ST LIS331DL User Manual

3-axis - ±2g/±8g smart digital output “nano” accelerometer
Features
2.16 V to 3.6 V supply voltage
1.8 V compatible IOs
±2g / ±8g dynamically selectable full-scale
2
I
C/SPI digital output interface
Programmable interrupt generator
Embedded click and double click recognition
Embedded free-fall and motion detection
Embedded high pass filter
Embedded self test
10000 g high shock survivability
ECOPACK
(see Section 9)
®
RoHS and “Green” compliant
LIS331DL
MEMS motion sensor
LGA 16
process developed by ST to produce inertial sensors and actuators in silicon.
The IC interface is manufactured using a CMOS process that allows to design a dedicated circuit which is trimmed to better match the sensing element characteristics.
(3x3x1 mm)
Applications
Free-Fall detection
Motion activated functions
Gaming and virtual reality input devices
Vibration monitoring and compensation
Description
The LIS331DL, belonging to the “nano” family of
ST motion sensors, is the smallest consumer low-
power three axes linear accelerometer. The device features digital I standard output and smart embedded functions.
The sensing element, capable of detecting the acceleration, is manufactured using a dedicated

Table 1. Device summary

Order code Temp range [°C] Package Packing
LIS331DL -40 to +85 LGA Tray
LIS331DLTR -40 to +85 LGA Tape and reel
2
C/SPI serial interface
The LIS331DL has dynamically user selectable full scales of ±2g/±8g and it is capable of measuring accelerations with an output data rate of 100 Hz or 400 Hz.
A self-test capability allows the user to check the functioning of the sensor in the final application.
The device may be configured to generate inertial wake-up/free-fall interrupt signals when a programmable acceleration threshold is crossed at least in one of the three axes. Thresholds and timing of interrupt generators are programmable by the end user on the fly.
The LIS331DL is available in plastic Land Grid Array package (LGA) and it is guaranteed to operate over an extended temperature range from
-40 °C to +85 °C.
April 2008 Rev 3 1/42
www.st.com
42
Contents LIS331DL
Contents
1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Mechanical and electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 I2C - Inter IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.2 Zero-g level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.3 Self test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.4 Click and double click recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 Sensing element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 IC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1 I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.1 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2.1 SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2.2 SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.3 SPI read in 3-wires mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2/42
LIS331DL Contents
6 Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.1 WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.2 CTRL_REG1 (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.3 CTRL_REG2 (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.4 CTRL_REG3 [interrupt CTRL register] (22h) . . . . . . . . . . . . . . . . . . . . . . 26
7.5 HP_FILTER_RESET (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.6 STATUS_REG (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.7 OUT_X (29h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.8 OUT_Y (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.9 OUT_Z (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.10 FF_WU_CFG_1 (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.11 FF_WU_SRC_1 (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.12 FF_WU_THS_1 (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.13 FF_WU_DURATION_1 (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.14 FF_WU_CFG_2 (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.15 FF_WU_SRC_2 (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.16 FF_WU_THS_2 (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.17 FF_WU_DURATION_2 (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.18 CLICK_CFG (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.19 CLICK_SRC (39h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.20 CLICK_THSY_X (3Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.21 CLICK_THSZ (3Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.22 CLICK_TimeLimit (3Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.23 CLICK_Latency (3Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.24 CLICK_Window (3Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8 Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.1 Mechanical characteristics at 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.2 Mechanical characteristics derived from measurement in the -40 °C to +85
°C temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.3 Electrical characteristics at 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3/42
Contents LIS331DL
9 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4/42
LIS331DL List of figures
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 3. SPI slave timing diagram (2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 4. I2C slave timing diagram (4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 5. LIS331DL electrical connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 6. Read & write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 7. SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 8. Multiple bytes SPI read protocol (2 bytes example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 9. SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 10. Multiple bytes SPI write protocol (2 bytes example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 11. SPI read protocol in 3-wires mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 12. X axis Zero-g level at 2.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 13. X axis Sensitivity at 2.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 14. Y axis Zero-g level at 2.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 15. Y axis Sensitivity at 2.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 16. Z axis Zero-g level at 2.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 17. Z axis Sensitivity at 2.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 18. X axis Zero-g level change vs. temperature at 2.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 19. X axis Sensitivity change vs. temperature at 2.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 20. Y axis Zero-g level change vs. temperature at 2.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 21. Y axis Sensitivity change vs. temperature at 2.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 22. Z axis Zero-g level change vs. temperature at 2.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 23. Z axis Sensitivity change vs. temperature at 2.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 24. Current consumption in normal mode at 2.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 25. LGA 16: Mechanical data and package dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5/42
List of tables LIS331DL
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 3. Mechanical characteristics @ Vdd=2.5 V, T= 25 °C unless otherwise noted . . . . . . . . . . . . 7
Table 4. Electrical characteristics @ Vdd=2.5 V, T= 25 °C unless otherwise noted. . . . . . . . . . . . . . 8
Table 5. SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 6. I2C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 7. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 8. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 9. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 10. SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 11. Transfer when Master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 12. Transfer when Master is writing multiple bytes to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 13. Transfer when Master is receiving (reading) one byte of data from slave . . . . . . . . . . . . . 17
Table 14. Transfer when Master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 17
Table 15. Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 16. WHO_AM_I register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 17. CTRL_REG1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 18. CTRL_REG1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 19. CTRL_REG2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 20. CTRL_REG2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 21. High pass filter cut-off frequency configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 22. CTRL_REG3 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 23. CTRL_REG3 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 24. Data Signal on INT1(2) pad control bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 25. STATUS_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 26. STATUS_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 27. OUT_X register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 28. OUT_Y register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 29. OUT_Z register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 30. FF_WU_CFG_1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 31. FF_WU_CFG_1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 32. FF_WU_SRC_1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 33. FF_WU_SRC_1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 34. FF_WU_THS_1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 35. FF_WU_THS_1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 36. FF_WU_DURATION_1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 37. FF_WU_DURATION_1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 38. FF_WU_CFG_2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 39. FF_WU_CFG_2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 40. FF_WU_SRC_2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 41. FF_WU_SRC_2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 42. FF_WU_THS_2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 43. FF_WU_THS_2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 44. FF_WU_DURATION_2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 45. FF_WU_DURATION_2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 46. CLICK_CFG register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 47. CLICK_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 48. Click interrupt configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6/42
LIS331DL List of tables
Table 49. CLICK_SRC register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 50. CLICK_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 51. CLICK_THSY_X register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 52. CLICK_THSY_X description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 53. CLICK_THSZ register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 54. CLICK_THSZ description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 55. CLICK_TimeLimit register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 56. CLICK_Latency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 57. CLICK_Window register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 58. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7/42
Block diagram and pin description LIS331DL

1 Block diagram and pin description

1.1 Block diagram

Figure 1. Block diagram

X+
Y+
Z+
a
MUX
Z-
Y-
X-
CHARGE
AMPLIFIER
A/D
CONVERTER
CONTROL LOGIC
I2C
SPI
CS
SCL/SPC
SDA/SDO/SDI
SDO
REFERENCESELF TEST

1.2 Pin description

Figure 2. Pin connection

X
Y
(TOP VIEW)
DIRECTION OF THE DETECTABLE ACCELERATIONS
TRIMMING
CIRCUITS
CLOCK
CONTROL LOGIC
&
INTERRUPT GEN.
INT 1
INT 2
Z
1
13
9
1
5
(BOTTOM VIEW)
8/42
LIS331DL Block diagram and pin description

Table 2. Pin description

Pin# Name Function
1 Vdd_IO Power supply for I/O pins
2 NC Internally Not Connected
3 NC Internally Not Connected
4
SCL SPC
I2C Serial Clock (SCL) SPI Serial Port Clock (SPC)
5 GND 0V supply
SDA
6
SDI
SDO
7
SDO
SA0
8CS
2
I
C Serial Data (SDA) SPI Serial Data Input (SDI) 3-wire Interface Serial Data Output (SDO)
SPI Serial Data Output (SDO) I2C less significant bit of the device address (SA0)
SPI enable I2C/SPI mode selection (1: I2C mode; 0: SPI enabled)
9 INT 2 Inertial interrupt 2
10 Reserved Connect to GND
11 INT 1 Inertial interrupt 1
12 GND 0V supply
13 GND 0V supply
14 Vdd Power supply
15 Reserved Connect to Vdd
16 GND 0V supply
9/42
Mechanical and electrical specifications LIS331DL

2 Mechanical and electrical specifications

2.1 Mechanical characteristics

Table 3. Mechanical characteristics @ Vdd=2.5 V, T= 25 °C unless otherwise noted
Symbol Parameter Test conditions Min. Typ.
FS Measurement range
So Sensitivity
(2)
(3)
FS bit set to 0 ±2.0 ±2.3
FS bit set to 1 ±8.0 ±9.2
FS bit set to 0 16.2 18 19.8
(1)
Max. Unit
FS bit set to 1 64.8 72 79.2
TCSo
Ty Of f
TCOff
Sensitivity change vs temperature
Typical zero-g level offset accuracy
(4),(5)
Zero-g level change vs temperature
FS bit set to 0 ±0.01 %/°C
FS bit set to 0 ±40 mg
FS bit set to 1 ±60 mg
Max delta from 25 °C ±0.5 mg/°C
NL Non linearity Best fit straight line ±0.5 % FS
FS bit set to 0 STP bit used
-3 -19 -32 LSb
X axis
FS bit set to 0 STP bit used Y axis
31932LSb
Vst
Self test output
(6),(7),(8)
change
FS bit set to 0 STP bit used
-3 -19 -32 LSb
Z axis
BW System bandwidth
(9)
ODR/2 Hz
Top Operating temperature range -40 +85 °C
Wh Product weight 20 mgram
1. The product is factory calibrated at 2.5 V. The operational power supply range is from 2.16 V to 3.6 V.
2. Typical specifications are not guaranteed
3. Verified by wafer level test and measurement of initial offset and sensitivity
4. Typical zero-g level offset value after MSL3 preconditioning
5. Offset can be eliminated by enabling the built-in high pass filter
6. If STM bit is used values change in sign for all axes
Self Test output changes with the power supply. “Self test output change” is defined as OUTPUT[LSb]
7.
-OUTPUT[LSb]
8. Output data reach 99% of final value after 3/ODR when enabling Self-Test mode due to device filtering
9. ODR is output data rate. Refer to Table 4 for specifications
(Self-test bit on CTRL_REG1=0)
. 1LSb=4.6g/256 at 8bit representation, ±2.3 g Full-Scale
(Self-test bit on CTRL_REG1=1)
g
mg/digit
10/42
LIS331DL Mechanical and electrical specifications

2.2 Electrical characteristics

Table 4. Electrical characteristics @ Vdd=2.5 V, T= 25 °C unless otherwise noted
Symbol Parameter Test conditions Min. Typ.
(2)
(1)
Max. Unit
Vdd Supply voltage 2.16 2.5 3.6 V
Vdd_IO I/O pins supply voltage
(3)
1.71 Vdd+0.1 V
Idd Supply current ODR=100 Hz 0.3 0.4 mA
IddPdn
Current consumption in power-down mode
15µA
VIH Digital high level input voltage 0.8*Vdd_IO V
VIL Digital low level input voltage 0.2*Vdd_IO V
VOH High level output voltage 0.9*Vdd_IO V
VOL Low level output voltage 0.1*Vdd_IO V
DR=0 100
ODR Output data rate
DR=1 400
BW System bandwidth
Ton Turn-on time
(5)
(4)
ODR/2 Hz
3/ODR s
Top Operating temperature range -40 +85
1. The product is factory calibrated at 2.5 V. The operational power supply range is from 2.16 V to 3.6 V.
2. Typical specification are not guaranteed
3. It is possible to remove Vdd maintaining Vdd_IO without blocking the communication busses, in this condition the measurement chain is powered off.
4. Filter cut-off frequency
5. Time to obtain valid data after exiting Power-Down mode
Hz
°C
11/42
Mechanical and electrical specifications LIS331DL
t
t
t
t
t
t
t
t

2.3 Communication interface characteristics

2.3.1 SPI - serial peripheral interface

Subject to general operating conditions for Vdd and top.
Table 5. SPI slave timing values
(1)
Val ue
Symbol Parameter
Min Max
tc(SPC) SPI clock cycle 100 ns
fc(SPC) SPI clock frequency 10 MHz
tsu(CS) CS setup time 5
th(CS) CS hold time 8
tsu(SI) SDI input setup time 5
Unit
th(SI) SDI input hold time 15
ns
tv(SO) SDO valid output time 50
th(SO) SDO output hold time 6
tdis(SO) SDO output disable time 50
1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production
(2)
c(SPC)
h(CS)
LSB IN
h(SO)
LSB OUT
dis(SO)
CS
SPC
SDI
SDO
Figure 3. SPI slave timing diagram
(3)
su(CS)
(3)
h(SI)
MSB OUT
(3)
(3)
su(SI)
MSB IN
v(SO)
(3)
(3)
(3)
(3)
2. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both Input and Output port
3. When no communication is on-going, data on CS, SPC, SDI and SDO are driven by internal pull-up resistors
12/42
LIS331DL Mechanical and electrical specifications
t
t
t
t
t
t
t
t
t
t
t
t

2.3.2 I2C - Inter IC control interface

Subject to general operating conditions for Vdd and top.
Table 6. I
Symbol Parameter
2
C slave timing values
I2C Standard mode
(1)
I2C Fast mode
(1)
Unit
Min Max Min Max
f
(SCL)
t
w(SCLL)
t
w(SCLH)
t
su(SDA)
t
h(SDA)
t
r(SDA) tr(SCL)
t
f(SDA) tf(SCL)
t
h(ST)
t
su(SR)
t
su(SP)
t
w(SP:SR)
1. Data based on standard I2C protocol requirement, not tested in production
2. A device must internally provide an hold time of at least 300ns for the SDA signal (referred to VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL
3. Cb = total capacitance of one bus line, in pF
SCL clock frequency 0 100 0 400 KHz
SCL clock low time 4.7 1.3
SCL clock high time 4.0 0.6
SDA setup time 250 100 ns
SDA data hold time
(2)
0
3.45 0
SDA and SCL rise time 1000
SDA and SCL fall time 300
(2)
20 + 0.1C
20 + 0.1Cb
0.9
(3)
b
(3)
300
300
START condition hold time 4 0.6
Repeated START condition setup time
4.7 0.6
STOP condition setup time 4 0.6
Bus free time between STOP and START condition
Figure 4. I
2
C slave timing diagram
4.7 1.3
(4)
µs
µs
ns
µs
START
SDA
f(SDA)
r(SDA)
su(SDA)
h(SDA)
SCL
w(SCLL)
w(SCLH)
r(SCL)
f(SCL)
h(ST)
4. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports
13/42
su(SR)
su(SP)
w(SP:SR)
REPEATED
START
START
STOP
Mechanical and electrical specifications LIS331DL

2.4 Absolute maximum ratings

Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 7. Absolute maximum ratings

Symbol Ratings Maximum value Unit
Vdd Supply voltage -0.3 to 6 V
Vdd_IO I/O pins Supply voltage -0.3 to 6 V
Vin
A
POW
A
UNP
T
T
STG
ESD Electrostatic discharge protection
Input voltage on any control pin (CS, SCL/SPC, SDA/SDI/SDO)
Acceleration (any axis, powered, Vdd=2.5 V)
Acceleration (any axis, unpowered)
Operating temperature range -40 to +85 °C
OP
Storage temperature range -40 to +125 °C
-0.3 to Vdd_IO +0.3 V
3000 g for 0.5 ms
10000 g for 0.1 ms
3000 g for 0.5 ms
10000 g for 0.1 ms
4 (HBM) kV
1.5 (CDM) kV
200 (MM) V
Note: Supply voltage on any pin should never exceed 6.0 V
This is a mechanical shock sensitive device, improper handling can cause permanent damages to the part
This is an ESD sensitive device, improper handling can cause permanent damages to the part
14/42
LIS331DL Mechanical and electrical specifications

2.5 Terminology

2.5.1 Sensitivity

Sensitivity describes the gain of the sensor and can be determined e.g. by applying 1 g acceleration to it. As the sensor can measure DC accelerations this can be done easily by pointing the axis of interest towards the center of the Earth, noting the output value, rotating the sensor by 180 degrees (pointing to the sky) and noting the output value again. By doing so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and also over time. The Sensitivity Tolerance describes the range of sensitivities of a large population of sensors.

2.5.2 Zero-g level

Zero-g level Offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal surface will measure 0 g in X axis and 0 g in Y axis whereas the Z axis will measure 1 g. The output is ideally in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as 2’s complement number). A deviation from ideal value in this case is called Zero-g offset. Offset is to some extent a result of stress to MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see “Zero-g level change vs. temperature”. The Zero-g level tolerance (TyOff) describes the Standard Deviation of the range of Zero-g levels of a population of sensors.

2.5.3 Self test

Self Test allows to check the sensor functionality without moving it. The self test function is off when the self-test bit of CTRL_REG1 (control register 1) is programmed to ‘0‘. When the self-test bit of ctrl_reg1 is programmed to ‘1‘ an actuation force is applied to the sensor, simulating a definite input acceleration. In this case the sensor outputs will exhibit a change in their DC levels which are related to the selected full scale through the device sensitivity. When Self Test is activated, the device output level is given by the algebraic sum of the signals produced by the acceleration acting on the sensor and by the electrostatic test-force. If the output signals change within the amplitude specified inside Tab le 3 , then the sensor is working properly and the parameters of the interface chip are within the defined specifications.

2.5.4 Click and double click recognition

The click and double click recognition functions help to create man-machine interface with little software overload. The device can be configured to output an interrupt signal on dedicated pin when tapped in any direction.
If the sensor is exposed to a single input stimulus it generates an interrupt request on inertial interrupt pins (INT1 and/or INT2). A more advanced feature allows to generate an interrupt request when a “double click” stimulus is applied. A programmable time between the two events allows a flexible adaption to the application requirements. Mouse-button like application, like clicks and double clicks, can be implemented.
This function can be fully programmed by the user in terms of expected amplitude and timing of the stimuli.
15/42
Functionality LIS331DL

3 Functionality

The LIS331DL is a nano, low-power, digital output 3-axis linear accelerometer packaged in an LGA package. The complete device includes a sensing element and an IC interface able to take the information from the sensing element and to provide a signal to the external world through an I

3.1 Sensing element

A proprietary process is used to create a surface micro-machined accelerometer. The technology allows to carry out suspended silicon structures which are attached to the substrate in a few points called anchors and are free to move in the direction of the sensed acceleration. To be compatible with the traditional packaging techniques a cap is placed on top of the sensing element to avoid blocking the moving parts during the moulding phase of the plastic encapsulation.
When an acceleration is applied to the sensor the proof mass displaces from its nominal position, causing an imbalance in the capacitive half-bridge. This imbalance is measured using charge integration in response to a voltage pulse applied to the capacitor.
At steady state the nominal value of the capacitors are few pF and when an acceleration is applied the maximum variation of the capacitive load is in the fF range.
2
C/SPI serial interface.

3.2 IC interface

The complete measurement chain is composed by a low-noise capacitive amplifier which converts the capacitive unbalancing of the MEMS sensor into an analog voltage that is finally available to the user by an analog-to-digital converter.
The acceleration data may be accessed through an I device particularly suitable for direct interfacing with a microcontroller.
The LIS331DL features a Data-Ready signal (RDY) which indicates when a new set of measured acceleration data is available thus simplifying data synchronization in the digital system that uses the device.
The LIS331DL may also be configured to generate an inertial Wake-Up and Free-Fall interrupt signal accordingly to a programmed acceleration event along the enabled axes. Both Free-Fall and Wake-Up can be available simultaneously on two different pins.

3.3 Factory calibration

The IC interface is factory calibrated for sensitivity (So) and Zero-g level (TyOff).
The trimming values are stored inside the device in a non volatile memory. Any time the device is turned on, the trimming parameters are downloaded into the registers to be used during the normal operation. This allows to use the device without further calibration.
2
C/SPI interface thus making the
16/42
LIS331DL Application hints

4 Application hints

Figure 5. LIS331DL electrical connection

Vdd
10µF
100nF
GND
Digital signal from/to signal controller.Signal’s levels are defined by proper selection of Vdd_IO
Vdd_IO
1
TOP VIEW
59
SCL/SPC
SDA/SDI/SDO
SDO/SA0
13
INT 1
INT 2
CS
The device core is supplied through Vdd line while the I/O pads are supplied through Vdd_IO line. Power supply decoupling capacitors (100 nF ceramic, 10 µF Al) should be placed as near as possible to the pin 14 of the device (common design practice).
All the voltage and ground supplies must be present at the same time to have proper behavior of the IC (refer to Figure 5). It is possible to remove Vdd maintaining Vdd_IO without blocking the communication bus, in this condition the measurement chain is powered off.
The functionality of the device and the measured acceleration data is selectable and accessible through the I
2
C/SPI interface.When using the I2C, CS must be tied high.
The functions, the threshold and the timing of the two interrupt pins (INT 1 and INT 2) can be completely programmed by the user through the I

4.1 Soldering information

The LGA package is compliant with the ECOPACK®, RoHS and “Green” standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020C.
Leave “Pin 1 Indicator” unconnected during soldering.
Land pattern and soldering recommendation are available at www.st.com/mems
2
C/SPI interface.
.
17/42
Digital interfaces LIS331DL

5 Digital interfaces

The registers embedded inside the LIS331DL may be accessed through both the I2C and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode.
The serial interfaces are mapped onto the same pads. To select/exploit the I line must be tied high (i.e connected to Vdd_IO).

Table 8. Serial interface pin description

Pin name Pin description
2
C interface, CS
CS
SCL/SPC
SDA/SDI/SDO
SDO/SA0
SPI enable I2C/SPI mode selection (1: I2C mode; 0: SPI enabled)
2
C Serial Clock (SCL)
I SPI Serial Port Clock (SPC)
2
I
C Serial Data (SDA) SPI Serial Data Input (SDI) 3-wire Interface Serial Data Output (SDO)
SPI Serial Data Output (SDO)
2
C less significant bit of the device address (SA0)
I

5.1 I2C serial interface

The LIS331DL I2C is a bus slave. The I2C is employed to write data into registers whose content can also be read back.
The relevant I

Table 9. Serial interface pin description

Transmitter The device which sends data to the bus
Receiver The device which receives data from the bus
2
C terminology is given in the table below.
Term Description
Master
Slave The device addressed by the master
The device which initiates a transfer, generates clock signals and terminates a transfer
There are two signals associated with the I2C bus: the serial clock line (SCL) and the Serial DAta line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Both the lines are connected to Vdd_IO through a pull-up resistor embedded inside the LIS331DL. When the bus is free both the lines are high.
2
The I
C interface is compliant with fast mode (400 kHz) I2C standards as well as with the
normal mode.
18/42
LIS331DL Digital interfaces

5.1.1 I2C operation

The transaction on the bus is started through a START (ST) signal. A START condition is defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the Master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the Master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the Master.
The Slave ADdress (SAD) associated to the LIS331DL is 001110xb. SDO/SA0 pad can be used to modify less significant bit of the device address. If SDO pad is connected to voltage supply LSb is ‘1’ (address 0011101b) else if SDO pad is connected to ground LSb value is ‘0’ (address 0011100b). This solution permits to connect and address two different accelerometers to the same I
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received.
2
The I
C embedded inside the LIS331DL behaves like a slave device and the following protocol must be adhered to. After the start condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been returned, a 8-bit sub-address will be transmitted: the 7 LSb represent the actual register address while the MSB enables address auto increment. If the MSb of the SUB field is 1, the SUB (register address) will be automatically incremented to allow multiple data read/write.
2
C bus.
The slave address is completed with a Read/Write bit. If the bit was ‘1’ (Read), a repeated START (SR) condition will have to be issued after the two sub-address bytes; if the bit is ‘0’ (Write) the Master will transmit to the slave with direction unchanged. Tab le 1 0 explains how the SAD+Read/Write bit pattern is composed, listing all the possible configurations.
Table 10. SAD+Read/Write patterns
Command SAD[6:1] SAD[0] = SDO/SA0 R/W SAD+R/W
Read 001110 0 1 00111001 (39h)
Write 001110 0 0 00111000 (38h)
Read 001110 1 1 00111011 (3Bh)
Write 001110 1 0 00111010 (3Ah)
Table 11. Transfer when Master is writing one byte to slave
Master ST SAD + W SUB DATA SP
Slave SAK SAK SAK
Table 12. Transfer when Master is writing multiple bytes to slave
Master ST SAD + W SUB DATA DATA SP
Slave SAK SAK SAK SAK
19/42
Digital interfaces LIS331DL
Table 13. Transfer when Master is receiving (reading) one byte of data from slave
Master ST SAD + W SUB SR SAD + R NMAK SP
Slave SAK SAK SAK DATA
Table 14. Transfer when Master is receiving (reading) multiple bytes of data from slave
Master ST SAD+W SUB SR SAD+R MAK MAK NMAK SP
Slave SAK SAK SAK DATA DATA DATA
Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit (MSb) first. If a receiver can’t receive another complete byte of data until it has performed some other function, it can hold the clock line, SCL LOW to force the transmitter into a wait state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver doesn’t acknowledge the slave address (i.e. it is not able to receive because it is performing some real time function) the data line must be left HIGH by the slave. The Master can then abort the transfer. A LOW to HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition.
In order to read multiple bytes, it is necessary to assert the most significant bit of the sub­address field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the address of first register to be read.
In the presented communication format MAK is Master Acknowledge and NMAK is No Master Acknowledge.

5.2 SPI bus interface

The LIS331DL SPI is a bus slave. The SPI allows to write and read the registers of the device.
The Serial Interface interacts with the outside world with 4 wires: CS, SPC, SDI and SDO.

Figure 6. Read & write protocol

CS
SPC
SDI
RW
MS
SDO
CS is the Serial Port Enable and it is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. SPC is the Serial Port Clock and it is controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and SDO are respectively the Serial Port Data Input and Output. Those lines are driven at the falling edge of SPC and should be captured at the rising edge of SPC.
AD5 AD4 AD3 AD2 AD1 AD0
DI7DI6DI5DI4DI3DI2DI1DI0
DO7DO6DO5DO4DO3DO2DO1DO0
20/42
LIS331DL Digital interfaces
Both the Read Register and Write Register commands are completed in 16 clock pulses or in multiple of 8 in case of multiple bytes read/write. Bit duration is the time between two falling edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of CS.
bit 0: RW from the device is read. In latter case, the chip will drive SDO at the start of bit 8.
bit 1: MS When 1, the address will be auto incremented in multiple read/write commands.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that will be written into the device (MSb
first).
bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb first).
In multiple read/write commands further blocks of 8 clock periods will be added. When MS bit is 0 the address used to read/write data remains the same for every block. When MS is 1 the address used to read/write data is incremented at every block.
The function and the behavior of SDI and SDO remain unchanged.

5.2.1 SPI read

Figure 7. SPI read protocol
bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0)
bit. When 0, the address will remain unchanged in multiple read/write commands.
bit
CS
SPC
SDI
RW
MS
AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5DO4 DO3 DO2 DO1DO0
The SPI Read command is performed with 16 clock pulses. Multiple byte read command is performed adding blocks of 8 clock pulses at the previous one.
bit 0: READ bit. The value is 1.
bit 1: MS
bit. When 0 do not increment address, when 1 increment address in multiple
reading.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb
first).
bit 16-... : data DO(...-8). Further data in multiple byte reading.
21/42
Digital interfaces LIS331DL
Figure 8. Multiple bytes SPI read protocol (2 bytes example)
CS
SPC
SDI
RW
AD5 AD4 AD3 AD2 AD1 AD0
MS
SDO
DO7DO6DO5DO4DO3DO2DO1DO0
DO15 DO14 DO13 DO12 DO11 DO10 DO9 DO8

5.2.2 SPI write

Figure 9. SPI write protocol
CS
SPC
SDI
RW
AD5 AD4 AD3 AD2 AD1 AD0MS
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0
The SPI Write command is performed with 16 clock pulses. Multiple byte write command is performed adding blocks of 8 clock pulses at the previous one.
bit 0: WRITE bit. The value is 0.
bit 1: MS
bit. When 0 do not increment address, when 1 increment address in multiple
writing.
bit 2 -7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that will be written inside the device
(MSb first).
bit 16-... : data DI(...-8). Further data in multiple byte writing.
Figure 10. Multiple bytes SPI write protocol (2 bytes example)
CS
SPC
SDI
RW
MS
AD5 AD4 AD3 AD2 AD1 AD0
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 DI15 DI14 DI13 DI12 DI11 DI10 DI9 DI8
22/42
LIS331DL Digital interfaces

5.2.3 SPI read in 3-wires mode

3-wires mode is entered by setting to 1 bit SIM (SPI Serial Interface Mode selection) in CTRL_REG2.
Figure 11. SPI read protocol in 3-wires mode
CS
SPC
SDI/O
RW
MS
AD5 AD4 AD3 AD2 AD1 AD0
The SPI Read command is performed with 16 clock pulses:
bit 0: READ bit. The value is 1.
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
bit 1: MS
bit. When 0 do not increment address, when 1 increment address in multiple
reading.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb
first).
Multiple read command is also available in 3-wires mode.
23/42
Register mapping LIS331DL

6 Register mapping

The table given below provides a listing of the 8 bit registers embedded in the device and the related addresses:

Table 15. Register address map

Register address
Name Type
Hex Binary
Reserved (do not modify) 00-0E Reserved
WHO_AM_I r 0F 000 1111 00111011 Dummy register
Reserved (do not modify) 10-1F Reserved
CTRL_REG1 rw 20 010 0000 00000111
CTRL_REG2 rw 21 010 0001 00000000
CTRL_REG3 rw 22 010 0010 00000000
HP_FILTER_RESET r 23 010 0011 dummy Dummy register
Reserved (do not modify) 24-26 Reserved
STATUS_REG r 27 010 0111 00000000
Default Comment
-- r 28 010 1000 Not Used
OUT_X r 29 010 1001 output
-- r 2A 010 1010 Not Used
OUT_Y r 2B 010 1011 output
-- r 2C 010 1100 Not Used
OUT_Z r 2D 010 1101 output
Reserved (do not modify) 2E-2F Reserved
FF_WU_CFG_1 rw 30 011 0000 00000000
FF_WU_SRC_1(ack1) r 31 011 0001 00000000
FF_WU_THS_1 rw 32 011 0010 00000000
FF_WU_DURATION_1 rw 33 011 0011 00000000
FF_WU_CFG_2 rw 34 011 0100 00000000
FF_WU_SRC_2 (ack2) r 35 011 0101 00000000
FF_WU_THS_2 rw 36 011 0110 00000000
FF_WU_DURATION_2 rw 37 011 0111 00000000
CLICK_CFG rw 38 011 1000 00000000
CLICK_SRC (ack) r 39 011 1001 00000000
-- 3A Not Used
CLICK_THSY_X rw 3B 011 1011 00000000
24/42
LIS331DL Register mapping
Table 15. Register address map (continued)
Register address
Name Type
Hex Binary
CLICK_THSZ rw 3C 011 1100 00000000
CLICK_TimeLimit rw 3D 011 1101 00000000
CLICK_Latency rw 3E 011 1110 00000000
CLICK_Window rw 3F 011 1111 00000000
Default Comment
Registers marked as “Reserved” must not be changed. The writing to those registers may cause permanent damages to the device.
The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered-up.
25/42
Register description LIS331DL

7 Register description

The device contains a set of registers which are used to control its behavior and to retrieve acceleration data. The registers address, made of 7 bits, is used to identify them and to write the data through serial interface.

7.1 WHO_AM_I (0Fh)

Table 16. WHO_AM_I register

00111011
Device identification register.
This register contains the device identifier that for LIS331DL is set to 3Bh.

7.2 CTRL_REG1 (20h)

Table 17. CTRL_REG1 register

DR PD FS STP STM Zen Yen Xen

Table 18. CTRL_REG1 description

DR Data rate selection. Default value: 0
(0: 100 Hz output data rate; 1: 400 Hz output data rate)
PD Power Down Control. Default value: 0
(0: power down mode; 1: active mode)
FS Full Scale selection. Default value: 0
(refer to Ta bl e 3 for typical full scale values)
STP, STM Self Test Enable. Default value: 0
(0: normal mode; 1: self test P, M enabled)
Zen Z axis enable. Default value: 1
(0: Z axis disabled; 1: Z axis enabled)
Yen Y axis enable. Default value: 1
(0: Y axis disabled; 1: Y axis enabled)
Xen X axis enable. Default value: 1
(0: X axis disabled; 1: X axis enabled)
DR bit allows to select the data rate at which acceleration samples are produced. The default value is 0 which corresponds to a data-rate of 100 Hz. By changing the content of DR to “1” the selected data-rate will be set equal to 400 Hz.
PD bit allows to turn the device out of power-down mode. The device is in power-down mode when PD= ‘0’ (default value after boot). The device is in normal mode when PD is set to ‘1’.
STP, STM bits are used to activate the self test function. When the bit is set to one, an output change will occur to the device outputs (refer to Ta bl e 3 and 4 for specifications) thus allowing to check the functionality of the whole measurement chain.
26/42
LIS331DL Register description
Zen bit enables the generation of Data Ready signal for Z-axis measurement channel when
set to 1. The default value is 1.
Yen bit enables the generation of Data Ready signal for Y-axis measurement channel when set to 1. The default value is 1.
Xen bit enables the generation of Data Ready signal for X-axis measurement channel when set to 1. The default value is 1.

7.3 CTRL_REG2 (21h)

Table 19. CTRL_REG2 register

SIM BOOT 0
1. Bit to be kept to “0” for correct device functionality
(1)
FDS
HP
FF_WU2

Table 20. CTRL_REG2 description

SIM SPI Serial Interface Mode selection. Default value: 0
(0: 4-wire interface; 1: 3-wire interface)
BOOT Reboot memory content. Default value: 0
(0: normal mode; 1: reboot memory content)
FDS Filtered Data Selection. Default value: 0
(0: internal filter bypassed; 1: data from internal filter sent to output register)
HP FF_WU2
High Pass filter enabled for Free-Fall/WakeUp # 2. Default value: 0 (0: filter bypassed; 1: filter enabled)
HP
FF_WU1
HPcoeff2 HPcoeff1
HP FF_WU1
HPcoeff2 HPcoeff1
High Pass filter enabled for Free-Fall/Wake-Up #1. Default value: 0 (0: filter bypassed; 1: filter enabled)
High pass filter cut-off frequency configuration. Default value: 00 (See Ta b le 2 1 )
SIM bit selects the SPI Serial Interface Mode. When SIM is ‘0’ (default value) the 4-wire interface mode is selected. The data coming from the device are sent to SDO pad. In 3-wire interface mode output data are sent to SDA_SDI pad.
BOOT bit is used to refresh the content of internal registers stored in the flash memory block. At the device power up the content of the flash memory block is transferred to the internal registers related to trimming functions to permit a good behavior of the device itself. If for any reason the content of trimming registers was changed it is sufficient to use this bit to restore correct values. When BOOT bit is set to ‘1’ the content of internal flash is copied inside corresponding internal registers and it is used to calibrate the device. These values are factory trimmed and they are different for every accelerometer. They permit a good behavior of the device and normally they have not to be changed. At the end of the boot process the BOOT bit is set again to ‘0’.
FDS bit enables (FDS=1) or bypass (FDS=0) the high pass filter in the signal chain of the sensor
HPcoeff[2:1]. These bits are used to configure high-pass filter cut-off frequency ft.
27/42
Register description LIS331DL

Table 21. High pass filter cut-off frequency configuration

HPcoeff2,1
00 2 8
01 1 4
10 0.5 2
11 0.25 1
ft (Hz)
(ODR=100 Hz)

7.4 CTRL_REG3 [interrupt CTRL register] (22h)

Table 22. CTRL_REG3 register

IHL PP_OD I2_CFG2 I2_CFG1 I2_CFG0 I1_CFG2 I1_CFG1 I1_CFG0

Table 23. CTRL_REG3 description

IHL Interrupt active high, low. Default value 0.
(0: active high; 1: active low)
PP_OD Push-pull/Open Drain selection on interrupt pad. Default value 0.
(0: push-pull; 1: open drain)
I2_CFG2 I2_CFG1 I2_CFG0
I1_CFG2 I1_CFG1 I1_CFG0
Data signal on INT2 pad control bits. Default value 000. (see table below)
Data signal on INT1 pad control bits. Default value 000. (see table below)
ft (Hz)
(ODR=400 Hz)

Table 24. Data Signal on INT1(2) pad control bits

I1(2)_CFG2 I1(2)_CFG1 I1(2)_CFG0 INT 1(2) Pad
0 0 0 GND
001 FF_WU_1
010 FF_WU_2
0 1 1 FF_WU_1 OR FF_WU_2
100 Data ready
1 1 1 Click interrupt

7.5 HP_FILTER_RESET (23h)

Dummy register. Reading at this address zeroes instantaneously the content of the internal high pass-filter. If the high pass filter is enabled all three axes are instantaneously set to 0 g. This allows to overcome the settling time of the high pass filter.
28/42
LIS331DL Register description

7.6 STATUS_REG (27h)

Table 25. STATUS_REG register

ZYXOR ZOR YOR XOR ZYXDA ZDA YDA XDA

Table 26. STATUS_REG description

X, Y, Z axis Data Overrun. Default value: 0
ZYXOR
ZOR
YOR
XOR
ZYXDA X, Y and Z axis new Data Available. Default value: 0
ZDA Z axis new Data Available. Default value: 0
YDA Y axis new Data Available. Default value: 0
XDA X axis new Data Available. Default value: 0
(0: no overrun has occurred; 1: new data has overwritten the previous one before it was read)
Z axis Data Overrun. Default value: 0 (0: no overrun has occurred; 1: a new data for the Z-axis has overwritten the previous one)
Y axis Data Overrun. Default value: 0 (0: no overrun has occurred; 1: a new data for the Y-axis has overwritten the previous one)
X axis Data Overrun. Default value: 0 (0: no overrun has occurred; 1: a new data for the X-axis has overwritten the previous one)
(0: a new set of data is not yet available; 1: a new set of data is available)
(0: a new data for the Z-axis is not yet available; 1: a new data for the Z-axis is available)
(0: a new data for the Y-axis is not yet available; 1: a new data for the Y-axis is available)
(0: a new data for the X-axis is not yet available; 1: a new data for the X-axis is available)

7.7 OUT_X (29h)

Table 27. OUT_X register

XD7 XD6 XD5 XD4 XD3 XD2 XD1 XD0
X axis output data expressed as 2’s complement number.

7.8 OUT_Y (2Bh)

Table 28. OUT_Y register

YD7 YD6 YD5 YD4 YD3 YD2 YD1 YD0
Y axis output data expressed as 2’s complement number.
29/42
Register description LIS331DL

7.9 OUT_Z (2Dh)

Table 29. OUT_Z register

ZD7 ZD6 ZD5 ZD4 ZD3 ZD2 ZD1 ZD0
Z axis output data expressed as 2’s complement number.

7.10 FF_WU_CFG_1 (30h)

Table 30. FF_WU_CFG_1 register

AOI LIR ZHIE ZLIE YHIE YLIE XHIE XLIE

Table 31. FF_WU_CFG_1 description

AOI
LIR
ZHIE
And/Or combination of Interrupt events. Default value: 0 (0: OR combination of interrupt events; 1: AND combination of interrupt events)
Latch Interrupt request into FF_WU_SRC_1 reg with the FF_WU_SRC_1 reg cleared by reading FF_WU_SRC_1 reg. Default value: 0
(0: interrupt request not latched; 1: interrupt request latched)
Enable interrupt generation on Z High event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold)
ZLIE
YHIE
YLIE
XHIE
XLIE
Enable interrupt generation on Z Low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold)
Enable interrupt generation on Y High event. Default value: 0 (0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
Enable interrupt generation on Y Low event. Default value: 0 (0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
Enable interrupt generation on X High event. Default value: 0 (0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
Enable interrupt generation on X Low event. Default value: 0 (0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
30/42
LIS331DL Register description

7.11 FF_WU_SRC_1 (31h)

Table 32. FF_WU_SRC_1 register

-- IA ZH ZL YH YL XH XL

Table 33. FF_WU_SRC_1 description

IA
Interrupt Active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH
ZL
YH
YL
XH
XL
Z High. Default value: 0 (0: no interrupt, 1: Z High event has occurred)
Z Low. Default value: 0 (0: no interrupt; 1: Z Low event has occurred)
Y High. Default value: 0 (0: no interrupt, 1: Y High event has occurred)
Y Low. Default value: 0 (0: no interrupt, 1: Y Low event has occurred)
X High. Default value: 0 (0: no interrupt, 1: X High event has occurred)
X Low. Default value: 0 (0: no interrupt, 1: X Low event has occurred)
Free-fall and wake-up source register. Read only register.
Reading at this address clears FF_WU_SRC_1 register and the FF, WU 1 interrupt and allows the refreshment of data in the FF_WU_SRC_1 register if the latched option was chosen.

7.12 FF_WU_THS_1 (32h)

Table 34. FF_WU_THS_1 register

DCRM THS6 THS5 THS4 THS3 THS2 THS1 THS0

Table 35. FF_WU_THS_1 description

DCRM
THS6, THS0 Free-fall / wake-up Threshold: default value: 000 0000
Resetting mode selection. Default value: 0 (0: counter reset; 1: counter decremented)
Most significant bit (DCRM) is used to select the resetting mode of the duration counter. If DCRM=0 counter is reset when the interrupt is no more active else if DCRM=1 duration counter is decremented.
31/42
Register description LIS331DL

7.13 FF_WU_DURATION_1 (33h)

Table 36. FF_WU_DURATION_1 register

D7 D6 D5 D4 D3 D2 D1 D0

Table 37. FF_WU_DURATION_1 description

D7-D0 Duration value. Default value: 0000 0000
Duration register for Free-Fall/Wake-Up interrupt 1. Duration step and maximum value depend on the ODR chosen. Step 2.5 msec, from 0 to 637.5 msec if ODR=400 Hz, else step 10 msec, from 0 to 2.55 sec when ODR=100 Hz. The counter used to implement duration function is blocked when LIR=1 in configuration register and the interrupt event is verified

7.14 FF_WU_CFG_2 (34h)

Table 38. FF_WU_CFG_2 register

AOI LIR ZHIE ZLIE YHIE YLIE XHIE XLIE

Table 39. FF_WU_CFG_2 description

AOI And/Or combination of Interrupt events. Default value: 0
(0: OR combination of interrupt events; 1: AND combination of interrupt events)
LIR Latch Interrupt request into FF_WU_SRC_2 reg with the FF_WU_SRC_2 reg cleared
by reading FF_WU_SRC_2 reg. Default value: 0 (0: interrupt request not latched; 1: interrupt request latched)
ZHIE Enable interrupt generation on Z High event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold)
ZLIE Enable interrupt generation on Z Low event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold)
YHIE Enable interrupt generation on Y High event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold)
YLIE Enable interrupt generation on Y Low event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold)
XHIE Enable interrupt generation on X High event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold)
XLIE Enable interrupt generation on X Low event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold)
32/42
LIS331DL Register description

7.15 FF_WU_SRC_2 (35h)

Table 40. FF_WU_SRC_2 register

-- IA ZH ZL YH YL XH XL

Table 41. FF_WU_SRC_2 description

IA Interrupt Active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupt events have been generated)
ZH Z High. Default value: 0
(0: no interrupt; 1: Z High event has occurred)
ZL Z Low. Default value: 0
(0: no interrupt; 1: Z Low event has occurred)
YH Y High. Default value: 0
(0: no interrupt; 1: Y High event has occurred)
YL Y Low. Default value: 0
(0: no interrupt; 1: Y Low event has occurred)
XH X High. Default value: 0
(0: no interrupt; 1: X High event has occurred)
XL X Low. Default value: 0
(0: no interrupt; 1: X Low event has occurred)
Free-fall and wake-up source register. Read only register.
Reading at this address clears FF_WU_SRC_2 register and the FF_WU_2 interrupt and allows the refreshment of data in the FF_WU_SRC_2 register if the latched option was chosen.

7.16 FF_WU_THS_2 (36h)

Table 42. FF_WU_THS_2 register

DCRM THS6 THS5 THS4 THS3 THS2 THS1 THS0

Table 43. FF_WU_THS_2 description

DCRM Resetting mode selection. Default value: 0
(0: counter reset; 1: counter decremented)
THS6, THS0 Free-fall / wake-up Threshold. Default value: 000 0000
Most significant bit (DCRM) is used to select the resetting mode of the duration counter. If DCRM=0 counter is reset when the interrupt is no more active else if DCRM=1 duration counter is decremented.
33/42
Register description LIS331DL

7.17 FF_WU_DURATION_2 (37h)

Table 44. FF_WU_DURATION_2 register

D7 D6 D5 D4 D3 D2 D1 D0

Table 45. FF_WU_DURATION_2 description

D7-D0 Duration value. Default value: 0000 0000
Duration register for Free-Fall/Wake-Up interrupt 2. Duration step and maximum value depend on the ODR chosen. Step 2.5 msec, from 0 to 637.5 msec if ODR=400 Hz, else step 10 msec, from 0 to 2.55 sec when ODR=100 Hz. The counter used to implement duration function is blocked when LIR=1 in configuration register and the interrupt event is verified.

7.18 CLICK_CFG (38h)

Table 46. CLICK_CFG register

- LIR Double_Z Single_Z Double_Y Single_Y Double_X Single_X

Table 47. CLICK_CFG description

LIR Latch Interrupt request into CLICK_SRC reg with the CLICK_SRC reg
refreshed by reading CLICK_SRC reg. Default value: 0 (0: interrupt request not latched; 1: interrupt request latched)
Double_Z Enable interrupt generation on double click event on Z axis.
Default value: 0 (0: disable interrupt request; 1: enable interrupt request)
Single_Z Enable interrupt generation on single click event on Z axis.
Default value: 0 (0: disable interrupt request; 1: enable interrupt request)
Double_Y Enable interrupt generation on double click event on Y axis.
Default value: 0 (0: disable interrupt request; 1: enable interrupt request)
Single_Y Enable interrupt generation on single click event on Y axis.
Default value: 0 (0: disable interrupt request; 1: enable interrupt request)
Double_X Enable interrupt generation on double click event on X axis.
Default value: 0 (0: disable interrupt request; 1: enable interrupt request)
Single_X Enable interrupt generation on single click event on X axis.
Default value: 0 (0: disable interrupt request; 1: enable interrupt request)
Ta bl e 4 8 shows all the possible configurations for Click and Double Click recognition.
34/42
LIS331DL Register description

Table 48. Click interrupt configurations

Double_Z / Y / X Single_Z / Y / X Click output
00 0
01 Single
10 Double
1 1 Single OR Double

7.19 CLICK_SRC (39h)

Table 49. CLICK_SRC register

-- IA Double_Z Single_Z Double_Y Single_Y Double_X Single_X

Table 50. CLICK_SRC description

IA Interrupt Active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupt events have been generated)
Double_Z Double click on Z axis event. Default value: 0
(0: no interrupt; 1: Double Z event has occurred)
Single_Z Single click on Z axis event. Default value: 0
(0: no interrupt; 1: Single Z event has occurred)
Double_Y Double click on Y axis event. Default value: 0
(0: no interrupt; 1: Double Y event has occurred)
Single_Y Single click on Y axis event.Default value: 0
(0: no interrupt; 1: Single Y event has occurred)
Double_X Double click on X axis event. Default value: 0
(0: no interrupt; 1: Double X event has occurred)
Single_X Single click on X axis event. Default value: 0
(0: no interrupt; 1: Single X event has occurred)

7.20 CLICK_THSY_X (3Bh)

Table 51. CLICK_THSY_X register

THSy3 THSy2 THSy1 THSy0 THSx3 THSx2 THSx1 THSx0

Table 52. CLICK_THSY_X description

THSy3, THSy0 Click Threshold on Y axis. Default value: 0000
THSx3, THSx0 Click Threshold on X axis. Default value: 0000
From 0.5 g (0001) to 7.5 g (1111) with step of 0.5 g.
35/42
Register description LIS331DL

7.21 CLICK_THSZ (3Ch)

Table 53. CLICK_THSZ register

-- -- -- -- THSz3 THSz2 THSz1 THSz0

Table 54. CLICK_THSZ description

THSz3, THSz0 Click Threshold on Z axis. Default value: 0000
From 0.5 g (0001) to 7.5 g (1111) with step of 0.5 g.

7.22 CLICK_TimeLimit (3Dh)

Table 55. CLICK_TimeLimit register

Dur7 Dur6 Dur5 Dur4 Dur3 Dur2 Dur1 Dur0
From 0 to 127.5 msec with step of 0.5 msec,

7.23 CLICK_Latency (3Eh)

Table 56. CLICK_Latency

Lat7 Lat6 Lat5 Lat4 Lat3 Lat2 Lat1 Lat0
From 0 to 255 msec with step of 1 msec.

7.24 CLICK_Window (3Fh)

Table 57. CLICK_Window register

Win7 Win6 Win5 Win4 Win3 Win2 Win1 Win0
From 0 to 255 msec with step of 1 msec.
36/42
LIS331DL Typical performance characteristics

8 Typical performance characteristics

8.1 Mechanical characteristics at 25 °C

Figure 12. X axis Zero-g level at 2.5 V Figure 13. X axis Sensitivity at 2.5 V

25
20
15
10
Percent of parts [%]
5
0
−150 −100 −50 0 50 100 150 Zero−g Level Offset [mg]
25
20
15
10
Percent of parts [%]
5
0
16 16.5 17 17.5 18 18.5 19 19.5 20
Sensitivity [mg/digits]

Figure 14. Y axis Zero-g level at 2.5 V Figure 15. Y axis Sensitivity at 2.5 V

20
18
16
14
12
10
8
Percent of parts [%]
6
4
2
0
−150 −100 −50 0 50 100 150 Zero−g Level Offset [mg]
20
18
16
14
12
10
8
Percent of parts [%]
6
4
2
0
16 16.5 17 17.5 18 18.5 19 19.5 20
Sensitivity [mg/digits]

Figure 16. Z axis Zero-g level at 2.5 V Figure 17. Z axis Sensitivity at 2.5 V

25
20
15
10
Percent of parts [%]
5
0
−150 −100 −50 0 50 100 150 Zero−g Level Offset [mg]
25
20
15
10
Percent of parts [%]
5
0
16 16.5 17 17.5 18 18.5 19 19.5 20
Sensitivity [mg/digits]
37/42
Typical performance characteristics LIS331DL
8.2 Mechanical characteristics derived from measurement in the
-40 °C to +85 °C temperature range
Figure 18. X axis Zero-g level change
vs. temperature at 2.5 V
30
25
20
15
Percent of parts [%]
10
5
0
−4 −3 −2 −1 0 1 2 3 4
0−g level drift [mg/oC]
Figure 20. Y axis Zero-g level change
vs. temperature at 2.5 V
35
30
25
20
15
Percent of parts [%]
10
Figure 19. X axis Sensitivity change
vs. temperature at 2.5 V
30
25
20
15
Percent of parts [%]
10
5
0
−0.1 −0.05 0 0.05 0.1 0.15
Sensitivity drift [%/oC]
Figure 21. Y axis Sensitivity change
vs. temperature at 2.5 V
35
30
25
20
15
Percent of parts [%]
10
5
0
−4 −3 −2 −1 0 1 2 3 4
0−g level drift [mg/oC]
Figure 22. Z axis Zero-g level change
vs. temperature at 2.5 V
30
25
20
15
Percent of parts [%]
10
5
0
−4 −3 −2 −1 0 1 2 3 4
0−g level drift [mg/oC]
5
0
−0.1 −0.05 0 0.05 0.1 0.15
Sensitivity drift [%/oC]
Figure 23. Z axis Sensitivity change
vs. temperature at 2.5 V
30
25
20
15
Percent of parts [%]
10
5
0
−0.1 −0.05 0 0.05 0.1 0.15
Sensitivity drift [%/oC]
38/42
LIS331DL Typical performance characteristics
8.3 Electrical characteristics at 25 °C
Figure 24. Current consumption
in normal mode at 2.5 V
20
18
16
14
12
10
8
Percent of parts [%]
6
4
2
0 200 220 240 260 280 300 320 340 360 380 400
Current consumption [uA]
39/42
Package information LIS331DL

9 Package information

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second Level Interconnect is marked on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK
ECOPACK
®
specifications are available at: www.st.com.

Figure 25. LGA 16: Mechanical data and package dimensions

Dimensions
Ref.
A1 1.000 0.0394
A2 0.7850.0309
A3 0.200 0.0079
D1 2.850 3.000 3.150 0.1122 0.1181 0.1240
E1 2.850 3.000 3.150 0.1122 0.1181 0.1240
L1 1.000 1.060 0.0394 0.0417
L2 2.000 2.060 0.07870.0811
N1 0.500 0.0197
N2 1.000 0.0394
M 0.040 0.100 0.160 0.0016 0.0039 0.0063
P1 0.875 0.0344
P2 1.275 0.0502
T1 0.2900.350 0.410 0.0114 0.0138 0.0161
T2 0.190 0.250 0.310 0.0075 0.0098 0.0122
d 0.150 0.0059
k 0.050 0.0020
mm inch
Min. Typ. Max. Min. Typ. Max.
®
is an ST trademark.
Outline and
mechanical data
LGA16 (3x3x1.0mm)
Land Grid Array Package
40/42
7983231
LIS331DL Revision history

10 Revision history

Table 58. Document revision history

Date Revision Changes
28-Sep-2007 1 Initial release
Updated package specification Figure 25: LGA 16: Mechanical data
21-Jan-2008 2
16-Apr-2008 3
and package dimensions on page 40.
Minor text changes to improve readability.
Updated paragraph 2.1: Mechanical characteristics and added section 8: Typical performance characteristics. Updated POA
41/42
LIS331DL
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
42/42
Loading...