ST L9904 User Manual

L9904
Fi
MOTOR BRIDGE CONTROLLER

1 FEATURES

OPERATING SUPPLY VOLTAGE 8V TO 28V,
OVERVOLTAGE MAX. 40V
OPERATING SUPPLY VOLTAGE 6V WITH
IMPLEMENTED STEPUP CONVERTER
LESS THAN 50µA
ISO 9141 COMPATIBLE INTERFACE
CHARGE PUMP FOR DRIVING A POWER
MOS AS REVERSE BATTERY PROTECTION
PWM OPERATION FREQUENCY UP TO
30KHZ
PROGRAMMABLE CROSS CONDUCTION
PROTECTION TIME
OVERVOLTAGE, UNDERVOLTAGE, SHORT
CIRCUIT AND THERMAL PROTECTION
REAL TIME DIAGNOSTIC

Figure 2. Block Diagram

10
VS
VCC
VCC
-
+
f
Overvolt age
Undervoltage
Thermal shutdown
Timer
=
V
STH
ST
PWM
1
ST
R
DG
2
DG
4
EN
R
EN
5
DIR
R
DIR
R
PWM
3
6
PR
gure 1. Package
SO20

Table 1. Order Codes

Part Number Package
L9904 SO20
L9904TR Tape & Reel

2 DESCRIPTION

Control circuit for power MOS bridge driver in auto­motive applications with ISO 9141bus interface.
R
Reference
BIAS
VCC
Charge pump
=
V
S1TH
Control Logic
=
V
S2TH
CP
11
CP
13
CB1
12
GH1
14
S1
R
S1
19
GL1
R
GL1
18
GL2
R
GL2
17
S2
R
S2
15
GH2
16
CB2
October 2005
7
RX
R
RX
VCC
R
TX
8
TX
ISO-Interface
=
0.5 • V VS
I
KH
9
K
20
GND
REV. 4
1/17
L9904

Table 2. Pin Function

Pin Description
1 ST Open Drain Switch for Stepup converter
2 DG Open drain diagnostic output
3 PWM PWM input for H-bridge control
4 EN Enable input
5 DIR Direction select input for H-bridge control
6 PR Programmable cross conduction protection time
7 RX ISO 9141 interface, receiver output
8 TX ISO 9141 interface, transmitter input
9 K ISO 9141 Interface, bidirectional communication K-line
10 VS Supply voltage
11 CP Charge pump for driving a power MOS as reverse battery protection
12 GH1 Gate driver for power MOS highside switch in halfbridge 1
13 CB1 External bootstrap capacitor
14 S1 Source/drain of halfbridge 1
15 GH2 Gate driver for power MOS highside switch in halfbridge 2
16 CB2 External bootstrap capacitor
17 S2 Source/drain of halfbridge 2
18 GL2 Gate driver for power MOS lowside switch in halfbridge 2
19 GL1 Gate driver for power MOS lowside switch in halfbridge 1
20 GND Ground

Figure 3. Pin Connection (Top view)

ST
DG
PWM
EN
DIR
PR
RX
TX
K GH1
VS CP
2
3
4
5
6
7
8
9
10
SO20
20
19
18
17
16
15
14
13
12
11
GND1
GL1
GL2
S2
CB2
GH2
S1
CB1
2/17
L9904

Table 3. Absolute Maximum Ratings

Symbol Parameter Value Unit
V
, V
CB1
, I
I
CB1
V
CP
I
CP
,V
V
DIR
,V
PWM ,VTX
,I
I
DIR
,I
PWM ,ITX
,V
V
DG
,IRX Logic output current -1 mA
I
DG
, V
V
GH1
, I
I
GH1
, V
V
GL1
, I
I
GL1
V
V
PR
I
PR
, V
V
S1
, I
I
S1
V
ST
I
ST
V
VSDC
V
VSP
I
VS
For externally applied voltages or currents exceeding these limits damage of the device may occur! All pins of the IC are protected against ESD. The verification is performed according to MIL883C, human body
model with R=1.5k
0.2mJ.
Bootstrap voltage -0.3 to 40 V
CB2
Bootstrap current -100 mA
CB2
Charge pump voltage -0.3 to 40 V
Charge pump current -1 mA
Logic input voltage -0.3 to 7 V
EN
Logic input current ±1 mA
EN
Logic output voltage -0.3 to 7 V
RX
Gate driver voltage -0.3 to VSX + 10 V
GH2
Gate driver current -1 mA
GH2
Gate driver voltage -0.3 to 10 V
GL2
Gate driver current -10 mA
GL2
K-line voltage -20 to V
K
S
Programming input voltage -0.3 to 7 V
Programming input current -1 mA
Source/drain voltage -2 to VVS + 2 V
S2
Source/drain current -10 mA
S2
Output voltage -0.3 to 40 V
Step up output current -1 mA
DC supply voltage -0.3 to 28 V
Pulse supply voltage (T < 500ms) 40 V
DC supply current -100 mA
, C=100pF and discharge voltage ±2kV, corresponding to a maximum discharge energy of
V

Table 4. Thermal Data

Symbol Parameter Value Unit
T
T
JSD
T
JSDH
R
th j-amb
1. see application note 110 for SO packages.
Operating junction temperature -40 to 150 °C
J
Junction temperature thermal shutdown threshold min 150 °C
Junction thermal shutdown hysteresis typ 15 °C
Thermal resistance junction to ambient
1)
85 °C/W
.
3/17
L9904
Table 5.
Electrical Characteristcs
(8V < VVS < 20V, VEN = HIGH, -40°C ≤ TJ ≤ 150°C, unless otherwise specified. The voltages are refered to GND and currents are assumed positive, when current flows into the pin
Symbol Parameter Test Condition Min. Typ. Max. Unit
Supply (VS)
V
VS OVH
V
VS OVh
V
VS UVH
V
VS UVh
I
VSL
I
VSH
I
VSD
Enable input (EN)
V
V
V
R
H-bridge control inputs (DIR, PWM)
V
DIRL
V
PWML
V
DIRH
V
PWMH
V
DIRh
V
PWMh
R
R
PWM
DIAGNOSTIC output (DG)
V
R
Programmable cross conduction protection
N
I
ISO interface, transmission input (TX)
V
Overvoltage disable HIGH
28 33 36 V
threshold
Overvoltage threshold hysteresis
Undervoltage disable HIGH
2)
67V
1.6 V
threshold
Undervoltage threshold hysteresis
2)
0.66 V
Supply current VEN = 0 ; VVS = 13.5V; TJ< 85°C 50 µA
Supply current, pwm-mode VVS= 13.5V; VEN= HIGH;
= LOW; S1 = S2 = GND
V
DIR
f
PWM
C
GLX
R
PR
= 20kHz; C
= 4.7nF; C
= 10k; C
CBX
GHX
= 150pF
PR
= 0.1µF;
= 4.7nF;
Supply current, dc-mode VVS= 13.5V; VEN= HIGH;
V
= LOW; S1 = S2 = GND
DIR
= LOW; C
V
PWM
= 10k; C
R
PR
Low level 1.5 V
ENL
High level 3.5 V
ENH
ENh
Hysteresis threshold
Input pull down resistance VEN = 5V 16 50 100 k
EN
2)
GHX
= 150pF
PR
= 4.7nF
8.1 13 mA
5.8 10 mA
1V
Input low level 1.5 V
Input high level 3.5 V
Input threshold hysteresis
Internal pull up resistance
DIR
to internal VCC
Output drop IDG = 1mA 0.6 V
DG
Internal pull up resistance
DG
to internal VCC
Threshold voltage ratio V
PR
V
PRL
Current capability
PR
Input low level 1.5 V
TXL
3)
3)
2)
PRH
1V
V
DIR
= 0; V
= 0 16 50 100 k
PWM
VDG = 0V 10 20 40 k
4)
R
V
PR
PR
= 10k
= 2V
/
1.822.2
-0.5 mA
4/17
L9904
Table 5.
(8V < V
Electrical Characteristcs
< 20V, VEN = HIGH, -40°C ≤ TJ ≤ 150°C, unless otherwise specified. The voltages are refered to
VS
(continued)
GND and currents are assumed positive, when current flows into the pin
Symbol Parameter Test Condition Min. Typ. Max. Unit
V
V
R
ISO interface, receiver output (RX)
V
R
R
RXON
t
RXH
t
RXL
ISO interface, K-line (K)
V
V
V
I
R
I
KSC
t
t
t
t
t
Charge pump
V
Input high level 3.5 V
TXH
Input hysteresis voltage 2) 1 V
TXh
Internal pull up resistance to
TX
VTX = 0 102040k
internal VCC 3)
Output voltage high stage
RXL
Internal pull up resistance
RX
to internal VCC
3)
ON resistance to ground TX = LOW;
TX = HIGH; I
TX = HIGH;
= 0V
V
RX
= 1mA
I
RX
RX
= 0; V
= V
K
VS
4.5 5.5 V
51020k
40 90
Output high delay time Fig. 1 0.5 µs
Output low delay time 0.5 µs
Input low level -20V 0.45 ·
KL
Input high level
KH
Input hysteresis voltage 2) 0.025·
Kh
Input current VTX = HIGH -5 25 µA
KH
ON resistance to ground VTX = LOW; IK=10mA 10 30
KON
0.55 · V
VS
V
VS
Short circuit current VTX = LOW 40 130 mA
Transmission frequency 60 100 kHz
f
K
2. not tested in production: guaranteed by design and verified in characterization
3. Internal V
4. see page 18 for calculation of programmable cross conduction protection time
Rise time VVS = 13.5V; Fig. 1
Kr
is 4.5V ... 5.5V
VCC
26µs
External loads at K-line:
= 510Ω pull up
R
K
to V
VS
C
= 2.2nF to GND
K
Fall time 26µs
Kf
Switch high delay time 4 17 µs
KH
Switch low delay time 4 17 µs
KL
Short circuit detection time VVS = 13.5V;
SH
10 40 µs
TX = LOW
> 0.55 · V
V
Charge pump voltage VVS = 8V
CP
K
VS
V
+
VS
7V
V
VS
= 13.5V
+
V
VS
10V
V
= 20V
VS
+
V
VS
10V
V
VS
V
VS
0.8V
VVS+
14V
V
VS
14V V
VS
+14V
+
5/17
L9904
Table 5.
(8V < V
Electrical Characteristcs
< 20V, VEN = HIGH, -40°C ≤ TJ ≤ 150°C, unless otherwise specified. The voltages are refered to
VS
(continued)
GND and currents are assumed positive, when current flows into the pin
Symbol Parameter Test Condition Min. Typ. Max. Unit
I
t
CP
CP
Charging current
= VVS + 8V
V
CP
Charging time
2)
VCP= VVS + 8V
f
Charge pump frequency VVS = 13.5V 250 500 750 kHz
CP
Drivers for external highside power MOS
V V
R R
R R
V V
R R
R R
GH1L
GH2L
GH1H
GH2H
GH1H
GH2H
Bootstrap voltage VVS = 8V; I
CB1
CB2
ON-resistance of SINK stage
ON-resistance of SOURCE stage I
Gate ON voltage (SOURCE) VVS= VSX = 8V; I
Gate discharge resistance EN = LOW 10 100 k
GH1
GH2
Sink resistance 10 100 k
S1
S2
Drivers for external lowside power MOS
R
GL1L
R
GL2L
R
GL1H,
R
GL2H
V
GL1H,
V
GL2H
R R
2. not tested in production: guaranteed by design and verified in characterization
ON-resistance of SINK stage I
ON-resistance of SOURCE stage I
Gate ON voltage (SOURCE) VVS = 8V; I
Gate discharge resistance EN = LOW 10 100 k
GL1
GL2
Timing of the drivers
t
GH1LH
t
GH2LH
Propagation delay time Fig. 2
V
= 13.5V -50 -75 µA
VS
V
= 13.5V
VS
C
= 10nF
CP
VVS =13.5V; I V
= 20V; I
VS
V
CBX
I
GHX
V
CBX
I
GHX
GHX
I
GHX
C
CBX
= VSX = 13.5V; I
V
VS
C
CBX
= VSX = 20V; I
V
VS
C
CBX
GLX
I
GLX
GLX
I
GLX
V
= 13.5V; I
VS
= 20V; I
V
VS
CBX
CBX
CBX
= 8V; VSX = 0
= 50mA; T
= 8V; VSX = 0
= 50mA; T
= -50mA; TJ = 25°C = -50mA; TJ = 125°C
= 0.1µF
= 0.1µF
= 0.1µF
= 50mA; TJ = 25°C = 50mA; TJ = 125°C
= -50mA; TJ = 25°C = -50mA; TJ = 125°C
= 0
GLX
GLX
GLX
= 0; VSX = 0
= 0; VSX = 0
= 0; VSX = 0
= 25°C
J
= 125°C
J
= 0;
GHX
= 0;
GHX
= 0;
GHX
= 0
= 0
7.5
10 10
V
VS
+6.5V
V
VS
10V
V
VS
+10V
7V 10V 10V
1.2 4 ms
+
14 14 14
10
20
10 20
V
VS
+14V
V
VS
+14V
V
VS
+14V
10 20
10 20
V
VS
V
VS
14V
500 ns
= 13.5V
V
VS
VS1 = VS2 =0 C
= 0.1µF
CBX
V V V
Ω Ω
Ω Ω
Ω Ω
6/17
RPR= 10kW
Loading...
+ 11 hidden pages