ST LM2904, LM2904A User Manual

Features
Internally frequency-compensated
Large DC voltage gain: 100 dB
(temperature compensated)
Very low supply current/amplifier, essentially
independent of supply voltage
Low input bias current: 20 nA (temperature
compensated)
Low input offset current: 2 nA
Input common-mode voltage range includes
negative rail
Differential input voltage range equal to the
power supply voltage
Large output voltage swing 0 V to (V
CC+
-1.5 V)
Description
LM2904, LM2904A
Low-power dual operational amplifier
N
DIP8
(Plastic package)
D
SO-8
(Plastic micropackage)
P
TSSOP8
(Thin shrink small outline package)
This circuit consists of two independent, high gain, internally frequency-compensated operational amplifiers designed specifically for automotive and industrial control systems. It operates from a single power supply over a wide range of voltages. The low power supply drain is independent of the magnitude of the power supply voltage.
Application areas include transducer amplifiers, DC gain blocks and all the conventional op-amp circuits which can now be more easily implemented in single power supply systems. For example, these circuits can be directly supplied from the standard +5 V which is used in logic systems and easily provides the required interface electronics without requiring any additional power supply.
In the linear mode, the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from a single power supply.
S
MiniSO-8
Q2
DFN8 2 x 2 mm
(Plastic micropackage)
Pin connections (top view)
January 2012 Doc ID 2471 Rev 14 1/24
www.st.com
24
Contents LM2904, LM2904A
Contents
1 Schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4
3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1 Typical single-supply applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Macromodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1 DIP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 DFN8 2 x 2 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.4 TSSOP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.5 MiniSO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2/24 Doc ID 2471 Rev 14
LM2904, LM2904A Schematic diagram

1 Schematic diagram

Figure 1. Schematic diagram (1/2 LM2904)

V
CC
Inverting
input
Non-inverting
input
Q2
Q8 Q9
6MA
Q3
M
4
A
C
C
Q4Q1
Q11
100
A
M
Q5
Q6
Q7
R
SC
Output
Q13
Q10
Q12
50 mA
GND
Doc ID 2471 Rev 14 3/24
Absolute maximum ratings and operating conditions LM2904, LM2904A

2 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol Parameter Value Unit
V
V
V
Supply voltage
CC
Differential input voltage
id
Input voltage -0.3 to 32 V
in
Output short-circuit duration
Input current
I
in
Input current
T
oper
T
T
Operating free-air temperature range -40 to +125 °C
Storage temperature range -65 to +150 °C
stg
Maximum junction temperature 150 °C
j
Thermal resistance junction to ambient
SO-8
R
thja
TSSOP8 DIP8 MiniSO-8 DFN8 2x2
Thermal resistance junction to case
SO-8
R
thjc
TSSOP8 DIP8 MiniSO-8
HBM: human body model
ESD
MM: machine model
CDM: charged device model
1. All voltage values, except differential voltage are with respect to network ground terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
3. Short-circuits from the output to V approximately 40 mA, independent of the magnitude of V Destructive dissipation can result from simultaneous short-circuits on all amplifiers.
4. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward-biased and thereby acting as input diode clamp. In addition to this diode action, there is NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the Op­amps to go to the V This is not destructive and normal output is restored for input voltages above -0.3 V.
5. The junction base/substrate of the input PNP transistor polarized in reverse must be protected by a resistor in series with the inputs to limit the input current to 400 µA max (R = (Vin-32 V)/400 µA).
6. Short-circuits can cause excessive heating and destructive dissipation. Values are typical.
7. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
8. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.
9. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.
CC
(1)
(2)
(3)
(4)
: Vin driven negative
5 mA in DC or 50 mA in AC
±16 or 32 V
±32 V
Infinite s
(duty cycle = 10%, T = 1s)
(5)
: Vin driven positive above AMR value
(6)
0.4
125 120
85
190
57
(6)
40 37 41 39
(7)
(8)
(9)
can cause excessive heating if V
CC
CC
.
> 15 V. The maximum output current is
cc+
voltage level (or to ground for a large overdrive) for the time during which an input is driven negative.
300 V
200 V
1.5 kV
mA
°C/W
°C/W
4/24 Doc ID 2471 Rev 14
LM2904, LM2904A Absolute maximum ratings and operating conditions

Table 2. Operating conditions

Symbol Parameter Value Unit
T
V
V
CC
icm
oper
Supply voltage 3 to 30 V
Common mode input voltage range 0 to V
- 1.5 V
CC+
Operating free-air temperature range -40 to +125 °C
Doc ID 2471 Rev 14 5/24
Electrical characteristics LM2904, LM2904A

3 Electrical characteristics

Table 3. V
Symbol Parameter Min. Typ. Max. Unit
V
DV
I
io
DI
I
ib
A
SVR
I
CC
V
icm
CMR
I
source
I
sink
V
OH
CC+
= 5 V, V
= ground, VO = 1.4 V, T
CC-
amb
= 25° C
(unless otherwise specified)
T T
T
T
≤ T
≤ T
≤ T
≤ T
≤ T
CC+
≤ T
T
(1)
max
max
max
(2)
max
max
max
CC+
max
max
max
= +5 V
CC+
max
max
LM2904 LM2904A
= +5 V
, V
= +30 V
CC+
= +15 V
CC+
10 kΩ)
S
CC+
= 10 kΩ)
S
= + 30 V)
= +30 V)
(3)
2 1
230
40
20 150
200
50
100
25
65
100
65
0.7 1.2
70
0 0
85
V
CC+
V
CC+
60
20 40 60 mA
10 12
20 50
26 26
27 27 27
28
Input offset voltage
= 25° C LM2904
T
amb
T
io
io
= 25° C LM2904A
amb
T
T
min
min
T
amb
amb
T
Input offset voltage drift 7 30 µV/°C
Input offset current
= 25° C
T
amb
T
T
min
amb
Input offset current drift 10 300 pA/°C
io
Input bias current
T
= 25° C
amb
T
T
min
amb
Large signal voltage gain V
= +15 V, RL=2kΩ, Vo = 1.4 V to 11.4 V
vd
CC+
T T
amb
min
≤ T
= 25° C
amb
Supply voltage rejection ratio (R
= 25° C
T
amb
T
≤ T
min
amb
Supply current, all amp, no load
T
= 25°C, V
amb
≤ T
T
min
amb
Input common mode voltage range (V
T
= 25° C
amb
T
T
min
amb
Common-mode rejection ratio (R
= 25° C
T
amb
≤ T
T
min
amb
Output short-circuit current
V
= +15 V, Vo = +2 V, Vid = +1 V
CC+
Output sink current
VO = 2 V, V
= +0.2 V, V
V
O
High level output voltage (V
= +25° C, RL = 2kΩ
T
amb
T
≤ T
min
T T
amb
= +25° C, RL = 10 kΩ
amb
T
min
amb
7 2
9 4
2
-1.5
-2
mV
nA
nA
V/mV
dB
mA
V
dB
mA
µA
V
6/24 Doc ID 2471 Rev 14
LM2904, LM2904A Electrical characteristics
Table 3. V
CC+
= 5 V, V
= ground, VO = 1.4 V, T
CC-
amb
= 25° C
(unless otherwise specified) (continued)
Symbol Parameter Min. Typ. Max. Unit
Low level output voltage (RL = 10 kΩ)
V
OL
T T
amb
min
= +25° C
≤ T
amb
≤ T
max
520
20
Slew rate
= 15 V, Vin = 0.5 to 3 V, RL = 2kΩ, CL =100 pF,
V
SR
GBP
CC+
unity gain T
≤ T
amb
≤ T
max
min
Gain bandwidth product f = 100 kHz
= 30 V, Vin = 10 mV, RL = 2kΩ, CL = 100 pF
V
CC+
0.3
0.6
0.2
0.7 1.1 MHz
Total harmonic distortion
THD
e
VO1/V
n
f = 1 kHz, A
= 100 pF, V
C
L
Equivalent input noise voltage f=1kHz, R
Channel separation
O2
1kHz ≤ f ≤ 20 kHz
1. VO = 1.4 V, RS = 0 Ω, 5 V < V
2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output, so there is no change in the loading charge on the input lines.
= 20 dB, RL = 2 kΩ, Vo = 2 Vpp,
V
= 30 V
CC+
=100Ω, V
S
(4)
CC+
=30V
CC+
< 30 V, 0 V < Vic < V
CC+
- 1.5 V.
3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V damage.
4. Due to the proximity of external components, ensure that the stray capacitance does not cause coupling between these external parts. This can typically be detected at higher frequencies because this type of capacitance increases.
–1.5 V, but either or both inputs can go to +32 V without
CC+
0.02 %
55
120 dB
mV
V/µs
nV/
Hz
Doc ID 2471 Rev 14 7/24
Electrical characteristics LM2904, LM2904A
Figure 2. Open-loop frequency response Figure 3. Large signal frequency response
140
120
100
0.1μF
V
I
VCC/2
80
VCC= 30V &
T
60
-55°C
40
VOLTAGE GAIN (dB)
20
VCC= +10 to + 15V &
T
amb
+125°C
-55°C
0
1.0 10 100 1k 10k 100k 1M 10M
FREQUENCY (Hz)
Figure 4. Voltage follower large signal
response
4
3
2
OUTPUT
VOLTAGE (V)
1
0
3
2
1
INPUT
010203040
VOLTAGE (V)
(
E
M
T
I
μ
Figure 6. Voltage follower small signal
response
500
e
l
Output
+
-
TIME (ms)
50pF
Input
450
400
350
OUTPUT VOLTAGE (mV)
300
250
0 1 2 3 4 5 6 7 8
10M
Ω
V
-
CC
+
+125°C
amb
RL 2 k VCC = +15V
)
s
e
O
T
= +25°C
amb
VCC= 30 V
V
O
Figure 5. Current sinking output
Ω
Figure 7. Current sourcing output
20
Ω
1k
-
15
V
I
+
+7V
10
5
OUTPUT SWING (Vpp)
0
1k 10k 100k 1M
FREQUENCY (Hz)
characteristics
10
1
VOLTAGE (V)
0.1
OUTPUT
0.01
0,001 0,01 0,1 1 10 100
OUTPUT SINK CURRENT (mA)
VCC = +5V VCC = +15V VCC = +30V
vcc/2
-
+
T
characteristics
8
7
VCC/2
6
(V)
5
+
CC
4
TO V
OUTPUT VOLTAGE REFERENCED
Independent of V
3
T
2
amb
1
0,01 0,1 1 10 100
0,001
OUTPUT SOURCE CURRENT (mA)
+
-
= +25°C
V
CC
I
O
CC
amb
V
100k
v
cc
O
Ω
+15V
Ω
2k
= +25°C
VO
I
O
V
O
8/24 Doc ID 2471 Rev 14
Loading...
+ 16 hidden pages