Single supply: +3V to +30V
Dual supplies: ±1.5V to ±15V
Description
These circuits consist of four independent, high
gain, internally frequency compensated
operational amplifiers. They operate from a single
power supply over a wide range of voltages.
LM124W-LM224W-LM324W
N
DIP14
(Plastic Package)
D
SO-14
(Plastic Micropackage)
Operation from split power supplies is also
possible and the low power supply current drain is
independent of the magnitude of the power supply
voltage.
(Thin Shrink Small Outline Package)
P
TSSOP-14
All the pins are protected against electrostatic
discharges up to 2000V (as a consequence, the
input voltages must not exceed the magnitude of
+
V
or V
CC
CC
-
.)
Order Codes
Part NumberTemperature RangePackagePackaging
LM124WN
LM124WD/WDTSOTube or Tape & Reel
LM224WN
LM224WD/WDTSOTube or Tape & Reel
LM224WPT
LM324WN
LM324WD/WDTSOTube or Tape & Reel
LM324WPT
-55°C, +125°C
-40°C, +105°C
(Thin Shrink Outline Package)
0°C, +70°C
(Thin Shrink Outline Package)
DIPTube
DIPTube
TSSOP
DIPTube
TSSOP
Tape & Reel
Tape & Reel
Rev 2
June 20051/16
www.st.com
16
Absolute Maximum RatingsLM124W-LM224W-LM324W
1 Absolute Maximum Ratings
Table 1.15Key parameters and their absolute maximum ratings
SymbolParameterLM124WLM224WLM324WUnit
VCCSupply voltage ±16 or 32V
ViInput Voltage-0.3 to Vcc + 0.3V
(5)
(1)
(4)
(2)
-0.3 to Vcc + 0.3V
500500
400
Infinite
50mA
103
100
66
700V
100V
500
400
mW
°C/W
V
id
P
tot
I
in
T
oper
T
stg
R
thja
ESD
Differential Input Voltage
Power Dissipation
N Suffix
D Suffix
Output Short-circuit Duration
Input Current
(3)
Operating Free-air Temperature Range-55 to +125 -40 to +105 0 to +70°C
Storage Temperature Range-65 to +150°C
Thermal Resistance Junction to Ambient
SO14
TSSOP14
DIP14
HBM: Human Body Model
MM: Machine Model
CDM: Charged Device Model1.5kV
+
1. Either or both input voltages must not exceed the magnitude of V
2. Short-circuits from the output to VCC can cause excessive heating if VCC > 15V. The maximum output current
is approximately 40mA independent of the magnitude of V
simultaneous short-circuit on all amplifiers.
3. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the
collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diodes
clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. this transistor action
can cause the output voltages of the op-amps to go to the V
for the time duration than an input is driven negative.
This is not destructive and normal output will set up again for input voltage higher than -0.3V.
4. Human body model, 100pF discharged through a 1.5kΩ resistor into pin of device.
5. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with
no external series resistor (internal resistor < 5Ω), into pin to pin of device.
CC
. Destructive dissipation can result from
CC
voltage level (or to ground for a large overdrive)
CC
or V
CC
-
.
2/16
LM124W-LM224W-LM324WPin & Schematic Diagram
2 Pin & Schematic Diagram
Figure 1.Pin connections (top view)
1
Output 1
V
CC
Output 2
2
-
+
3
+
4
5
+
-
6
7
Inverting Input 1
Non-inverting Input 1
Non-inverting Input 2
Inverting Input 2
Figure 2.Schematic diagram (1/4 LM124W)
14
13
-
+
12
11
10
+
-
9
8
Output 4
Inverting Input 4
Non-inverting Input 4
-
V
CC
Non-inverting Input 3
Inverting Input 3
Output 3
3/16
Electrical CharacteristicsLM124W-LM224W-LM324W
3 Electrical Characteristics
Table 2.V
CC
+
= +5V, V
SymbolParameterMin.Typ.Max.Unit
Input Offset Voltage - note
V
T
T
amb
min
= +25°C
≤ T
amb
≤ T
io
Input Offset Current
T
T
amb
min
= +25°C
≤ T
amb
≤ T
I
io
Input Bias Current - note
I
T
T
amb
min
= +25°C
≤ T
amb
≤ T
ib
Large Signal Voltage Gain
+
V
= +15V, RL = 2kΩ, Vo = 1.4V to 11.4V
A
vd
T
T
CC
amb
min
= +25°C
≤ T
amb
≤ T
Supply Voltage Rejection Ratio (R
+
= 5V to 30V
V
SVR
T
T
CC
amb
min
= +25°C
≤ T
amb
≤ T
Supply Current, all Amp, no load
T
= +25°C VCC = +5V
amb
I
V
CC
T
≤ T
amb
≤ T
min
V
-
= Ground, Vo = 1.4V, T
CC
(1)
max
max
(2)
max
max
≤ 10kΩ)
s
max
= +30V
CC
VCC = +5V
max
= +30V
CC
= +25°C (unless otherwise specified)
amb
235mV
22040nA
20100
200
5025100
6565110
0.7
1.2
1.5
0.8
1.2
1.5
nA
V/mV
dB
mA
3
3
V
icm
CMR
I
source
I
sink
Input Common Mode Voltage Range
V
= +30V - note
CC
T
= +25°C
amb
T
≤ T
amb
≤ T
min
Common Mode Rejection Ratio (R
T
= +25°C
amb
≤ T
T
min
amb
≤ T
max
max
(3)
≤ 10kΩ)
s
70
60
0
0
80dB
Output Current Source (Vid = +1V)
V
= +15V, Vo = +2V204070
CC
Output Sink Current (Vid = -1V)
V
= +15V, Vo = +2V
CC
V
= +15V, Vo = +0.2V
CC
10
12
20
50
V
-
CC
1.5
V
CC
V
-
2
mA
mA
µA
4/16
LM124W-LM224W-LM324WElectrical Characteristics
Table 2.V
CC
+
= +5V, V
-
= Ground, Vo = 1.4V, T
CC
= +25°C (unless otherwise specified)
amb
SymbolParameterMin.Typ.Max.Unit
High Level Output Voltage
V
= +30V
CC
T
= +25°C RL = 2kΩ
amb
T
≤ T
min
OH
T
T
amb
min
V
≤ T
amb
max
= +25°C RL = 10kΩ
≤ T
≤ T
amb
max
26
26
27
27
27
28V
VCC = +5V, RL = 2kΩ
T
= +25°C
amb
T
≤ T
min
Low Level Output Voltage (R
VOL
SR
GBP
THD
DV
DI
V
o1/Vo2 Channel Separation - note
1. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of
the output so no loading change exists on the input lines.
2. V
3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more
than 0.3V. The upper end of the common-mode voltage range is V
+32V without damage.
4. Due to the proximity of external components insure that coupling is not originating via stray capacitance
between these external parts. This typically can be detected as this type of capacitance increases at higher
frequences.
Table 3.V
T
amb
T
min
Slew Rate
V
= 15V, Vi = 0.5 to 3V, RL = 2kΩ, CL = 100pF, unity Gain
Figure 5.Input voltage rangeFigure 6.Supply current
4
3
2
1
SUPPLY CURRENT (mA)
SUPPLY CURRENT
V
CC
I
D
mA
-
+
T
amb
0102030
POSITIVE SUPPLY VOLTAGE (V)
= 0°C to +125°C
T
= -55°C
amb
Figure 7.Gain bandwidth productFigure 8.Common mode rejection ratio
6/16
LM124W-LM224W-LM324WElectrical Characteristics
Figure 9.Electrical curves
7/16
Electrical CharacteristicsLM124W-LM224W-LM324W
Figure 10. Input currentFigure 11. Large signal voltage gain
Figure 12. Power supply & common mode
rejection ratio
Figure 13. Voltage gain
8/16
LM124W-LM224W-LM324WTypical Single - Supply Applications
4 Typical Single - Supply Applications
Figure 14. AC coupled inverting amplifierFigure 15. High input Z adjustable gaind DC
instrumentation amplifier
R1
100k
1/4
LM124W
Gain adjust
1/4
LM124W
100k
W
1/4
LM124W
R7
100k
100k
W
R4
W
e
O
R3
W
100k
R5
W
R6
100k
W
R
f
W
100k
R1
C
10k
W
I
1/4
LM124W
R
B
6.2k
e
~
I
R2
100k
V
W
CC
C1
m
10
F
R3
100k
W
W
R
f
A=-
V
R1
(as shown A = -10)
V
C
o
0
e
o
R
L
10k
W
e
1
2V
PP
if R1 = R5 and R3 = R4 = R6 = R7
2R
= (e2 -e1)
1
-----------+
e
0
R
R2
2k
W
e
2
1
2
As shown e0 = 101 (e2 - e1).
Figure 16. AC coupled non inverting amplifierFigure 17. DC summing amplifier
C1
0.1mF
R1
100k
C
I
e
I
R3
~
1M
C2
m
10
R2
1M
W
W
F
1/4
LM124W
100k
100k
6.2k
R4
R5
W
R
B
W
W
V
CC
W
R2
A = 1+
V
(as shown A = 11)
R1
V
C
o
0
e
o
R
L
W
10k
2V
PP
e
e
e
e0 = e1 +e2 -e3 -e
Where (e1 +e2) ≥ (e3 +e4)
to keep e
≥ 0V
0
e
W
100k
1
1/4
W
100k
LM124W
W
100k
2
W
100k
3
100k
100k
W
4
4
Figure 18. Non-inverting DC gainFigure 19. Low drift peak detector
I
B
1/4
I
LM124W
B
C
*
2I
2N 929
B
B
0.001mF
I
B
3R
3
W
M
I
B
1/4
W
LM124
1mF
Z
I
2I
R
W
1M
10k
R1
10k
W
R2
A
=1+
V
W
e
O
1/4
LM124W
R2
W
1M
+5V
(V)
O
e
0
R1
(As shown= 101)
A
V
e
(mV)
I
e
I
* Polycarbonate or polyethylene
W
Z
o
1/4
LM124W
e
O
e
o
Input current
compensation
9/16
Typical Single - Supply ApplicationsLM124W-LM224W-LM324W
Figure 20. Activer bandpass filterFigure 21. High input Z, DC differential
amplifier
R1
100k
W
C1
330pF
e
1
R3
W
10k
Fo = 1kHz
Q = 50
Av = 100 (40dB)
1/4
LM124W
LM124W
1/4
10M
R4
W
C2
330pF
R6
470kW
R8
100k
1/4
LM124W
W
R5
470kW
R7
W
100k
C3
m
0
F
1
Figure 22. Using symmetrical amplifiers to
reduce input current (general
concept)
1/4
LM124W
I
I
B
I
e
I
I
B
2N 929
e
o
R
R
1
For
(CMRR depends on this resistor ratio match)
100k
+V1
e
O
+V2
V
CC
e0 (e2 - e1)
As shown e0 = (e2 - e1)
4
-------
-------=
R
R
2
3
R1
W
LM124W
R
⎛⎞
4
1
-------+
R
⎝⎠
3
R2
100k
1/4
R4
100k
1/4
LM124W
W
V
o
W
R3
100k
W
1.5M
0.001mF
I
3M
B
1/4
W
LM124W
Aux. amplifier for input
I
current compensation
B
I
B
W
10/16
LM124W-LM224W-LM324WMacromodels
5 Macromodels
Note:Note: Please consider following remarks before using this macromodel:
All models are a trade-off between accuracy and complexity (i.e. simulation time).
Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design
approach and help to select surrounding component values.
A macromodel emulates the NOMINAL performance of a TYPICAL device within SPECIFIED
OPERATING CONDITIONS (i.e. temperature, supply voltage, etc.). Thus the macromodel is
often not as exhaustive as the datasheet, its goal is to illustrate the main parameters of the
product.
Data issued from macromodels used outside of its specified conditions (Vcc, Temperature, etc.)
or even worse: outside of the device operating conditions (Vcc, Vicm, etc.) are not reliable in
any way.
** Standard Linear Ics Macromodels, 1993.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
In order to meet environmental requirements, ST offers these devices in ECOPACK® packages.
These packages have a Lead-free second level interconnect. The category of second level
interconnect is marked on the package and on the inner box label, in compliance with JEDEC
Standard JESD97. The maximum ratings related to soldering conditions are also marked on
the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at:
www.st.com
6.1 DIP14 Package
.
Plastic DIP-14 MECHANICAL DATA
DIM.
a10.510.020
B1.391.650.0550.065
b0.50.020
b10.250.010
D200.787
E8.50.335
e2.540.100
e315.240.600
F7.10.280
I5.10.201
L3.30.130
Z1.272.540.0500.100
MIN.TYPMAX.MIN.TYP.MAX.
mm.inch
P001A
13/16
Package Mechanical DataLM124W-LM224W-LM324W
6.2 SO-14 Package
SO-14 MECHANICAL DATA
DIM.
A1.750.068
a10.10.20.0030.007
a21.650.064
b0.350.460.0130.018
b10.190.250.0070.010
C0.50.019
c145˚ (typ.)
D8.558.750.3360.344
E5.86.20.2280.244
e1.270.050
e37.620.300
F3.84.00.1490.157
G4.65.30.1810.208
L0.51.270.0190.050
M0.680.026
S˚ (max.)
MIN.TYPMAX.MIN.TYP.MAX.
mm.inch
8
14/16
PO13G
LM124W-LM224W-LM324WPackage Mechanical Data
6.3 TSSOP14 Package
TSSOP14 MECHANICAL DATA
DIM.
A1.20.047
A10.050.150.0020.0040.006
A20.811.050.0310.0390.041
b0.190.300.0070.012
c0.090.200.0040.0089
D4.955.10.1930.1970.201
E6.26.46.60.2440.2520.260
E14.34.44.480.1690.1730.176
e0.65 BSC0.0256 BSC
K0˚8˚0˚8˚
L0.450.600.750.0180.0240.030
MIN.TYPMAX.MIN.TYP.MAX.
A2
A
A1
mm.inch
b
e
c
K
L
E
PIN 1 IDENTIFICATION
D
E1
1
0080337D
15/16
Revision HistoryLM124W-LM224W-LM324W
7 Revision History
DateRevisionChanges
Sept. 20031First Release
June 20053ESD protection inserted in
Table 1 on page 2
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners