
Non Inverting Input
Non Inverting Input
VDD
VDD
VDD
Inverting Input
Inverting Input
Inverting Input
1
1
1 2
2
2
3
3
3
LMV321RILT
(SOT23-5)
5
5
5
VCC
VCC
VCC
+
+ _
_
Output
Output
Output
4
4
4
Applications
Two-cell battery-powered systems
Battery-powered electronic equipment
Cordless phones
Personal medical care (glucose meter)
Laptops
PDAs
Description
The LMV321/358/324 family (single, dual and quad) answers the need for low cost, general purpose operational amplifiers. They oper ate with voltages as low as 2.7 V and feature both input and output rail-to-rail, 145 µA con sumption current and 1 MHz gain bandwidth product (GBP).
With a such low consumption and a sufficient GBP for many applications, these op-amps are very well-suited for any kind of battery-supplied and portable equipment ap plic ation.
The LMV321 is housed in the space-saving 5-pin SOT23-5 package which simplifies the board design (overall dimensio ns are 2.8 mm x 2.9 mm). The SOT23-5 has two pinning configurations to answer all application requirements.
VCC
Output
Output
Non Inverting Input Inverting Input
Non Inverting Input Inverting Input
VDD
VDD
1
1 2
2
3
3
VCC
5
5
4
4
LMV358ID/IDT-LMV358IPT
(SO-8, TSSOP-8)
Output 1
Output 1
Inverting Input 1
Inverting Input 1
Non Inverting Input 1
Non Inverting Input 1
VDD
VDD
1
1
_
_
2
2
+
+
3
3 4
4
VCC
VCC
8
8 7
7
Output 2
Output 2
_
_
Inverting Input 2
Inverting Input 2
6
6
+
+
Non Inverting Input 2
Non Inverting Input 2
5
5
LMV324ID/IDT-LMV324IPT
(SO-14, TSSOP-14)
Output 4
Output 1
Output 1
Inverting Input 1
Inverting Input 1
Non Inverting Input 1
Non Inverting Input 1
Non Inverting Input 2
Non Inverting Input 2
Inverting Input 2
Inverting Input 2
Output 2
Output 2
VCC
VCC
1
1
_
_
2
2
+
+
3
3 4
4 5
5
+
+ _
_
6
6 7
7
Output 4
14
14
_
_
13
13
Inverting Input 4
Inverting Input 4
+
+
Non Inverting Input 4
Non Inverting Input 4
12
12
VDD
VDD
11
11 10
10
Non Inverting Input 3
Non Inverting Input 3
+
+ _
_
Inverting Input 3
Inverting Input 3
9
9
Output 3
Output 3
8
8
February 2008 Rev 3 1/14
www.st.com
14
Absolute maximum ratings and operating conditions LMV321-LMV358-LMV324
1 Absolute maximum ratings and operating conditions
Table 1. Absolute maximum ratings
Symbol Parameter Value Unit
V
T
T
V V
oper
T
Supply voltage
CC
Differential input voltage
id
Input voltage VDD-0.3 to VCC+0.3 V
in
Operating free air temperature range -40 to + 125 °C Storage temperature -65 to +150 °C
stg
Maximum junction temperature 150 °C
j
Thermal resistance junction to ambient
SOT23-5
R
thja
SO-8 SO-14 TSSOP8 TSSOP14
Thermal resistance junction to case
SOT23-5
R
thjc
SO-8 SO-14 TSSOP8 TSSOP14
HBM: human body model
ESD
MM: machine model CDM: charged device model Lead temperature (soldering, 10sec) 250 °C Output short-circuit duration see note
1. All voltage values, except differential voltage are with respect to network terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. If V
> ±1 V, the maximum input current must not exceed ±1 mA. In this case (Vid > ±1 V), an input series
id
resistor must be added to limit input current.
3. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short­circuits on all amplifiers. All values are typical.
4. Human body model: A 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5 k
Ω resistor between two pins of the device. This is done for all couples of connected pin combinations
while the other pins are floating.
5. Machine model: A 200pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 connected pin combinations while the other pins are floating.
6. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins. No value specified for CDM on SOT23-5L package. The value is given for SO and TSSOP packages.
7. Short-circuits from the output to V approximately 48 mA, independent of the magnitude of V simultaneous short-circuits on all amplifiers.
(1)
7V
(2)
(3)
±1 V
250 125 103 120 100
(3)
81 40 31 37 32
(4)
(5)
(6)
can cause excessive heating. The maximum output current is
CC
. Destructive dissipation can result from
CC
2kV
200 V
1.5 kV
(7)
Ω). This is done for all couples of
°C/W
°C/W
2/14
LMV321-LMV358-LMV324 Absolute maximum ratings and operating conditions
Table 2. Operating conditions
Symbol Parameter Value Unit
V
CC
V
icm
V
icm
T
oper
1. At 25°C, for 2.7 ≤ VCC ≤ 6V, V
2. In full temperature range, both rails can be reached when VCC does not exceed 5.5 V.
Supply voltage 2.7 to 6 V Common mode input voltage range Common mode input voltage range
(1) (2)
VDD -0.2 to VCC + 0.2 V
VDD to V
CC
Operating free air temperature range -40 to + 125 °C
is extended to VDD - 0.2 V, VCC + 0.2 V.
icm
V
3/14
Electrical characteristics LMV321-LMV358-LMV324
2 Electrical characteristics
Table 3. VCC = +2.7V, VDD = 0V, C
connected to VCC/2, T
L & RL
= 25°C (unless otherwise specified)
amb
Symbol Parameter Conditions Min. Typ. Max. Unit
V
= V
V
ΔV
Input offset voltage
io
Input offset voltage drift 2 µV/°C
io
I
Input offset current
io
Input bias current
I
ib
icm
T
min
V
icm
T
min
V
icm
T
min
CMR Common mode rejection ratio 0 ≤ V
SVR Supply voltage rejection ratio V
A
Large signal voltage gain
vd
icm
V
out
R RL = 2kΩ
V
= 100mV
id
T
V
High level output voltage
OH
min
RL = 10kΩ RL = 2kΩ
V
= -100mV
id
T
V
Low level output voltage
OL
min
RL = 10kΩ R
= VCC/2
out
T
T
amb
max
= V T
= V T
icm
= VCC/2
out
T
amb
= VCC/2
out
T
amb
≤ V
CC
(1)
max
(1)
max
55 85 dB = VCC/2 70 80 dB = 0.5V to 2.2V
= 10kΩ
L
T
amb
T
max
8070100
2.6
2.55
T
T
amb
max
= 2kΩ
L
0.1 3 6
19
25
10 50
85
88
2.65
2.6
15 50
90
100
Output source current
I
Output current
o
I
Supply current (per amplifier)
CC
GBP Gain bandwidth product
SR Slew rate
φm Phase margin R
= 100mV, VO = V
id
DD
Output sink current
= -100mV, VO = V
V
id
= VCC/2
V
out
= 1, no load
A
VCL
T
T
amb
T
max
min
= 10kΩ, CL = 100pF,
R
L
CC
f = 100kHz
= 600Ω, CL = 100pF,
R
L
= 1
A
V
= 600Ω, CL = 100pF 44 Degrees
L
5
5
46
46
145 200
1MHz
0.35 V/µs
230
V
en Input voltage noise 40 nV/√Hz
THD Total harmonic distortion 0.01 %
1. Maximum values include unavoidable inaccuracies of the industrial tests.
mV
nA
nA
dB
V
mV
mA
µA
4/14
LMV321-LMV358-LMV324 Electrical characteristics
Table 4. VCC = +5V, VDD = 0V, C
connected to VCC/2, T
L & RL
= 25°C (unless otherwise specified)
amb
Symbol Parameter Conditions Min. Typ. Max. Unit
V
= V
V
ΔV
Input offset voltage
io
Input offset voltage drift 2 µV/°C
io
Input offset current
I
io
I
Input bias current
ib
icm
T
min
V
icm
T
min
V
icm
T
min
CMR Common mode rejection ratio 0 ≤ V
SVR Supply voltage rejection ratio V
A
Large signal voltage gain
vd
icm
V
out
R RL = 2kΩ
= VCC/2
out
T
T
amb
max
= V T
= V T
icm
= VCC/2
out
T
amb
= VCC/2
out
T
amb
V
CC
(1)
max
(1)
max
65 95 dB
= VCC/2 70 90 dB
= 0.5V to 4.5V
= 10kΩ
L
85 77
0.1 3 6
19
25
16 63
95
97 93
Vid = 100mV
T
T
amb
amb
T
T
max
max
4.85
4.8
4.95
4.91
40 80
180 200
T
V
High level output voltage
OH
min
RL = 10kΩ RL = 2kΩ
V
= -100mV
id
T
V
Low level output voltage
OL
min
RL = 10kΩ RL = 2kΩ
Output source current
I
Output current
o
I
Supply current (per amplifier)
CC
GBP Gain bandwidth product
SR Slew rate
φm Phase margin R
Vid = 100mV, VO = V
DD
Output sink current
Vid = -100mV, VO = V
= VCC/2
V
out
= 1, no load
A
VCL
T
T
amb
T
max
min
= 10kΩ, CL = 100pF,
R
L
CC
f = 100kHz
= 600Ω, CL = 100pF,
R
L
A
= 1
V
= 600Ω, CL = 100pF 48 Degrees
L
7
7
48
48
162 220
1.3 MHz
0.45 V/µs
250
en Input voltage noise 40 nV/√Hz
THD Total harmonic distortion 0.01 %
1. Maximum values include unavoidable inaccuracies of the industrial tests.
mV
nA
nA
dB
V
mV
mA
µA
5/14
Loading...
+ 9 hidden pages