ST L99PM62GXP User Manual

L99PM62GXP

Power management IC with LIN and high speed CAN

Features

Two 5V voltage regulators for microcontroller and peripheral supply

No electrolytic capacitor required on regulator outputs

Ultra low quiescent current in standby modes

Programmable reset generator for power-on and undervoltage

Configurable window watchdog and fail safe output

LIN 2.1 compliant (SAEJ2602 compatible) transceiver

Advanced HS CAN transceiver (ISO 11898-2/- 5 and SAE J2284 compliant) with local failure and bus failure diagnosis

HS CAN transceiver supports partial networking

Complete 3-channel contact monitoring interface with programmable cyclic sense functionality

Programmable periodic system wake-up feature

ST SPI interface for mode control and diagnosis

5 fully protected high-side drivers with internal

4-channel PWM generator

2 low-side drivers with active Zener clamping

4 internal PWM timers

2 operational amplifiers with rail-to-rail outputs (VS) and low voltage inputs

Temperature warning and thermal shutdown

Applications

Automotive ECU's such as door zone and body control modules

PowerSSO-36

Description

The L99PM62GXP is a power management system IC that provides electronic control units with enhanced system power supply functionality, including various standby modes, as well as LIN and HS CAN physical communication layers. The device’s two low-drop voltage regulators supply the system microcontroller and external peripheral loads such as sensors and provide enhanced system standby functionality with programmable local and remote wake-up capability.

In addition, five high-side drivers, two low-side drivers and two operational amplifiers increase the system integration level.

The ST standard SPI interface (3.0) allows control and diagnosis of the device and enables generic software development.

Table 1. Device summary

Order codes

Package

Tube

Tape and reel

PowerSSO-36 L99PM62GXP L99PM62GXPTR

June 2011

Doc ID 17639 Rev 3

1/102

www.st.com

Contents

L99PM62GXP

 

 

Contents

1

Block diagram and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 9

2

Detailed description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

 

2.1

Voltage regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

 

 

2.1.1

Voltage regulator: V1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

 

 

2.1.2

Voltage regulator: V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

 

 

2.1.3

Increased output current capability for voltage regulator V2 . . . . . . . . .

13

 

 

2.1.4

Voltage regulator failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

 

 

2.1.5

Voltage regulator behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

 

2.2

Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

 

 

2.2.1

Active mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

 

 

2.2.2

Flash mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

 

 

2.2.3

V1 standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

 

 

2.2.4

VBAT standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

 

 

2.2.5

Wake up from standby modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

 

 

2.2.6

Wake-up inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

 

 

2.2.7

Cyclic contact supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

 

 

2.2.8

Timer interrupt / wake-up of microcontroller by timer . . . . . . . . . . . . . . .

19

 

2.3

Functional overview (truth table) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

 

2.4

Configurable window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

2.4.1 Change watchdog timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Fail safe mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.1 Single failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5.2 Multiple failures – entering forced VBAT standby mode . . . . . . . . . . . . . 27

2.6

Reset output (NRESET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

2.7

Operational amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

2.8

LIN bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

 

2.8.1

Error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

 

2.8.2

Wake up (from LIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

 

2.8.3

LIN pull-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30

2.9 High speed CAN bus transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.9.1 CAN error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.9.2 Wake up (from CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2/102

Doc ID 17639 Rev 3

L99PM62GXP

Contents

 

 

2.9.3 CAN sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.9.4 CAN receive only mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.9.5 CAN looping mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.10 Serial peripheral interface (ST SPI standard) . . . . . . . . . . . . . . . . . . . . . . 33

3

Protection and diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

35

 

3.1

Power supply fail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

35

3.1.1 VS overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.2 Vs undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Temperature warning and thermal shutdown . . . . . . . . . . . . . . . . . . . . . . 37 3.3 High-side driver outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4 Low-side driver outputs REL1, REL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.5 SPI diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4

Typical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

41

5

Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

42

 

5.1

Absolute maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

42

 

5.2

ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

43

 

5.3

Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

43

 

5.4

Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

45

5.4.1 PowerSSO-36 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.5.1 Supply and supply monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.5.2 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.5.3 Power-on reset (VS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.5.4 Voltage regulator V1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.5.5 Voltage regulator V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.5.6 Reset output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.5.7 Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.5.8 High-side outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.5.9 Relay drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.5.10 Wake up inputs (WU1... WU3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.5.11 High speed CAN transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.5.12 LIN transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.5.13 Operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Doc ID 17639 Rev 3

3/102

Contents

 

 

L99PM62GXP

 

 

 

 

 

 

5.5.14 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . 62

 

 

5.5.15 Inputs TxD_C and TxD_L for Flash mode . . . . . . . . . . . . .

. . . . . . . . . 65

6

ST SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . 69

 

6.1

SPI communication flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . 69

6.1.1 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.1.2 Operating code definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.1.3 Global status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.1.4 Configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.1.5 Address mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.6 Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.7 Format of data shifted out at SDO during write cycle . . . . . . . . . . . . . . 73 6.1.8 Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.1.9 Format of data shifted out at SDO during read cycle . . . . . . . . . . . . . . . 75 6.1.10 Read and clear status operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.1.11 Read device information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 SPI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.2.2 Control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.2.3 Status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7

Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 99

 

7.1

ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

99

 

7.2

PowerSSO-36 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

99

8

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

101

4/102

Doc ID 17639 Rev 3

L99PM62GXP

List of tables

 

 

List of tables

Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table 2. Pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 3. Wake up sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 4. Functional overview (truth table). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Table 5. Fail safe conditions and exit modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 6. Persisting fail safe conditions and exit modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 7. PWM configuration for high-side outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 8. Absolute maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Table 9. ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 10. Operating junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 11. Temperature warning and thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 12. Thermal parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Table 13. Supply and supply monitoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Table 14. Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Table 15. Power-on reset (Vs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Table 16. Voltage regulator V1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Table 17. Voltage regulator V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Table 18. Reset output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Table 19. Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Table 20. Output (OUT_HS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Table 21. Outputs (OUT1...4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Table 22. Relay drivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Table 23. Wake up inputs (WU1... WU3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 24. CAN communication operating range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 25. CAN transmit data input: pin TXDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 26. CAN receive data output: pin RXDC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 27. CAN bus common mode stabilization output termination: pin SPLIT . . . . . . . . . . . . . . . . . 56 Table 28. CAN transmitter and receiver: pins CANH and CANL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 29. CAN transceiver timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Table 30. LIN transmit data input: pin TXD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Table 31. LIN receive data output: pin RXD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Table 32. LIN transmitter and receiver: pin LIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Table 33. LIN transceiver timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Table 34. LIN pull-up: pin LINPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Table 35. Operational amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Table 36. Input: CSN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Table 37. Input CLK, DI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Table 38. DI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Table 39. DO output pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Table 40. DO timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Table 41. CSN timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Table 42. RXDL/NINT timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Table 43. Inputs TxD_C and TxD_L for Flash mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Table 44. Command byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Table 45. Operating code definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Table 46. Global status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Table 47. Configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Table 48. Address mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Doc ID 17639 Rev 3

5/102

List of tables

L99PM62GXP

 

 

Table 49. Write command format: command byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Table 50. Write command format: data byte 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Table 51. Write command format: data byte 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Table 52. Format of data shifted out at SDO during write cycle: global status register . . . . . . . . . . . 73 Table 53. Format of data shifted out at SDO during write cycle: data byte 1 . . . . . . . . . . . . . . . . . . . 73 Table 54. Format of data shifted out at SDO during write cycle: data byte 2 . . . . . . . . . . . . . . . . . . . 73 Table 55. Read command format: command byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Table 56. Read command format: data byte 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Table 57. Read command format: data byte 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Table 58. Format of data shifted out at SDO during read cycle: global status register. . . . . . . . . . . . 75 Table 59. Format of data shifted out at SDO during read cycle: data byte 1 . . . . . . . . . . . . . . . . . . . 75 Table 60. Format of data shifted out at SDO during read cycle: data byte 2 . . . . . . . . . . . . . . . . . . . 75 Table 61. Read and clear status command format: command byte . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Table 62. Read and clear status command format: data byte 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Table 63. Read and clear status command format: data byte 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Table 64. Format of data shifted out at SDO during read and clear status: global status register . . . 76 Table 65. Format of data shifted out at SDO during read and clear status: data byte 1. . . . . . . . . . . 76 Table 66. Format of data shifted out at SDO during read and clear status: data byte 2. . . . . . . . . . . 77 Table 67. Read device information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Table 68. ID-header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Table 69. Family identifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Table 70. Silicon version identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Table 71. SPI-frame-ID. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Table 72. SPI register: command byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Table 73. SPI register: mode selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Table 74. SPI register: CTRL register selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Table 75. SPI register: STAT register selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Table 76. Overview of control registers data bytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Table 77. Control register 1: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Table 78. Control register 1, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Table 79. Control register 1, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Table 80. Control register 2: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Table 81. Control register 2, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Table 82. Control register 2, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Table 83. Control register 3: command data bytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Table 84. Control register 3, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Table 85. Control register 3, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Table 86. Control register 4: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Table 87. Control register 4, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Table 88. Control register 4, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Table 89. Control register 5: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Table 90. Control register 5, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Table 91. Control register 5, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Table 92. Control register 6: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Table 93. Control register 6, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Table 94. Control register 6, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Table 95. Overview of status register data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Table 96. Global status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Table 97. Status register 1: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Table 98. Status register 1, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Table 99. Status register 1, bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Table 100. Status register 2: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6/102

Doc ID 17639 Rev 3

L99PM62GXP

List of tables

 

 

Table 101. Status register 2, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Table 102. Status register 2, bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Table 103. Status register 3: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Table 104. Status register 3, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Table 105. Status register 3, bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Table 106. PowerSSO-36 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Table 107. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Doc ID 17639 Rev 3

7/102

List of figures

L99PM62GXP

 

 

List of figures

Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 2. Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 3. Voltage source with external PNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 4. Voltage source with external PNP and current limitation . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 5. Voltage source with external NPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 6. Voltage source with external NPN and current limitation . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 7. Voltage regulator behaviour and diagnosis during supply voltage ramp-up / ramp-down

conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 8. Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 9. Watchdog in normal operating mode (no errors) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 10. Watchdog with error conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 11. Watchdog in Flash mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 12. Change watchdog timing within long open window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 13. Change watchdog timing within window mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 14. General procedure to change watchdog timing out of fail safe mode. . . . . . . . . . . . . . . . . 25 Figure 15. Change watchdog timing out of fail safe mode (watchdog failure) . . . . . . . . . . . . . . . . . . . 25 Figure 16. Example: exit fail safe mode from watchdog failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 17. LIN master node configuration using LIN_PU (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 18. CAN wake up capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 19. Over voltage and under voltage protection and diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 20. Thermal shutdown protection and diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Figure 21. Phase shifted PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure 22. Typical application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Figure 23. Thermal data of PowerSSO-36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 24. PowerSSO-36 PC board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Figure 25. PowerSSO-36 Thermal Resistance junction to ambient vs PCB copper area (V1 ON) . . . 46 Figure 26. PowerSSO-36 Thermal Impedance junction to ambient vs PCB copper area (single

pulse with V1 ON). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Figure 27. PowerSSO-36 thermal fitting model (V1 ON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Figure 28. Watchdog timing (long, early, late and safe window) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Figure 29. Watchdog early, late and safe windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Figure 30. LIN transmit, receive timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Figure 31. SPI – transfer timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Figure 32. SPI - input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Figure 33. SPI output timing (part 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Figure 34. SPI output timing (part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 35. SPI – CSN low to high transition and global status bit access . . . . . . . . . . . . . . . . . . . . . . 68 Figure 36. Read configuration register(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Figure 37. Write configuration register(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 38. Format of data shifted out at SDO during write cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Figure 39. Format of data shifted out at SDO during read cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Figure 40. Format of data shifted out at SDO during read and clear status operation . . . . . . . . . . . . 77 Figure 41. PowerSSO-36 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8/102

Doc ID 17639 Rev 3

L99PM62GXP

Block diagram and pin descriptions

 

 

1 Block diagram and pin descriptions

Figure 1.

Block diagram

 

 

 

 

 

9V

 

 

 

 

/RZ 6LGH

5(/

 

 

7HPS 3UHZDUQLQJ

P$

 

 

2XWSXW &ODPS

 

 

 

6KXWGRZQ

 

 

 

 

 

/RZ 6LGH

5(/

 

 

8QGHUYROWDJH

P$

 

 

2XWSXW &ODPS

 

 

 

2YHUYROWDJH

 

 

 

 

 

 

 

6KXWGRZQ

 

 

 

 

 

 

23

 

 

 

 

23

 

 

 

 

 

9

95(*

 

23 BRXW

 

9 P$

 

23

 

 

 

 

 

 

 

 

 

 

23

 

 

 

 

 

9

95(*

 

23 BRXW

 

9 P$

 

 

 

 

 

 

15HVHW

 

+LJK 6LGH

287B+6

 

P$

 

 

FKDQQHO

/2*,&

 

 

 

3:0 *HQHUDWRU

+LJK 6LGH

287

 

 

P$

 

 

 

 

 

 

7LPHU

+LJK 6LGH

287

 

 

 

P$

 

 

 

7LPHU

+LJK 6LGH

287 )62

 

 

P$

 

 

 

 

 

 

 

 

 

 

 

+LJK 6LGH

287

 

 

 

P$

 

 

 

 

 

&61

:LQGRZ

 

 

 

:DWFKGRJ

 

 

 

&/.

 

:DNH 8S ,Q

:8

 

',

63,

 

 

 

 

'2

 

 

 

 

 

 

:DNH 8S ,Q

:8

 

 

 

:DNH 8S ,Q

:8

 

 

 

 

&$1 6XSSO\

 

/,1

 

 

&$1B+

/,138

/,1

+6 &$1

63/,7

&$1B/

5['B/ 1,17

 

6$(-

,62

7['B/

 

 

7['B&

 

 

/,1 FHUWLILHG

 

5['B&

 

 

$*1'

3*1'

$* 9

 

 

 

Doc ID 17639 Rev 3

9/102

Block diagram and pin descriptions

L99PM62GXP

 

 

 

 

 

Table 2.

Pin definition

 

 

 

 

 

 

Pin

 

Symbol

Function

 

 

 

 

 

 

1

 

AGND

Analog ground

 

 

 

 

 

 

2

 

RxDC

CAN receive data output

 

 

 

 

 

 

3

 

TxDC

CAN transmit data input

 

 

 

 

 

 

4

 

CANH

CAN high level voltage I/O

 

 

 

 

 

 

5

 

CANL

CAN low level voltage I/O

 

 

 

 

 

 

6

 

SPLIT

CAN reference voltage output, CAN termination

 

 

 

 

 

 

7

 

CANSUP

CAN supply input; to allow external CAN supply from V1 or V2 regulator.

 

8

 

NRESET

NReset output to micro controller; Internal pull-up of typical 100 KΩ (reset state = LOW)

 

 

 

 

9

 

V1

Voltage regulator 1 output: 5 V supply e.g. micro controller, CAN transceiver

10

 

V2

Voltage regulator 2 output: 5 V supply for external loads (IR receiver, potentiometer,

 

sensors) or CAN Transceiver. V2 is protected against reverse supply.

 

 

 

 

 

11

 

TxDL

LIN Transmit data input

 

 

 

 

 

 

 

 

 

RxDL -> LIN receive data output

 

12

 

RxDL/NINT

NINT -> indicates local/remote wake-up events or provides a programmable timer

 

 

 

interrupt signal

 

 

 

 

 

 

13

 

OP2+

Non inverting input of operational amplifier 2

 

 

 

 

 

 

14

 

OP2-

Inverting input of operational amplifier 2

 

 

 

 

 

 

15

 

OP2_OUT

Output of operational amplifier 2

 

 

 

 

 

 

16

 

DI

SPI: serial data input

 

 

 

 

 

 

17

 

DO

SPI: serial data output

 

 

 

 

 

 

18

 

CLK

SPI: serial clock input

 

 

 

 

 

 

19

 

CSN

SPI: chip select not input

 

 

 

 

 

20…22

 

WU1…3

Wake-up Inputs 1to 3: Input pins for static or cyclic monitoring of external contacts

 

 

 

 

 

23

 

OP1_OUT

Output of operational amplifier 1

 

 

 

 

 

 

24

 

OP1-

Inverting input of operational amplifier 1

 

 

 

 

 

 

25

 

OP1+

Non inverting input of operational amplifier 1

 

 

 

 

 

 

26

 

OUT4

High-side driver output (7 Ω, typ)

 

 

 

 

 

27

 

OUT3/FSO

Configurable as high-side driver output (7 Ω, typ) or fail safe output pin (default)

 

 

 

 

 

28

 

OUT2

High-side driver output (7 Ω, typ)

 

 

 

 

 

 

29

 

OUT1

High-side driver output (7 Ω, typ)

 

 

 

 

 

 

30

 

OUT_HS

High-side driver (1 Ω, typ)

 

 

 

 

 

 

31

 

VS

Power supply voltage

 

32

 

LINPU

High-side driver output to switch off LIN master pull up resistor

 

 

 

 

 

 

33

 

LIN

LIN bus line

 

 

 

 

 

 

34

 

REL1

Low-side driver output (2 Ω typ)

 

 

 

 

 

 

10/102

Doc ID 17639 Rev 3

L99PM62GXP

 

 

 

 

 

 

Block diagram and pin descriptions

 

 

 

 

 

 

 

 

 

 

 

Table 2.

Pin definition (continued)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pin

 

Symbol

 

 

 

 

Function

 

 

 

 

 

 

 

 

 

 

 

 

 

35

 

REL2

 

Low-side driver output (2 Ω typ)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

36

 

PGND

 

Power ground (REL1/2, LIN and CAN GND), to be externally connected to AGND

 

 

 

 

 

 

 

 

 

 

 

Figure 2.

Pin connection (top view)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

$*1'

 

 

 

 

 

 

 

 

3*1'

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5['&

 

 

 

 

 

 

 

 

5(/

 

 

7['&

 

 

 

 

 

 

 

 

5(/

&$1+

 

 

 

 

 

 

 

 

/,1

 

 

&$1/

 

 

 

 

 

 

 

 

/,138

63/,7

 

 

 

 

 

 

 

 

9V

&$1683

 

 

 

 

 

 

 

 

287B+6

15(6(7

 

 

 

 

 

 

 

 

287

 

 

9

 

 

 

 

3RZHU662

 

 

 

287

 

 

9

 

 

 

 

 

 

 

287 )62

 

 

 

 

 

 

 

 

 

 

7['/

 

 

 

 

 

 

 

 

287

5['/ 1,17

 

 

 

 

 

 

 

 

23 3

 

 

23 3

 

 

 

 

 

 

 

 

23 0

23 0

 

 

 

 

 

 

 

 

23287

23287

 

 

 

 

 

 

 

 

:8

 

 

',

 

 

 

 

 

 

 

 

:8

 

 

'2

 

 

 

 

 

 

 

 

:8

 

 

&/.

 

 

 

 

 

 

 

 

&61

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7$% $*1'

$* 9

 

 

 

 

Note:

It is recommended to connect the PGND and AGND pins directly to the TAB.

Doc ID 17639 Rev 3

11/102

Detailed description

L99PM62GXP

 

 

2 Detailed description

2.1Voltage regulators

The L99PM62GXP contains two independent and fully protected low drop voltage regulators, which are designed for very fast transient response and don’t require electrolytic output capacitors for stability.

The output voltage is stable with ceramic load capacitors > 220 nF.

2.1.1Voltage regulator: V1

The V1 voltage regulator provides 5 V supply voltage and up to 250 mA continuous load current and is mainly intended for supply of the system microcontroller. The V1 regulator is embedded in the power management and fail-safe functionality of the device and operates according to the selected operating mode.

It can be used to supply the internal HS CAN Transceiver via the CANSUP pin externally. In case of a short circuit condition on the CAN bus, the output current of the transmitter is limited to 100 mA and the transceiver is turned off in order to ensure continued supply of the microcontroller.

In addition the regulator V1 drives the L99PM62GXP internal 5 V loads. The voltage regulator is protected against overload and overtemperature. An external reverse current protection has to be provided by the application circuitry to prevent the input capacitor from being discharged by negative transients or low input voltage. Current limitation of the regulator ensures fast charge of external bypass capacitors. The output voltage is stable for ceramic load capacitors > 220 nF.

If the device temperature exceeds the TSD1 threshold, all outputs (OUTx, RELx, V2, LIN) is deactivated except V1. Hence the micro controller has the possibility for interaction or error logging. In case of exceeding TSD2 threshold (TSD2>TSD1), also V1 is deactivated (see state chart in Chapter 3: Protection and diagnosis). A timer is started and the voltage regulator is deactivated for tTSD = 1sec. During this time, all other wake up sources (CAN, LIN, WU1 to3 and wake up of µC by timer) are disabled. After 1 sec, the voltage regulator tries to restart automatically. If the restart fails 7 times, within one minute, without clearing and thermal shutdown condition still exists, the L99PM62GXP enters the forced VBAT standby Mode.

In case of short to GND at “V1” after initial turn on (V1 < 2V for t > tV1short) the L99PM62GXP enters the forced VBAT standby Mode. Reactivation (wake-up) of the device can be achieved

with signals from CAN, LIN, WU1..3 or periodic wake by timer (see Section 2.2.8: Timer interrupt / wake-up of microcontroller by timer).

12/102

Doc ID 17639 Rev 3

L99PM62GXP

Detailed description

 

 

2.1.2Voltage regulator: V2

The voltage regulator V2 can supply additional 5 V loads (e.g. logic components or the integrated HS CAN transceiver or external loads such as sensors or potentiometers). The maximum continuous load current is 100 mA. The regulator is protected against:

Overload

Overtemperature

Short circuit (short to ground and battery supply voltage)

Reverse biasing

2.1.3Increased output current capability for voltage regulator V2

For applications which require high output currents, the output current capability of the regulator can be increased my means of the integrated operational amplifiers and an external pass transistor.

Figure 3. Voltage source with external PNP

/ 30

 

 

9V

 

 

9

 

 

 

 

&

5

5

 

 

 

 

 

23[B287

5E

 

 

 

 

 

0-' &

 

 

&L

 

 

9

 

 

 

 

23[

 

 

 

 

 

 

5

&

 

23[

 

&

 

 

 

 

 

&HP

5

5

 

 

 

 

 

$* 9

Figure 4. Voltage source with external PNP and current limitation

/ 30

 

 

9

 

23[B287

 

 

 

 

23[

 

23[

 

 

 

9V

 

 

 

 

5

 

&

5

5

%&

 

 

 

 

 

5E

 

 

 

 

 

 

0-' &

 

&L

 

 

 

9

 

 

 

5

&

 

 

 

&

&HP

5

 

5

 

$* 9

Figure 3 shows a possible configuration with a PNP pass element using voltage regulator 2 to provide the voltage reference for the regulated output voltage V3.

Doc ID 17639 Rev 3

13/102

Detailed description

L99PM62GXP

 

 

The Vs operating range for this circuit is 5.5 V to 18 V. It is important the respect the input common mode range specified for the operational amplifiers.

The output voltage V3 can be calculated using the following formula:

v3

v2

R1

+ R2

[V]

= -----

-------R-----2--------

 

2

 

The circuit in Figure 4 provides additional current limitation using an additional PNP transistor and R6 which allows setting the current limit.

Figure 5. Voltage source with external NPN

/ 30

 

 

 

 

9

9V

 

 

&

5

 

 

 

 

 

23[B287

 

 

 

 

0-' &

 

 

&L

 

9

 

 

 

23[

5

 

23[

&

&

 

 

5

 

 

&HP

5

 

 

 

 

$* 9

Figure 6. Voltage source with external NPN and current limitation

/ 30

 

 

9

 

23[B287

 

 

 

 

23[

 

23[

 

 

9V

 

&

5

 

 

 

 

 

 

 

0-' &

 

 

 

%&

 

&L

 

 

 

 

 

5

9

 

 

5

 

 

&

&

&HP

5

5

 

$* 9

Figure 5 shows a possible configuration with an NPN pass element using voltage regulator 2 to provide the voltage reference for the regulated output voltage V3. This circuit requires fewer components compared to the configuration in Figure 3 but has a limited VS operating range (6 V to 18 V).

The output voltage V3 can be calculated using the following formula:

v3

v2

R1

+ R2

[V]

= -----

-------R-----2--------

 

2

 

The circuit in Figure 6 provides additional current limitation using an additional NPN transistor and R5 which allows setting the current limit.

14/102

Doc ID 17639 Rev 3

L99PM62GXP

Detailed description

 

 

Alternatively, voltage regulator 1 can be used to provide the 5 V reference for this topology. However, the additional current consumption through R3 and R4 has to be considered in V1standby mode.

2.1.4Voltage regulator failure

The V1, and V2 regulator output voltages are monitored.

In case of a drop below the V1, V2 – fail thresholds (V1,2 < 2 V, typ for t > 2 µs), the V1,2-fail bits are latched. The fail bits can be cleared by a dedicated SPI command.

Short to ground detection

If 4 ms after turn on of the regulator the V1,2 voltage is below the V1,2 fail thresholds, (independent for V1,2), the L99PM62GXP identifies a short circuit condition at the related regulator output and the regulator is switched off.

In case of V1 short to GND failure the device enters VBAT standby mode automatically. Bits Forced VBAT STD2/SHTV1 and V1 fail were set.

In case of a V2 short to GND failure the V2short and V2 fail bit is set.

If the output voltage of the corresponding regulator once exceeded the V1,2 fail thresholds the short to ground detection is disabled. If a short to ground condition occurs the regulator outputs switches off due to thermal shutdown (V1 at TSD2; V2 at TSD1).

Doc ID 17639 Rev 3

15/102

ST L99PM62GXP User Manual

Detailed description

L99PM62GXP

 

 

2.1.5Voltage regulator behaviour

Figure 7. Voltage regulator behaviour and diagnosis during supply voltage ramp-up / rampdown conditions

 

 

 

 

 

6SHFLILFDWLRQ 3DUDPHWHUV

 

WXY

9 XQGHUYROWDJH ILOWHU WLPH

 

 

 

 

 

 

 

WY IDLO

9 IDLO ILOWHU WLPH

 

 

 

 

 

 

 

WY VKRUW 9 VKRUW ILOWHU WLPH

9V > 9 @

 

 

 

 

 

 

W55

5HVHW SXOVH UHDFWLRQ WLPH

 

 

 

 

 

 

WUG

5HVHW SXOVH GXUDWLRQ

 

 

 

 

 

 

9V89 9V XQGHUYROWDJH WKUHVKROG

 

 

 

 

 

 

 

9SRU 9V SRZHU RQ UHVHW WKUHVKROG

 

 

 

 

 

 

 

9UWK 9 UHVHW WKUHVKROG

 

 

 

 

 

 

9IDLO 9 IDLO WKUHVKROG

91 9'3

 

 

 

 

 

 

 

 

9689

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+LJK = *URXQGHG

9325

 

 

3RZHU RQ 5HVHW WKUHVKROG

 

 

 

 

 

 

 

 

 

 

 

9 $%6 PLQ

 

 

 

 

 

 

 

 

 

&ROG 6WDUW ELW LVVHW

 

 

 

 

 

 

&RQWURO 5HJLVWHUV DUH VHW WR GHIDXOW

 

 

 

 

 

 

 

YDOXHV

9 > 9 @

XV

W WXY

W ! WXY

 

W ! WY IDLO

9VXY

ELW LVW VHW

 

 

 

 

 

 

 

 

91

 

 

 

 

 

 

 

W ! WXY

 

 

 

 

 

 

 

 

957+

 

 

 

 

 

 

 

 

9IDLO

 

 

 

 

 

 

 

 

 

 

1R 5HVHW JHQHUDWHG

9IDLO

ELW LV VHW

 

 

 

1UHVHW> 9 @

,I W !WY VKRUW

WUG

 

WUG

 

 

 

 

 

9 VKRUW GHWHFWHG

 

 

 

 

 

 

 

+LJK

Î 9EDWW VWDQGE\

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W55

 

 

 

 

W55

/RZ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5HDG

&OHDU )62 %LW

)DLO 6DIH 2XWSXW

'LVDEOHG

 

,QDFWLYH

$FWLYH

,QDFWLYH

 

 

'LVDEOHG

 

 

 

 

 

 

 

 

 

&RQWURO 5HJLVWHUV DUH VHW WR GHIDXOW YDOXHV

 

 

$* 9

2.2Operating modes

The L99PM62GXP can be operated in 4 different operating modes:

Active

Flash

V1 standby

VBAT standby

A cyclic monitoring of wake-up inputs and a periodic interrupt/wake-up by timer is available in standby modes.

2.2.1Active mode

All functions are available and the device is controlled by the ST SPI Interface.

16/102

Doc ID 17639 Rev 3

L99PM62GXP

Detailed description

 

 

2.2.2Flash mode

To program the system microcontroller, the L99PM62 can be operated in Flash mode where the internal watchdog is disabled. This mode can also be used for software debugging.

Except for the disabled watchdog, the Flash mode is identical to active mode and all device features are available.

A transition from Flash mode to V1stby or Vbatstby is not possible.

The mode can be entered if one of the following conditions is applied:

 

VTxDL > VFlash

 

 

 

 

 

 

 

VTxDC > VFlash

 

 

 

 

 

At exit from Flash mode (VTxD < VFlash) no NReset pulse is generated and the watchdog

 

starts with a long open window.

Note:

Setting both TxDL and TxDC to high voltage levels (> VFlash) is not allowed.

 

Communication at the respective TxD pin is not possible.

2.2.3

V1 standby mode

 

The transition from active mode to V1 standby mode is controlled by SPI.

 

To supply the micro controller in a low power mode, the voltage regulator 1 (V1) remains

 

active. In order to reduce the current consumption, the regulator goes in low current mode

 

as soon as the supply current of the microcontroller goes below the Icmp current threshold.

 

At this transition, the L99PM62 also deactivates the internal watchdog.

 

Relay outputs, LIN and CAN transmitters is switched off in V1 standby mode. High-side

 

outputs and the V2 regulator remain in the configuration programmed prior to the standby

 

command.

 

A cyclic supply of external contacts and a synchronized monitoring of the contact state can

 

be activated and configured by SPI.

 

In V1 standby mode various wake up sources can be individually programmed. Each wake

 

up event puts the device into active mode and forces the RxDL/NINT pin to a low level

 

indicating the wake-up condition to the microcontroller.

 

After power ON reset (POR) all wake up sources are activated by default except the periodic

 

interrupt/wake timer.

 

With the interrupt timer the micro controller can be forced from ‘stop’ to ‘run’ after a

 

programmable period. The RxDL/NINT pin is forced low after the timer is elapsed. The

 

L99PM62GXP enters active mode and is awaiting a valid watchdog trigger.

 

Both internal timers can be used for this feature.

 

The interrupt timer (TINT) at pin RxDL/NINT is only available in V1 standby mode.

Note:

Inputs TxDL, TxDC and CSN must be at high level or at high impedance in order to achieve

 

minimum standby current in V1 standby mode.

 

Inputs DI and CLK must be at GND or at high impedance to achieve minimum standby

 

current in V1 standby mode.

Doc ID 17639 Rev 3

17/102

Detailed description

L99PM62GXP

 

 

Interrupt

The interrupt signal (linked to RxDL/NINT internally) indicates a wake-up event from V1 standby mode. In case of a wake-up by Wake-up Inputs, activity on LIN or CAN, SPI access or timer-interrupt the NINT pin is pulled low for 56 µs.

In case of V1 standby mode and (IV1 > Icmp), the device remains in standby mode, the V1 regulator switches to high current mode and the watchdog starts. No Interrupt signal is

generated.

2.2.4VBAT standby mode

 

The transition from active mode to VBAT standby mode is initiated by an SPI command.

 

In VBAT standby mode, the V1 voltage regulator, relay outputs, LIN and CAN transmitters are

 

switched off. High-side outputs and the V2 regulator remain in the configuration

 

programmed prior to the standby command.

 

In VBAT standby mode the current consumption of the L99PM62GXP is reduced to a

 

minimum level.

Note:

Inputs TXDL, TXDC and CSN must be terminated to GND in VBAT standby to achieve

 

minimum standby current.

 

This can be achieved with the internal ESD protection diodes of the microcontroller

 

(microcontroller is not supplied in this mode; V1 is pulled to GND).

2.2.5Wake up from standby modes

A wake-up from standby mode switches the device to active mode. This can be initiated by one or more of the following events:

Table 3.

Wake up sources

Wake up source

Description

 

 

LIN bus activity

Can be disabled by SPI

 

 

CAN bus activity

Can be disabled by SPI

 

 

Level change of WU1 - 3

Can be individually configured or disabled by SPI

 

 

 

 

 

Device remains in V1 standby mode but watchdog is enabled (If

IV1 > Icmp

 

Icmp = 0) and the V1 regulator goes into high current mode (increased

 

 

current consumption). No interrupt is generated.

 

 

 

 

 

Programmable by SPI

Timer interrupt / wake up

– V1 standby mode: device wakes up and Interrupt signal is generated

of µC by TIMER

at RxDL/NINT when programmable time-out has elapsed

– VBAT standby mode: device wakes up, V1 regulator is turned on and

 

 

 

 

NReset signal is generated when programmable time-out has elapsed

 

 

 

SPI access

 

Always active (except in VBAT standby mode)

 

Wake up event: CSN is low and first rising edge on CLK

 

 

 

 

 

To prevent the system from a deadlock condition (no wake up possible) a configuration where the periodic timer interrupt and wake up by LIN and HS CAN are disabled, is not

18/102

Doc ID 17639 Rev 3

L99PM62GXP

Detailed description

 

 

allowed. The default configuration is entered for all wake-up sources in case of such an invalid setting.

All wake-up events from V1 standby mode (except IV1 > Icmp) are indicated to the microcontroller by a low-pulse at RxDL/NINT (duration: 56 µs).

Wake-up from V1 standby by SPI Access might be used to check the interrupt service handler.

2.2.6Wake-up inputs

The de-bounced digital inputs WU1 to WU3 can be used to wake up the L99PM62GXP from standby modes. These inputs are sensitive to any level transition (positive and negative edge)

For static contact monitoring, a filter time of 64 µs is implemented at WU1-3. The filter is started when the input voltage passes the specified threshold.

In addition to the continuous sensing (static contact monitoring) at the wake up inputs, a cyclic sense functionality is implemented. This feature allows periodical activation of the wake-up inputs to read the status of the external contacts. The periodical activation can be linked to Timer1 or Timer2 (see Section 2.2.7: Cyclic contact supply ). The input signal is filtered with a filter time of 16 µs after a programmable delay (80 µs or 800 µs) according to the configured timer on-time. A wake-up is processed if the status has changed versus the previous cycle.

The outputs OUT_HS and OUT1-4 can be used to supply the external contacts with the timer setting according to the cyclic monitoring of the wake-up inputs.

If the wake-up inputs are configured for cyclic sense mode the input filter timing and input filter delay (WUx_filt in control register 2) must correspond to the setting of the high-side output which supplies the external contact switches (OUTx in control register 0).

In standby mode, the inputs WU1-3 are SPI configurable for pull-up or pull-down current source configuration according to the setup of the external. In active mode the inputs have a pull down resistor.

In active mode, the input status can be read by SPI (Status Register 2). Static sense should be configured (Control Register 2) before the read operation is started (In cyclic sense configuration, the input status is updated according to the cyclic sense timing; Therefore, reading the input status in this mode may not reflect the actual status).

2.2.7Cyclic contact supply

In V1 standby and VBAT standby modes, any high-side driver output (OUT1..4, OUTHS) can be used to periodically supply external contacts.

The timing is selectable by SPI

Timer 1: period is X s. The on-time is 10 ms resp. 20 ms: With X {1, 2, 3, 4 s}

Timer 2: period is X ms. The on-time is 100 µs resp. 1ms: With X {10, 20, 50, 200 ms}

2.2.8Timer interrupt / wake-up of microcontroller by timer

During standby modes the cyclic wake up feature, configured via SPI, allows waking up the µC after a programmable timeout according to timer1 or timer2.

Doc ID 17639 Rev 3

19/102

Detailed description

L99PM62GXP

 

 

From V1 standby mode, the L99PM62GXP wakes up (after the selected timer has elapsed) and sends an interrupt signal (via RxDL/NINT pin) to the µC. The device enters active mode and the watchdog is started with a long open window. The microcontroller can send the device back into V1 standby after finishing its tasks.

From VBAT standby mode, the L99PM62GXP wakes up (after the selected timer has elapsed), turns on the V1 regulator and provides an NReset signal to the µC. The device enters active mode and the watchdog is started with a long open window. The microcontroller can send the device back into VBAT standby after finishing its tasks.

2.3Functional overview (truth table)

Table 4.

Functional overview (truth table)

 

 

 

 

 

 

 

 

Operating modes

 

Function

 

Comments

 

 

 

 

 

V1-standby

VBAT-standby

 

 

 

 

 

Active mode

static mode

static mode

 

 

 

 

 

 

(cyclic sense)

(cyclic sense)

 

 

 

 

 

 

 

Voltage-regulator, V

1

V

= 5 V

On

On(1)

Off

 

 

OUT

 

 

 

 

Voltage-regulator, V

2

V

= 5 V

On/ Off (2)

On(2) / Off

On(2) / Off

 

 

OUT

 

 

 

 

Reset-generator

 

 

 

On

On

Off

 

 

 

 

 

 

 

 

Window watchdog

 

V1 monitor

On

Off (On: I_V1 > Icmp-

Off

 

threshold and Icmp = 0)

 

 

 

 

 

 

 

Wake up

 

 

 

 

Off

Active(3)

Active(3)

HS-cyclic supply

 

Oscillator time

On / Off

On(2) / Off

On(2) / Off

 

base

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Relay driver

 

 

 

 

On

Off

Off

 

 

 

 

 

 

Operational amplifiers

 

 

On

Off

Off

 

 

 

 

 

 

 

LIN

 

 

LIN 2.1

On

Off(4)

Off(4)

 

 

 

 

 

 

 

 

HS_CAN

 

 

 

 

On

Off(4)

Off(4)

FSO (if configured by

Fail safe output

OUT3/FSO Off(5)

OUT3/FSO Off(5)

OUT3/FSO Off(5)

SPI), active by default

 

 

 

 

 

 

 

 

 

 

 

 

 

Oscillator

 

 

 

 

On

(6)

(6)

 

 

 

 

 

 

 

 

Vs-monitor

 

 

 

 

On

(7)

(7)

 

 

 

 

 

 

 

 

1.Supply the processor in low current mode.

2.Only active when selected via SPI.

3.Unless disabled by SPI.

4.The bus state is internally stored when going to standby mode. A change of bus state leads a wake-up after exceeding of internal filter time (if wake-up by LIN or CAN is not disabled by SPI).

5.ON in fail-safe condition: If Standby mode is entered with active Fail Safe mode, the output remains ON in Standby mode.

6.Activation = ON if cyclic sense is selected.

7.cyclic activation = pulsed ON during cyclic sense.

20/102

Doc ID 17639 Rev 3

L99PM62GXP

Detailed description

 

 

Figure 8. Operating modes

97;'/! 9IODVK

25

97;'&! 9IODVK

)ODVK 0RGH

:DWFKGRJ 2))

97;'/9IODVK

$1'

97;'&9IODVK

 

 

63, FRPPDQG

 

 

25

 

[ 7KHUPDO 6KXWGRZQ

 

 

25

 

 

9 VKRUW WR *1'

97;'/! 9IODVK

9 9 IRU PV DIWHU VZLWFK 21

25

 

25

97;'&! 9IODVK

 

[ :' )DLOXUH

 

 

:DNH XS

 

97;'/! 9IODVK

(YHQW

 

25

 

 

97;'&! 9IODVK

 

9EDW 6WDQGE\

 

 

0RGH

 

 

9 2))

 

 

5HVHW *HQHUDWRU 2)) 1UHVHW

ORZ

[ 7KHUPDO 6KXWGRZQ 76'

:DWFKGRJ 2))

 

 

 

25

[ :' IDLO

9V ! 9SRU

9EDW VWDUWXS $OO UHJLVWHUV 6HW WR GHIDXOW &KLS 5HVHW ELW *65 ELW DFWLYH

$FWLYH 0RGH

9 21

5HVHW *HQHUDWRU DFWLYH

:DWFKGRJ DFWLYH

:DNH XS

(YHQW 63, FRPPDQG

9 6WDQGE\

0RGH

9 21

5HVHW *HQHUDWRU DFWLYH

:DWFKGRJ 2)) LI ,Y ,FPSRU ,&03

$* 9

2.4Configurable window watchdog

During normal operation, the watchdog monitors the micro controller within a programmable trigger cycle: (10 ms, 50 ms, 100 ms, 200 ms)

In VBAT standby and Flash program modes, the watchdog circuit is automatically disabled. In V1 standby mode a wake up by timer is programmable in order to wake up the µC (see

Section 2.2.8: Timer interrupt / wake-up of microcontroller by timer). After wake-up, the watchdog starts with a long open window. After serving the watchdog, the µC may send the device back to V1 standby mode.

Doc ID 17639 Rev 3

21/102

Detailed description

L99PM62GXP

 

 

After power-on or standby mode, the watchdog is started with a long open window (65 ms nominal). The long open window allows the micro controller to run its own setup and then to trigger the watchdog via the SPI. The trigger is processed when the CSN input becomes HIGH after the transmission of the SPI word.

Writing ‘1’ to the watchdog trigger bit terminates the long open window and start the window watchdog (the timing is programmable by SPI). Subsequently, the micro controller has to serve the watchdog by alternating the watchdog trigger bit within the safe trigger area (refer to Figure 29). A correct watchdog trigger signal immediately starts the next cycle.

After 8 watchdog failures in sequence, the V1 regulator is switched off for 200ms. If subsequently, 7 additional watchdog failures occur, the V1 regulator is completely turned off and the device goes into VBAT standby mode until a wakeup occurs.

In case of a watchdog failure, the outputs (RELx, OUTx, V2) are switched off and the device enters fail-safe mode (i.e. all control registers are set to default values except the ‘OUT3 control bit’).

The following diagrams illustrate the watchdog behavior of the L99PM62. The diagrams are split into 3 parts. First diagram shows the functional behavior of the watchdog without any error. The second diagram covers the behavior covering all the error conditions, which can affect the watchdog behavior. Third diagram shows the transition in and out of Flash mode. All 3 diagrams can be overlapped to get all the possible state transitions under all circumstances. For a better readability, they were split in normal operating, operating with errors and Flash mode.

Figure 9. Watchdog in normal operating mode (no errors)

$FWLYH PRGH

ORQJ

 

 

RSHQ

 

ZLQGRZ

 

9 ! 9UVWWKU

 

 

JR 6WDQGE\

 

75,* Ã

:'

9%$7 6WDQGE\

2))

9 6WDQGE\ , 9 ,&03

 

:LQGRZ

SURSSHU WULJJHU LQ

0RGH

JR 6WDQGE\

:LQGRZ PRGH

 

 

$FWLYH PRGH

$* 9

22/102

Doc ID 17639 Rev 3

L99PM62GXP

Detailed description

 

 

Figure 10. Watchdog with error conditions

:' IDLO

ORQJ

 

 

 

76'

 

 

 

RSHQ

 

 

 

 

 

 

 

 

ZLQGRZ

 

 

 

$FWLYH PRGH

 

9 ! 9UWK

 

 

 

 

IRUFHG 9%$7

:'

 

75,* Ã

:' IDLO

9 9UWK

9%$7 6WDQGE\

 

 

76'

 

2))

9 6WDQGE\ , 9 ,&03

 

:LQGRZ

9 9UWK

 

 

 

 

 

 

SURSSHU WULJJHU LQ

0RGH

 

 

 

:LQGRZ PRGH

 

 

IRUFHG 9%$7 [ :' IDLO

 

 

 

 

 

 

 

[ 76'

$FWLYH PRGH

 

 

6KRUW 9

$* 9

Figure 11. Watchdog in Flash mode

$FWLYH PRGH

ORQJ

 

RSHQ

 

ZLQGRZ

$FWLYH PRGH

:LQGRZ

0RGH

([LW )/$6+ PRGH

 

)/$6+ PRGH

:'

 

2))

)/$6+ PRGH

)/$6+ PRGH

$* 9

2.4.1Change watchdog timing

There are 4 programmable watchdog timings available, which represent the nominal trigger time in window mode. To change the watchdog timing, a new timing has to be written by SPI. The new timing gets active with the next valid watchdog trigger. The following figures illustrate the sequence, which is recommended to use, changing the timing within long open window and within window mode.

Doc ID 17639 Rev 3

23/102

Detailed description

L99PM62GXP

 

 

Figure 12. Change watchdog timing within long open window

:DWFKGRJ

ORQJ RSHQ ZLQGRZ

 

 

ZLQGRZ PRGH

 

0RGH

 

>WLPLQJ DV SURJUDPPHG LQ SUHYLRXV 63, FRPPDQG H J PV@

 

 

 

 

 

 

 

:' WLPLQJ >H J PV@

 

&61

 

 

 

 

 

 

63,

ZULWH RSHUDWLRQ

ZULWH RSHUDWLRQ

 

UHDG RSHUDWLRQ

 

ZULWH RSHUDWLRQ

&WUO 5HJ :' 7LPH

&WUO 5HJ 7ULJ

 

&WUO 5HJ

 

&WUO 5HJ 7ULJ

&RPPDQG

>H J PV@

 

 

 

 

 

63,

)HHGEDFN

)HHGEDFN

 

)HHGEDFN

 

 

)HHGEDFN

)62

FKHFN )62

 

FKHFN )62

 

 

ZULWH RSHUDWLRQ DFFHSWHG

FKDQJH WLPLQJ IRU :'

FKHFN :' WLPH

 

$* 9

 

 

 

 

 

 

Figure 13. Change watchdog timing within window mode

 

 

:DWFKGRJ

ZLQGRZ PRGH > PV@

 

 

ZLQGRZ PRGH > PV@

0RGH

 

 

 

 

 

 

 

 

 

 

:' WLPH > PV@

 

 

:' WLPH > PV@

 

&61

 

 

 

 

63,

ZULWH RSHUDWLRQ

ZULWH RSHUDWLRQ

 

ZULWH RSHUDWLRQ

UHDG RSHUDWLRQ

ZULWH RSHUDWLRQ

&WUO 5HJ SURSHU WULJJHU

&WUO 5HJ :' 7LPH

 

&WUO 5HJ SURSHU WULJJHU

&WUO 5HJ

&WUO 5HJ SURSSHU WULJJHU

&RPPDQG

 

>H J PV@

 

 

 

 

 

 

 

 

 

 

63,

 

)HHGEDFN

 

)HHGEDFN

)HHGEDFN

 

 

)62

 

FKHFN )62

FKHFN )62

 

)HHGEDFN

 

 

 

 

ZULWH RSHUDWLRQ DFFHSWHG

 

FKDQJH WLPLQJ IRU :'

FKHFN :' WLPH

 

 

 

 

 

 

 

$* 9

If the device is in fail-safe mode, the control registers are locked for writing. To change the watchdog timing out of fail-safe mode, first the fail-safe condition must be solved, respective confirmed from the microcontroller. Afterwards the new watchdog timing can be programmed using the sequence from Figure 14. Since the actions to remove, a fail-safe condition can differ from the root cause of the fail safe the following diagram shows the general procedure how to change the watchdog timing out of fail-safe mode. Figure 15 shows the procedure to change watchdog timing with a previous watchdog failure, since this is a special fail-safe scenario.

24/102

Doc ID 17639 Rev 3

L99PM62GXP

 

 

Detailed description

Figure 14. General procedure to change watchdog timing out of fail safe mode

 

 

)DLO 6DIH 0RGH DFWLYH

 

)DLO 6DIH 0RGH LQDFWLYH

 

:DWFKGRJ

 

ORQJ RSHQ ZLQGRZ

 

ZLQGRZ PRGH

 

0RGH

 

 

>WLPLQJ DV SURJUDPPHG LQ SUHYLRXV 63, FRPPDQG H J PV@

 

 

 

 

 

 

 

:' WLPH >H J PV@

 

&61

 

 

 

 

 

 

 

 

 

 

63,

 

ZULWH RSHUDWLRQ

ZULWH RSHUDWLRQ

UHDG RSHUDWLRQ

ZULWH RSHUDWLRQ

 

&WUO 5HJ :' 7LPH

&WUO 5HJ 7ULJ

&WUO 5HJ

&WUO 5HJ 7ULJ

&RPPDQG

 

>H J PV@

 

 

 

63,

 

)HHGEDFN

)HHGEDFN

)HHGEDFN

 

)HHGEDFN

 

)62

FKHFN )62

FKHFN )62

 

 

ZULWH RSHUDWLRQ DFFHSWHG

FKDQJH WLPLQJ IRU :'

FKHFN :' WLPH

 

 

 

 

 

$FWLRQV WR H[LW

3URFHGXUH WR :ULWH QHZ :DWFKGRJ WLPLQJ

 

 

 

)DLO VDIH 0RGH

 

 

 

 

 

 

 

$* 9

Figure 15. Change watchdog timing out of fail safe mode (watchdog failure)

 

 

)DLO 6DIH 0RGH DFWLYH

 

 

)DLO 6DIH 0RGH LQDFWLYH

 

:DWFKGRJ

ORQJ RSHQ ZLQGRZ

ZLQGRZ PRGH > PV@

 

ZLQGRZ PRGH

 

0RGH

 

>WLPLQJ DV SURJUDPPHG LQ SUHYLRXV 63, FRPPDQG H J PV@

 

 

 

:' WLPH > PV@:' WLPH >H J PV@

&61

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

63,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ZULWH RSHUDWLRQ

ZULWH RSHUDWLRQ

UHDG RSHUDWLRQ

 

 

 

ZULWH RSHUDWLRQ

ZULWH RSHUDWLRQ

UHDG RSHUDWLRQ

 

 

ZULWH RSHUDWLRQ

&RPPDQG

&WUO 5HJ :' 7LPH

&WUO 5HJ 7ULJ

DQ\ YDOLG DGGUHVV

 

 

 

&WUO 5HJ :' 7LPH

&WUO 5HJ 7ULJ

&WUO 5HJ

 

 

&WUO 5HJ SURSHU WULJHU

>H J PV@

 

 

 

 

 

 

>H J PV@

 

 

 

 

 

 

 

 

 

 

 

63,

)HHGEDFN

)HHGEDFN

)HHGEDFN

 

 

 

)HHGEDFN

)HHGEDFN

)HHGEDFN

 

 

 

 

 

)HHGEDFN

)62

)62

FKHFN )62

 

 

)62

FKHFN )62

FKHFN )62

 

 

 

 

 

ZULWH RSHUDWLRQ EORFNHG

SURYLGH SURSSHU WULJJHU

TXLW IDLO VDIH PRGH

 

 

 

ZULWH RSHUDWLRQ DFFHSWHG

FKDQJH WLPLQJ IRU :'

FKHFN :' WLPH

 

 

 

 

 

 

$FWLRQV WR H[LW

 

 

 

 

 

3URFHGXUH WR :ULWH QHZ :DWFKGRJ WLPLQJ

 

 

 

 

 

 

 

 

 

 

)DLO VDIH 0RGH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

$* 9

2.5Fail safe mode

2.5.1Single failures

L99PM62GXP enters fail safe mode in case of:

Watchdog failure

V1 turn on failure

V1 short (V1 < V1fail for t > tV1short)

V1 undervoltage (V1 < Vrth for t > tUV1)

Thermal shutdown TSD2

SPI failure

DI stuck to GND or VCC (SPI frame = ’00 00 00’ or ‘FF FF FF’)

Doc ID 17639 Rev 3

25/102

Detailed description

L99PM62GXP

 

 

The fail safe functionality is also available in V1 standby mode. During V1 standby mode the fails safe mode is entered in the following cases:

V1 undervoltage (V1 < Vrth for t > tUV1)

Watchdog failure (if watchdog still running due to IV1 > Icmp)

Thermal shutdown TSD2

In fail safe mode the L99PM62 returns to a default. The fail safe condition is indicated to the remaining system in the global status register. The conditions during fails safe mode are:

All outputs are turned off

All control registers are set to default values (except OUT3/FSO configuration)

Write operations to control registers are blocked until the fail safe condition is cleared (see Table 5)

LIN and HS CAN transmitter, OpAmps and SPI remain on

Corresponding failure bits in status registers are set.

FSO Bit (Bit 0 global status register) is set

OUT3/FSO is activated if configured as fail safe output

If OUT3 is configured as FSO, the internal fail safe mode can be monitored at OUT3 (highside driver is turned on in fail-safe mode). Self protection features for OUT3 when configured as FSO are active (see Section 3.3: High-side driver outputs ).

OUT3 is configured as fail safe output by default. It can be configured to normal high-side driver operation by SPI. It this case, the configuration remains until Vs power on.

If the fail safe mode was entered it keeps active until the fail safe condition is removed and the fail safe was read by spi. depending on the root cause of the fail safe operation, the actions to exit fail safe mode are as shown in the following table.

Table 5.

Fail safe conditions and exit modes

 

Failure source

Failure condition

Diagnosis

Exit from fail-safe mode

 

 

 

 

 

 

 

Watchdog early write

Fail-safe = 1

TRIG = 1 during LOWi and

µC (oscillator)

failure or expired

WDfail = n+1

read fail-safe bit

 

 

window

 

 

 

 

 

 

 

 

 

 

 

Short at turn-on

Fail-safe = 1

Read&Clear SR3 after wake

 

 

Forced Sleep TSD2/SHTV1 = 1

V1

 

 

 

 

Undervoltage

Fail-safe = 1

V1 > Vrth

 

 

V1fail = 1(1)

Read Fail-safe bit

 

 

 

 

 

 

Fail-safe = 1

 

Temperature

 

Tj > TSD2

TW = 1

Tj < TSD2

 

TSD1 = 1

Read&Clear SR3

 

 

 

 

 

 

TSD2 = 1

 

 

 

 

 

 

SPI

 

DI short to GND or VCC

Fail-safe = 1

Valid SPI command

 

 

 

 

 

1.if V1 < V1fail (for t > tV1fail)

The fail-safe bit is located in the global status register (Bit 0).

26/102

Doc ID 17639 Rev 3

L99PM62GXP

Detailed description

 

 

2.5.2Multiple failures – entering forced VBAT standby mode

If the fail-safe condition persists and all attempts to return to normal system operation fail, the L99PM62 enters the forced VBAT standby mode in order to prevent damage to the system. The forced VBAT standby mode can be terminated by any regular wake-up event. The root cause of the forced VBAT standby is indicated in the SPI status registers

The forced VBAT standby mode is entered in case of:

Multiple watchdog failures: forced sleep WD = 1 (15x watchdog failure)

Multiple thermal shutdown 2: forced sleep TSD2/SHTV1 = 1 (7 x TSD2)

V1 short at turn-on: forced sleep TSD2/SHTV1 = 1 (V1 < V1fail for t > tV1fail)

Table 6.

Persisting fail safe conditions and exit modes

 

Failure source

Failure condition

Diagnosis

Exit from fail-safe mode

 

 

 

 

 

 

 

15 consecutive

Fail-safe = 1

Wake-up

µC (oscillator)

TRIG = 1 during LOWi

watchdog failures

ForcedSleepWD = 1

 

 

read & clear SR3

 

 

 

 

 

 

 

 

 

V1

 

short at turn-on

Fail-safe = 1

Read&clear SR3 after wake-up

 

ForcedSleepTSD2/SHTV1 = 1

 

 

 

 

 

 

 

Fail-safe = 1

 

 

 

 

TW = 1

 

Temperature

 

7 times TSD2

TSD1 = 1

Read&clear SR3 after wake-up

 

 

 

TSD2 = 1

 

 

 

 

ForcedSleepTSD2/SHTV1 = 1

 

Figure 16. Example: exit fail safe mode from watchdog failure

 

 

)DLO 6DIH 0RGH DFWLYH

)DLO 6DIH 0RGH LQDFWLYH

:DWFKGRJ

ORQJ RSHQ ZLQGRZ

 

ZLQGRZ PRGH

0RGH

 

 

 

 

 

&61

 

 

 

 

63,

ZULWH RSHUDWLRQ

ZULWH RSHUDWLRQ

 

UHDG RSHUDWLRQ

&RPPDQG

&WUO 5HJ :' 7LPH

&WUO 5HJ 7ULJ

DQ\ YDOLG DGGUHVV

>H J PV@

 

 

 

63,

)HHGEDFN

)HHGEDFN

 

)HHGEDFN

)HHGEDFN

)62

)62

 

FKHFN )62

ZULWH RSHUDWLRQ EORFNHG

SURYLGH SURSSHU WULJJHU

TXLW IDLO VDIH PRGH

 

 

 

 

$* 9

Doc ID 17639 Rev 3

27/102

Detailed description

L99PM62GXP

 

 

2.6Reset output (NRESET)

 

If V1 is turned on and the voltage exceeds the V1 reset threshold, the reset output

 

“NRESET” is pulled up by internal pull up resistor to V1 voltage after a reset delay time (trd).

 

This is necessary for a defined start of the micro controller when the application is switched

 

on. Since the NRESET output is realized as an open drain output it is also possible to

 

connect an external NRESET open drain NRESET source to the output. It must be

 

considered that as soon the NRESET is released from the L99PM62 the Watchdog timing

 

starts.

 

A reset pulse is generated in case of:

 

V1 drops below Vrth (configurable by SPI) for t > tUV1

 

Watchdog failure

Note:

An external pull-up resistor (1kΩ) to V1 is recommended in order to ensure ILOAD1 > Icmp

 

during reset condition

2.7 Operational amplifiers

The operational amplifiers are especially designed to be used for sensing and amplifying the voltage drop across ground connected shunt resistors. Therefore the input common mode range includes -0.2 V to 3 V.

The operational amplifiers are designed for -0.2 V to +3 V input voltage swing and rail-to-rail output voltage range.

All pins (positive, negative and outputs) are available to be able to operate in non-inverting and inverting mode. Both operational amplifiers are on-chip compensated for stability over the whole operating range within the defined load impedance.

The operational amplifiers may also be used to setup an additional high current voltage source with an external pass element. Refer to Section 2.1.3 for a detailed description.

2.8 LIN bus interface

Features

Speed communication up to 20 kbit/s.

LIN 2.1 compliant (SAEJ2602 compatible) transceiver.

Function range from +40 V to -18 V DC at LIN pin.

GND disconnection fail safe at module level.

Off mode: does not disturb network.

GND shift operation at system level.

Micro controller Interface with CMOS compatible I/O pins.

Internal pull up resistor.

Internal high-side switch to disconnect master pull-up resistor in case of short circuit of bus signal.

ESD and transient immunity according to ISO7637 and EN / IEC61000-4-2.

Matched output slopes and propagation delay.

28/102

Doc ID 17639 Rev 3

L99PM62GXP

Detailed description

 

 

 

In order to further reduce the current consumption in standby mode, the integrated LIN bus

 

interface offers an ultra low current consumption.

 

Note:

Use of master pull-up switch is optional.

 

2.8.1

Error handling

 

 

The L99PM62GXP provides the following 3 error handling features which are not described

in the LIN Spec. V2.1, but are realized in different stand alone LIN transceivers / micro controllers to switch the application back to normal operation mode.

At VS > Vpor (i.e. Vs power-on reset threshold), the LIN transceiver is enabled. The LIN transmitter is disabled in case of the following errors:

Dominant TxDL time out

LIN permanent recessive

Thermal shutdown 1

VS over/undervoltage

The LIN receiver is not disabled in case of any failure condition.

Dominant TxDL time out

If TXDL is in dominant state (low) for more than 12 ms (typ) the transmitter is disabled, the status bit is latched and can be read and optionally cleared by SPI. The transmitter remains disabled until the status register is cleared. This feature can be disabled via SPI.

Permanent recessive

If TXDL changes to dominant (low) state but RXDL signal does not follow within 40 µs the transmitter is disabled, the status bit is latched and can be read and optionally cleared by SPI. The transmitter remains disabled until the status register is cleared.

Permanent dominant

If the bus state is dominant (low) for more than 12 ms a permanent dominant status is detected. The status bit is latched and can be read and optionally cleared by SPI. The transmitter is not disabled.

2.8.2Wake up (from LIN)

In standby mode the L99PM62GXP can receive a wake up from LIN bus. For the wake up feature the L99PM62GXP logic differentiates two different conditions.

Normal wake up

Normal wake up can occur when the LIN transceiver was set in standby mode while LIN was

in recessive (high) state. A dominant level at LIN for tlinbus, switches the L99PM62GXP to active mode.

 

Wake up from short to GND condition

 

If the LIN transceiver was set in standby mode while LIN was in dominant (low) state,

 

recessive level at LIN for tlinbus, switches the L99PM62GXP to active mode.

Note:

A wake up caused by a message on the bus starts the voltage regulator and the

 

microcontroller to switch the application back to normal operation mode.

Doc ID 17639 Rev 3

29/102

Detailed description

L99PM62GXP

 

 

2.8.3LIN pull-up

The master node pull-up resistor (1 kΩ) can be connected to VS using the internal LIN_PU high-side switch. This high-side switch can be controlled by SPI in order to allow disconnection of the pull-up resistor in case of LIN bus short to GND conditions.

Figure 17. LIN master node configuration using LIN_PU (optional)

9V

/,1 FRQWURO

 

7 6:

 

 

FRQWURO

/,138

 

 

 

N

 

 

 

 

N

0DVWHU QRGH

 

/,1

SXOO XS

 

 

*QG

$* 9

LIN_PU high-side driver characteristics:

Activated by default and can be turned off by SPI command (CR4).

Remains active in standby modes.

Switch off only in case of over temperature (TSD2 = thermal shutdown #2).

No over current protection.

Typical RDSon, 10 Ω.

2.9High speed CAN bus transceiver

General requirements

Communication speed up to 1 Mbit/s.

ISO 11898-2 and ISO 11898-5 compliant

SAE J2284 compliant

Function range from -27 V to +40 V DC at CAN pins.

GND disconnection fail safe at module level.

GND shift operation at system level.

Micro controller Interface with CMOS compatible I/O pins.

ESD and transient immunity according to ISO7637 and EN / IEC61000-4-2

Matched output slopes and propagation delay

Split output pin for stabilizing the recessive bus level

Receive-only mode available

30/102

Doc ID 17639 Rev 3

Loading...
+ 72 hidden pages