ST LF253, LF353 Operation Manual

Wide bandwidth dual JFET operational amplifiers
5
Features
Low power consumption
Wide common-mode (up to V
differential voltage range
Low input bias and offset current
Output short-circuit protection
High input impedance JFET input stage
Internal frequency compensation
Latch up free operation
High slew rate 16 V/µs (typical)
Description
These circuits are high speed JFET input dual operational amplifiers incorporating well matched, high voltage JFET and bipolar transistors in a monolithic integrated circuit.
CC
) and
LF253, LF353
N
DIP8
(Plastic package)
D
SO-8
(Plastic micro package)
Pin connections
(top view)
The devices feature high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient.
1
2
-
+
3
4
1 - Output1 2 - Inverting input 1 3 - Non-inverting input 1
-
CC
CC
+
4 - V 5 - Non-inverting input 2
6 - Inverting input 2 7 - Output 2
8 - V
+
8
7
6
-
March 2010 Doc ID 2153 Rev 3 1/15
www.st.com
15
Schematics LF253, LF353

1 Schematics

Figure 1. Schematic diagram (each amplifier)

VCC+
Non-inverting
input
Inverting input
100 Ω
100 Ω
30k
200 Ω
Output
VCC-
1.3 k
Offset Null1 Offset Null2
35 k
1.3 k
35 k
8.2 k
100 Ω
2/15 Doc ID 2153 Rev 3
LF253, LF353 Absolute maximum ratings and operating conditions

2 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol Parameter Value Unit
(2)
(1)
(7)
(3)
(6)
(5)
(8)
(4)
CC
(4)
+
and V
CC
±18 V
±15 V
±30 V
125
°C/W
85
40
°C/W
41
Infinite
1kV
200 V
1.5 kV
-
.
V
CC
V
i
V
id
Supply voltage
Input voltage
Differential input voltage
Thermal resistance junction to ambient
R
thja
SO-8 DIP8
Thermal resistance junction to case
R
thjc
SO-8 DIP8
Output short-circuit duration
T
stg
Storage temperature range -65 to +150 °C
HBM: human body model
ESD
MM: machine model
CDM: charged device model
1. All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between V
2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
3. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
4. Short-circuits can cause excessive heating and destructive dissipation. Values are typical.
5. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded
6. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
7. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.
8. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.

Table 2. Operating conditions

Symbol Parameter LF253 LF353 Unit
T
V
CC
oper
Supply voltage 6 to 36 V
Operating free-air temperature range -40 to +105 0 to +70 °C
Doc ID 2153 Rev 3 3/15
Electrical characteristics LF253, LF353

3 Electrical characteristics

Table 3. Electrical characteristics at VCC = ±15 V, T
= +25°C (unless otherwise specified)
amb
Symbol Parameter Min. Typ. Max. Unit
V
io
DV
I
io
I
ib
A
vd
SVR
I
CC
V
icm
CMR
I
OS
Input offset voltage (Rs = 10kΩ)
≤ T
≤ T
≤ T
amb
amb
amb
≤ T
≤ T
≤ T
max
max
(1)
max
(1)
T
min
Input offset voltage drift 10 µV/°C
io
Input offset current
T
min
Input bias current
T
min
Large signal voltage gain (RL = 2kΩ, Vo = ±10V)
T
T
min
amb
≤ T
max
Supply voltage rejection ratio (RS = 10kΩ)
≤ T
T
min
amb
≤ T
max
Supply current, no load
≤ T
T
min
amb
≤ T
max
Input common mode voltage range
Common mode rejection ratio (R
≤ T
T
min
amb
≤ T
max
= 10kΩ)
S
Output short-circuit current
T
≤ T
amb
T
max
min
310
5 100
20 200
5025200
808086
1.4 3.2
±11 +15
-12
707086
101040 60
13
4
20
V/mV
3.2
60
Output voltage swing
= 2kΩ
R
L
±V
opp
RL = 10kΩ
≤ T
T
min
amb
≤ T
max
RL = 2kΩ R
= 10kΩ
L
SR Slew rate, V
t
Rise time, Vi = 20mV, RL = 2kΩ, CL = 100pF, unity gain 0.1 µs
r
K
Overshoot, Vi = 20mV, RL = 2kΩ, CL = 100pF, unity gain 10 %
ov
= 10V, RL = 2kΩ, CL = 100pF, unity gain 12 16 V/µs
i
GBP Gain bandwidth product, f = 100kHz, V
R
Input resistance 10
i
THD
Total harmonic distortion, f= 1kHz, A Vo= 2V
pp
Equivalent input noise voltage
e
n
= 100Ω, f = 1KHz
R
S
= 10mV, RL = 2kΩ, CL = 100pF 2.5 4 MHz
in
= 20dB, RL= 2kΩ, CL=100pF,
v
10
12
12
13.5
10 12
12
0.01 %
15
m Phase margin 45 Degrees
V
o1/Vo2
1. The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature.
Channel separation (Av = 100) 120 dB
mV
pA nA
pA nA
dB
mA
V
dB
mA
V
Ω
nV
-----------­Hz
4/15 Doc ID 2153 Rev 3
LF253, LF353 Electrical characteristics
Figure 2. Maximum peak-to-peak output
voltage vs. frequency, R
VCC = +/- 15 V
= +/- 10 V
V
CC
= +/- 5 V
V
CC
R
L
T
amb
L
= 2 kΩ
= +25°C
= 2 kΩ
Figure 4. Maximum peak-to-peak output
voltage versus frequency
= +25°C
T
amb
VCC = +/- 15 V
= 2 kΩ
R
L
Figure 3. Maximum peak-to-peak output
voltage vs. frequency, RL = 10 kΩ
= 10 kΩ
R
L
T
VCC = +/- 15 V
V
= +/- 10 V
CC
V
CC
= +/- 5 V
= +25°C
amb
Figure 5. Maximum peak-to-peak output
voltage versus free air temperature
= -55°C
T
amb
= +125°C
T
amb
Figure 6. Maximum peak-to-peak output
voltage versus load resistance
VCC = +/- 15 V
= +25°C
T
amb
LOAD RESISTANCE (kΩ)
R
= 10 kΩ
L
R
= 2 kΩ
L
VCC = +/- 15 V
Figure 7. Maximum peak-to-peak output
voltage versus supply voltage
RL = 10 kΩ
= +25°C
T
amb
Doc ID 2153 Rev 3 5/15
Loading...
+ 10 hidden pages