ST LM124W, LM224W, LM324W User Manual

Low Power Quad Operational Amplifiers
Wide gain bandwidth: 1.3MHz
Input common-mode voltage range includes
ground
Very low supply current/ampli: 375µA
Low input bias current: 20nA
Low input offset voltage: 3mV max.
Low input offset current: 2nA
Wide power supply range:
Single supply: +3V to +30V Dual supplies: ±1.5V to ±15V
Description
These circuits consist of four independent, high gain, internally frequency compensated operational amplifiers. They operate from a single power supply over a wide range of voltages.
LM124W-LM224W-LM324W
N
DIP14
(Plastic Package)
D
SO-14
(Plastic Micropackage)
Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.
(Thin Shrink Small Outline Package)
P
TSSOP-14
All the pins are protected against electrostatic discharges up to 2000V (as a consequence, the input voltages must not exceed the magnitude of
+
V
or V
CC
CC
-
.)
Order Codes
Part Number Temperature Range Package Packaging
LM124WN LM124WD/WDT SO Tube or Tape & Reel LM224WN LM224WD/WDT SO Tube or Tape & Reel
LM224WPT
LM324WN LM324WD/WDT SO Tube or Tape & Reel
LM324WPT
-55°C, +125°C
-40°C, +105°C
(Thin Shrink Outline Package)
0°C, +70°C
(Thin Shrink Outline Package)
DIP Tube
DIP Tube
TSSOP
DIP Tube
TSSOP
Tape & Reel
Tape & Reel
Rev 2
June 2005 1/16
www.st.com
16
Absolute Maximum Ratings LM124W-LM224W-LM324W
1 Absolute Maximum Ratings
Table 1. 15Key parameters and their absolute maximum ratings
Symbol Parameter LM124W LM224W LM324W Unit
VCC Supply voltage ±16 or 32 V
Vi Input Voltage -0.3 to Vcc + 0.3 V
(5)
(1)
(4)
(2)
-0.3 to Vcc + 0.3 V
500 500
400
Infinite
50 mA
103 100
66
700 V
100 V
500 400
mW
°C/W
V
id
P
tot
I
in
T
oper
T
stg
R
thja
ESD
Differential Input Voltage
Power Dissipation N Suffix D Suffix
Output Short-circuit Duration
Input Current
(3)
Operating Free-air Temperature Range -55 to +125 -40 to +105 0 to +70 °C
Storage Temperature Range -65 to +150 °C
Thermal Resistance Junction to Ambient SO14 TSSOP14 DIP14
HBM: Human Body Model
MM: Machine Model
CDM: Charged Device Model 1.5 kV
+
1. Either or both input voltages must not exceed the magnitude of V
2. Short-circuits from the output to VCC can cause excessive heating if VCC > 15V. The maximum output current is approximately 40mA independent of the magnitude of V simultaneous short-circuit on all amplifiers.
3. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. this transistor action can cause the output voltages of the op-amps to go to the V for the time duration than an input is driven negative. This is not destructive and normal output will set up again for input voltage higher than -0.3V.
4. Human body model, 100pF discharged through a 1.5kΩ resistor into pin of device.
5. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with no external series resistor (internal resistor < 5), into pin to pin of device.
CC
. Destructive dissipation can result from
CC
voltage level (or to ground for a large overdrive)
CC
or V
CC
-
.
2/16
LM124W-LM224W-LM324W Pin & Schematic Diagram
2 Pin & Schematic Diagram
Figure 1. Pin connections (top view)
1
Output 1
V
CC
Output 2
2
-
+
3
+
4
5
+
-
6
7
Inverting Input 1
Non-inverting Input 1
Non-inverting Input 2
Inverting Input 2
Figure 2. Schematic diagram (1/4 LM124W)
14
13
-
+
12
11
10
+
-
9
8
Output 4
Inverting Input 4
Non-inverting Input 4
-
V
CC
Non-inverting Input 3
Inverting Input 3
Output 3
3/16
Electrical Characteristics LM124W-LM224W-LM324W
3 Electrical Characteristics
Table 2. V
CC
+
= +5V, V
Symbol Parameter Min. Typ. Max. Unit
Input Offset Voltage - note
V
T T
amb
min
= +25°C
T
amb
T
io
Input Offset Current T
T
amb
min
= +25°C
T
amb
T
I
io
Input Bias Current - note
I
T T
amb
min
= +25°C
T
amb
T
ib
Large Signal Voltage Gain
+
V
= +15V, RL = 2kΩ, Vo = 1.4V to 11.4V
A
vd
T T
CC
amb
min
= +25°C
T
amb
T
Supply Voltage Rejection Ratio (R
+
= 5V to 30V
V
SVR
T T
CC
amb
min
= +25°C
T
amb
T
Supply Current, all Amp, no load T
= +25°C VCC = +5V
amb
I
V
CC
T
T
amb
T
min
V
-
= Ground, Vo = 1.4V, T
CC
(1)
max
max
(2)
max
max
10k)
s
max
= +30V
CC
VCC = +5V
max
= +30V
CC
= +25°C (unless otherwise specified)
amb
235mV
22040nA
20 100
200
5025100
6565110
0.7
1.2
1.5
0.8
1.2
1.5
nA
V/mV
dB
mA
3
3
V
icm
CMR
I
source
I
sink
Input Common Mode Voltage Range V
= +30V - note
CC
T
= +25°C
amb
T
T
amb
T
min
Common Mode Rejection Ratio (R T
= +25°C
amb
T
T
min
amb
T
max
max
(3)
10k)
s
70 60
0 0
80 dB
Output Current Source (Vid = +1V) V
= +15V, Vo = +2V 20 40 70
CC
Output Sink Current (Vid = -1V) V
= +15V, Vo = +2V
CC
V
= +15V, Vo = +0.2V
CC
10 12
20 50
V
-
CC
1.5
V
CC
V
-
2
mA
mA
µA
4/16
LM124W-LM224W-LM324W Electrical Characteristics
Table 2. V
CC
+
= +5V, V
-
= Ground, Vo = 1.4V, T
CC
= +25°C (unless otherwise specified)
amb
Symbol Parameter Min. Typ. Max. Unit
High Level Output Voltage V
= +30V
CC
T
= +25°C RL = 2k
amb
T
T
min
OH
T T
amb
min
V
T
amb
max
= +25°C RL = 10k
T
T
amb
max
26 26 27 27
27
28 V
VCC = +5V, RL = 2k T
= +25°C
amb
T
T
min
Low Level Output Voltage (R
VOL
SR
GBP
THD
DV
DI
V
o1/Vo2 Channel Separation - note
1. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
2. V
3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V +32V without damage.
4. Due to the proximity of external components insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequences.
Table 3. V
T
amb
T
min
Slew Rate V
= 15V, Vi = 0.5 to 3V, RL = 2k, CL = 100pF, unity Gain
CC
Gain Bandwidth Product
= 30V, f =100kHz,Vin = 10mV, RL = 2k, CL = 100pF
V
CC
Total Harmonic Distortion: f = 1kHz, A 2V
pp
Equivalent Input Noise Voltage
e
n
f = 1kHz, R
Input Offset Voltage Drift 7 30
io
Input Offset Current Drift 10 200
Iio
= 1.4V, Rs = 0, 5V < V
o
cc
T
amb
max
= 10kΩ)
L
= +25°C
T
T
amb
max
= 20dB, RL = 2kΩ, Vo =
v
, CL = 100pF, VCC = 30V 0.015
= 100Ω, VCC = 30V
s
(4)
1kHz ≤ f ≤ 20kHZ
+
= +15V, V
+
< 30V, 0 < Vic < V
CC
-
= 0V, T
cc
amb
+
- 1.5V
CC
+
- 1.5V, but either or both inputs can go to
CC
= 25°C (unless otherwise specified)
3.5 3
52020mV
0.4
1.3
40
120 dB
V/µs
MHz
Symbol Conditions Value Unit
V
io
A
vd
I
cc
V
icm
V
OH
V
OL
I
os
GBP
SR
RL = 2k No load, per amplifier 350 µA
RL = 2kΩ (V
CC
+
=15V) RL = 10k Vo = +2V, VCC = +15V R
= 2kΩ, CL = 100pF
L
= 2kΩ, CL = 100pF
R
L
0mV
100 V/mV
-15 to +13.5 V +13.5 V
5mV
+40 mA
1.3 MHz
0.4 V/µs
%
nV
-----------­Hz
µV/
°C
pA/
°C
5/16
Electrical Characteristics LM124W-LM224W-LM324W
Figure 3. Input bias current vs. ambient
Figure 4. Current limiting
temperature
INPUT BIAS CURRENT
versus AMBIENT TEMPERATURE
IB (nA)
24 21 18 15 12
9 6 3 0
-55-35-15 5 25 45 65 85 105 125 AMBIENT TEMPERATURE (°C)
Figure 5. Input voltage range Figure 6. Supply current
4
3
2
1
SUPPLY CURRENT (mA)
SUPPLY CURRENT
V
CC
I
D
mA
-
+
T
amb
0102030
POSITIVE SUPPLY VOLTAGE (V)
= 0°C to +125°C
T
= -55°C
amb
Figure 7. Gain bandwidth product Figure 8. Common mode rejection ratio
6/16
LM124W-LM224W-LM324W Electrical Characteristics
Figure 9. Electrical curves
7/16
Electrical Characteristics LM124W-LM224W-LM324W
Figure 10. Input current Figure 11. Large signal voltage gain
Figure 12. Power supply & common mode
rejection ratio
Figure 13. Voltage gain
8/16
LM124W-LM224W-LM324W Typical Single - Supply Applications
4 Typical Single - Supply Applications
Figure 14. AC coupled inverting amplifier Figure 15. High input Z adjustable gaind DC
instrumentation amplifier
R1
100k
1/4
LM124W
Gain adjust
1/4
LM124W
100k
W
1/4
LM124W
R7
100k
100k
W
R4
W
e
O
R3
W
100k
R5
W
R6
100k
W
R
f
W
100k
R1
C
10k
W
I
1/4
LM124W
R
B
6.2k
e
~
I
R2
100k
V
W
CC
C1
m
10
F
R3
100k
W
W
R
f
A=-
V
R1
(as shown A = -10)
V
C
o
0
e
o
R
L
10k
W
e
1
2V
PP
if R1 = R5 and R3 = R4 = R6 = R7
2R
= (e2 -e1)
1
-----------+
e
0
R
R2
2k
W
e
2
1
2
As shown e0 = 101 (e2 - e1).
Figure 16. AC coupled non inverting amplifier Figure 17. DC summing amplifier
C1
0.1mF
R1
100k
C
I
e
I
R3
~
1M
C2
m
10
R2
1M
W
W
F
1/4
LM124W
100k
100k
6.2k
R4
R5
W
R
B
W
W
V
CC
W
R2
A = 1+
V
(as shown A = 11)
R1
V
C
o
0
e
o
R
L
W
10k
2V
PP
e
e
e
e0 = e1 +e2 -e3 -e Where (e1 +e2) ≥ (e3 +e4) to keep e
≥ 0V
0
e
W
100k
1
1/4
W
100k
LM124W
W
100k
2
W
100k
3
100k
100k
W
4
4
Figure 18. Non-inverting DC gain Figure 19. Low drift peak detector
I
B
1/4
I
LM124W
B
C
*
2I
2N 929
B
B
0.001mF
I
B
3R
3
W
M
I
B
1/4
W
LM124
1mF
Z
I
2I
R
W
1M
10k
R1
10k
W
R2
A
=1+
V
W
e
O
1/4
LM124W
R2
W
1M
+5V
(V)
O
e
0
R1
(As shown = 101)
A
V
e
(mV)
I
e
I
* Polycarbonate or polyethylene
W
Z
o
1/4
LM124W
e
O
e
o
Input current compensation
9/16
Typical Single - Supply Applications LM124W-LM224W-LM324W
Figure 20. Activer bandpass filter Figure 21. High input Z, DC differential
amplifier
R1
100k
W
C1
330pF
e
1
R3
W
10k
Fo = 1kHz Q = 50 Av = 100 (40dB)
1/4
LM124W
LM124W
1/4
10M
R4
W
C2
330pF
R6
470kW
R8
100k
1/4
LM124W
W
R5
470kW
R7
W
100k
C3
m
0
F
1
Figure 22. Using symmetrical amplifiers to
reduce input current (general concept)
1/4
LM124W
I
I
B
I
e
I
I
B
2N 929
e
o
R
R
1
For
(CMRR depends on this resistor ratio match)
100k
+V1
e
O
+V2
V
CC
e0 (e2 - e1)
As shown e0 = (e2 - e1)
4
-------
-------=
R
R
2
3
R1
W
LM124W
R
⎛⎞
4
1
-------+ R
⎝⎠
3
R2
100k
1/4
R4
100k
1/4
LM124W
W
V
o
W
R3
100k
W
1.5M
0.001mF
I
3M
B
1/4
W
LM124W
Aux. amplifier for input
I
current compensation
B
I
B
W
10/16
LM124W-LM224W-LM324W Macromodels
5 Macromodels
Note: Note: Please consider following remarks before using this macromodel:
All models are a trade-off between accuracy and complexity (i.e. simulation time). Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design
approach and help to select surrounding component values. A macromodel emulates the NOMINAL performance of a TYPICAL device within SPECIFIED
OPERATING CONDITIONS (i.e. temperature, supply voltage, etc.). Thus the macromodel is often not as exhaustive as the datasheet, its goal is to illustrate the main parameters of the product.
Data issued from macromodels used outside of its specified conditions (Vcc, Temperature, etc.) or even worse: outside of the device operating conditions (Vcc, Vicm, etc.) are not reliable in any way.
** Standard Linear Ics Macromodels, 1993. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY
.SUBCKT LM124 1 3 2 4 5 (analog) ******************************************************* .MODEL MDTH D IS=1E-8 KF=3.104131E-15 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 2.600000E+01 RIN 15 16 2.600000E+01 RIS 11 15 2.003862E+02 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0 VOFN 13 14 DC 0 IPOL 13 5 1.000000E-05 CPS 11 15 3.783376E-09 DINN 17 13 MDTH 400E-12 VIN 17 5 0.000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 2.000000E+00 FCP 4 5 VOFP 3.400000E+01 FCN 5 4 VOFN 3.400000E+01 FIBP 2 5 VOFN 2.000000E-03 FIBN 5 1 VOFP 2.000000E-03 * AMPLIFYING STAGE FIP 5 19 VOFP 3.600000E+02
11/16
Macromodels LM124W-LM224W-LM324W
FIN 5 19 VOFN 3.600000E+02 RG1 19 5 3.652997E+06 RG2 19 4 3.652997E+06 CC 19 5 6.000000E-09 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 7.500000E+03 VIPM 28 4 1.500000E+02 HONM 21 27 VOUT 7.500000E+03 VINM 5 27 1.500000E+02 EOUT 26 23 19 5 1 VOUT 23 5 0 ROUT 26 3 20 COUT 3 5 1.000000E-12 DOP 19 25 MDTH 400E-12 VOP 4 25 2.242230E+00 DON 24 19 MDTH 400E-12 VON 24 5 7.922301E-01 .ENDS
12/16
LM124W-LM224W-LM324W Package Mechanical Data
6 Package Mechanical Data
In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at:
www.st.com
6.1 DIP14 Package
.
Plastic DIP-14 MECHANICAL DATA
DIM.
a1 0.51 0.020
B 1.39 1.65 0.055 0.065
b 0.5 0.020
b1 0.25 0.010
D 20 0.787
E 8.5 0.335
e 2.54 0.100
e3 15.24 0.600
F 7.1 0.280
I 5.1 0.201
L 3.3 0.130
Z 1.27 2.54 0.050 0.100
MIN. TYP MAX. MIN. TYP. MAX.
mm. inch
P001A
13/16
Package Mechanical Data LM124W-LM224W-LM324W
6.2 SO-14 Package
SO-14 MECHANICAL DATA
DIM.
A 1.75 0.068 a1 0.1 0.2 0.003 0.007 a2 1.65 0.064
b 0.35 0.46 0.013 0.018 b1 0.19 0.25 0.007 0.010
C 0.5 0.019 c1 45˚ (typ.)
D 8.55 8.75 0.336 0.344
E 5.8 6.2 0.228 0.244
e 1.27 0.050 e3 7.62 0.300
F 3.8 4.0 0.149 0.157
G 4.6 5.3 0.181 0.208
L 0.5 1.27 0.019 0.050
M 0.68 0.026
(max.)
MIN. TYP MAX. MIN. TYP. MAX.
mm. inch
8
14/16
PO13G
LM124W-LM224W-LM324W Package Mechanical Data
6.3 TSSOP14 Package
TSSOP14 MECHANICAL DATA
DIM.
A 1.2 0.047
A1 0.05 0.15 0.002 0.004 0.006
A2 0.8 1 1.05 0.031 0.039 0.041
b 0.19 0.30 0.007 0.012
c 0.09 0.20 0.004 0.0089
D 4.9 5 5.1 0.193 0.197 0.201
E 6.2 6.4 6.6 0.244 0.252 0.260
E1 4.3 4.4 4.48 0.169 0.173 0.176
e 0.65 BSC 0.0256 BSC
K0˚ 8˚0˚ 8˚
L 0.45 0.60 0.75 0.018 0.024 0.030
MIN. TYP MAX. MIN. TYP. MAX.
A2
A
A1
mm. inch
b
e
c
K
L
E
PIN 1 IDENTIFICATION
D
E1
1
0080337D
15/16
Revision History LM124W-LM224W-LM324W
7 Revision History
Date Revision Changes
Sept. 2003 1 First Release
June 2005 3 ESD protection inserted in
Table 1 on page 2
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2005 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
16/16
Loading...