ST L7985 User Manual

L7985

2 A step-down switching regulator

Features

2 A DC output current

4.5 V to 38 V input voltage

Output voltage adjustable from 0.6 V

250 KHz switching frequency, programmable up to 1 MHz

Internal soft-start and enable

Low dropout operation: 100% duty cycle

Voltage feed-forward

Zero load current operation

Overcurrent and thermal protection

VFQFPN3x3-10L and HSOP8 package

Applications

Consumer: STB, DVD, DVD recorder, car audio, LCD TV and monitors

Industrial: PLD, PLA, FPGA, chargers

Networking: XDSL, modems, DC-DC modules

Computer: optical storage, hard disk drive, printers, audio/graphic cards

LED driving

VFQFPN10 3 x 3 mm HSOP8 Exp. pad

Description

The L7985/A is a step-down switching regulator with 2.5 A (minimum) current limited embedded power MOSFET, so it is able to deliver up to 2 A current to the load depending on the application conditions.

The input voltage can range from 4.5 V to 38 V, while the output voltage can be set starting from 0.6 V to VIN.

Requiring a minimum set of external components, the device includes an internal 250 kHz switching frequency oscillator that can be externally adjusted up to 1 MHz.

The QFN and the HSOP packages with exposed

pad allow reducing the RthJA down to 60 °C/W and 40 °C/W respectively.

Figure 1. Application circuit

Vin=4.5V - 38V

VCC

 

 

 

 

OUT

L1

Vout from 0.6 to Vin

9-10

 

 

1-2

 

 

 

 

 

 

C1

EN

 

L7985

 

SYNCH

 

C2

 

4

3

D1

 

 

 

 

 

GND

8

 

6

5

FB

 

 

 

 

7

 

 

 

 

 

 

 

 

FSW

COMP

 

 

 

 

 

 

R5

 

R4

 

C4

 

R1

 

 

 

 

 

 

 

 

 

 

 

 

 

C5

 

R2

 

 

 

 

 

 

 

 

 

March 2012

Doc ID 022446 Rev 2

1/44

www.st.com

Contents

L7985

 

 

Contents

1

Pin settings

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 3

 

1.1

Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

 

1.2

Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

2

Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

3

Thermal data

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

4

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

5

Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

 

5.1

Oscillator and synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8

 

5.2

Soft-start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10

 

5.3

Error amplifier and compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

 

5.4

Overcurrent protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

 

5.5

Enable function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

 

5.6

Hysteretic thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

6

Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

 

6.1

Input capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

 

6.2

Inductor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

 

6.3

Output capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

 

6.4

Compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

 

 

6.4.1

Type III compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

 

 

6.4.2

Type II compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

 

6.5

Thermal considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27

 

6.6

Layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

 

6.7

Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30

7

Application ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34

 

7.1

Positive buck-boost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34

 

7.2

Inverting buck-boost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

36

2/44

Doc ID 022446 Rev 2

L7985

 

Contents

8

Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 38

9

Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 41

10

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 42

Doc ID 022446 Rev 2

3/44

Pin settings

L7985

 

 

1 Pin settings

1.1Pin connection

Figure 2. Pin connection (top view)

OUT

 

 

 

 

VCC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OUT

 

 

 

 

 

VCC

OUT

 

 

 

 

VCC

 

 

 

 

 

 

 

 

 

SYNCH

 

 

 

 

 

GND

SYNCH

 

 

 

 

GND

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EN

 

 

 

 

 

FSW

EN

 

 

 

 

FSW

 

 

 

 

 

 

 

 

 

 

 

 

COMP

 

 

 

 

 

FB

COMP

 

 

 

 

FB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VFQFPN10

 

 

 

 

 

HSOP8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2Pin description

Table 1.

Pin description

 

N.

N.

Type

Description

(VFQFPN)

(HSOP)

 

 

 

 

 

 

1-2

1

OUT

Regulator output

 

 

 

 

 

 

 

Master/slave synchronization. When it is left floating, a

 

 

 

signal with a phase shift of half a period, with respect to the

 

 

 

power turn-on, is present at the pin. When connected to an

 

 

 

external signal at a frequency higher than the internal one,

3

2

SYNCH

the device is synchronized by the external signal, with zero

phase shift.

 

 

 

 

 

 

Connecting together the SYNCH pin of two devices, the one

 

 

 

with a higher frequency works as master and the other one

 

 

 

as slave; so the two power turn-ons have a phase shift of

 

 

 

half a period.

 

 

 

 

 

 

 

A logical signal (active high) enables the device. With EN

4

3

EN

higher than 1.2 V the device is ON and with EN lower than

 

 

 

0.3 V the device is OFF.

 

 

 

 

5

4

COMP

Error amplifier output to be used for loop frequency

compensation.

 

 

 

 

 

 

 

 

 

 

Feedback input. By connecting the output voltage directly to

6

5

FB

this pin the output voltage is regulated at 0.6 V. To have

higher regulated voltages an external resistor divider is

 

 

 

 

 

 

required from VOUT to the FB pin.

 

 

 

The switching frequency can be increased connecting an

7

6

FSW

external resistor from the FSW pin and ground. If this pin is

left floating, the device works at its free-running frequency of

 

 

 

250 KHz.

 

 

 

 

8

7

GND

Ground

 

 

 

 

9-10

8

VCC

Unregulated DC input voltage.

4/44

Doc ID 022446 Rev 2

L7985

 

 

 

 

 

 

 

Maximum ratings

 

 

 

 

 

 

 

 

 

 

2

Maximum ratings

 

 

 

 

 

 

 

Table 2.

Absolute maximum ratings

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

 

Parameter

 

 

Value

 

Unit

 

 

 

 

 

 

 

 

 

 

 

 

 

Vcc

 

Input voltage

 

 

45

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OUT

 

Output DC voltage

 

 

 

-0.3 to VCC

 

 

 

FSW, COMP, SYNCH

Analog pin

 

 

 

-0.3 to 4

 

V

 

 

EN

 

Enable pin

 

 

 

-0.3 to VCC

 

 

 

 

FB

 

Feedback voltage

 

 

 

-0.3 to 1.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PTOT

 

Power dissipation

VFQFPN

1.5.

 

W

 

 

 

 

 

 

 

 

 

 

 

 

at TA < 60 °C

HSOP

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TJ

 

Junction temperature range

 

 

-40 to 150

 

°C

 

 

Tstg

 

Storage temperature range

 

 

-55 to 150

 

°C

3

Thermal data

 

 

 

 

 

 

 

Table 3.

Thermal data

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

 

Parameter

 

 

Value

 

Unit

 

 

 

 

 

 

 

 

 

 

 

 

RthJA

Maximum thermal resistance

VFQFPN

 

60

°C/W

 

 

 

 

 

junction-ambient (1)

 

 

 

 

 

 

HSOP

 

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Package mounted on demonstration board.

Doc ID 022446 Rev 2

5/44

Electrical characteristics

L7985

 

 

4 Electrical characteristics

TJ = 25 °C, VCC = 12 V, unless otherwise specified.

 

 

 

 

 

 

Table 4.

Electrical characteristics

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

Test conditions

 

Values

 

 

Unit

 

 

 

 

Min.

Typ.

Max.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC

Operating input voltage

(1)

 

 

4.5

 

38

 

 

range

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

VCCON

Turn on VCC threshold

(1)

 

 

 

 

4.5

 

 

 

 

 

 

 

 

VCCHYS

VCC UVLO hysteseris

(1)

 

 

0.1

 

0.4

 

 

 

 

 

 

 

 

RDSON

MOSFET on resistance

 

 

 

 

200

 

 

mΩ

 

 

 

 

 

 

 

(1)

 

 

 

 

400

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ILIM

Maximum limiting current

 

 

 

2.5

3.0

3.5

 

A

Oscillator

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FSW

Switching frequency

(1)

 

 

210

250

275

 

KHz

 

 

 

 

VFSW

FSW pin voltage

 

 

 

 

1.254

 

 

V

D

Duty cycle

 

 

 

0

 

100

%

 

 

 

 

 

 

 

 

 

 

FADJ

Adjustable switching

RFSW=33 kΩ

 

1000

 

 

KHz

frequency

 

 

 

Dynamic characteristics

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VFB

Feedback voltage

4.5 V<VCC<38 V

0.593

0.6

0.607

 

V

4.5 V<V

 

<38 V (1)

0.582

0.6

0.618

 

 

 

 

CC

 

 

 

 

 

DC characteristics

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IQ

Quiescent current

Duty cycle=0, VFB=0.8

 

 

2.4

 

mA

V

 

 

 

 

 

IQST-BY

Total standby quiescent

 

 

 

 

20

30

 

µA

current

 

 

 

 

 

Enable

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VEN

EN threshold voltage

Device OFF level

 

 

0.3

 

V

 

 

 

 

 

 

 

Device ON level

1.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IEN

EN current

EN=VCC

 

 

7.5

10

 

µA

Soft-start

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FSW pin floating

7.4

8.2

9.1

 

 

TSS

Soft-start duration

 

 

 

 

 

ms

FSW=1 MHz,

 

2

 

 

 

 

RFSW=33 kΩ

 

 

 

 

 

 

 

 

 

 

 

6/44

Doc ID 022446 Rev 2

L7985

 

 

Electrical characteristics

 

 

 

 

 

 

 

 

 

Table 4.

Electrical characteristics

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

Test conditions

 

Values

 

Unit

 

 

 

 

 

Min.

Typ.

Max.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Error amplifier

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCH

High level output voltage

VFB<0.6 V

3

 

 

V

 

VCL

Low level output voltage

VFB>0.6 V

 

 

0.1

 

 

 

 

 

IO SOURCE

Source COMP pin

VFB=0.5 V, VCOMP=1 V

 

19

 

mA

 

IO SINK

Sink COMP pin

VFB=0.7 V, VCOMP=1 V

 

30

 

mA

 

GV

Open-loop voltage gain

(2)

 

100

 

dB

 

 

 

 

 

Synchronization function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VS_IN,HI

High input voltage

 

2

 

3.3

V

 

VS_IN,LO

Low input voltage

 

 

 

1

 

 

 

 

 

 

 

 

VS_IN,HI=3 V,

100

 

 

 

 

tS_IN_PW

Input pulse width

VS_IN,LO=0 V

 

 

 

ns

 

VS_IN,HI=2 V,

300

 

 

 

 

 

 

 

 

 

 

 

VS_IN,LO=1 V

 

 

 

 

 

ISYNCH,LO

Slave sink current

VSYNCH=2.9 V

 

0.7

1

mA

 

VS_OUT,HI

Master output amplitude

ISOURCE=4.5 mA

2

 

 

V

 

tS_OUT_PW

Output pulse width

SYNCH floating

 

110

 

ns

 

Protection

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TSHDN

Thermal shutdown

 

 

150

 

°C

 

 

 

 

 

 

 

Hystereris

 

 

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.Specifications referred to TJ from -40 to +125 °C. Specifications in the -40 to +125 °C temperature range are assured by design, characterization and statistical correlation.

2.Guaranteed by design.

Doc ID 022446 Rev 2

7/44

Functional description

L7985

 

 

5 Functional description

The L7985 is based on a “voltage mode” constant frequency control. The output voltage VOUT is sensed by the feedback pin (FB) compared to an internal reference (0.6 V) providing an error signal that, compared to a fixed frequency sawtooth, controls the onand off-time of the power switch.

The main internal blocks are shown in the block diagram in Figure 3. They are:

A fully integrated oscillator that provides sawtooth to modulate the duty cycle and the synchronization signal. Its switching frequency can be adjusted by an external resistor. The voltage and frequency feed-forward are implemented.

The soft-start circuitry to limit inrush current during the startup phase.

The voltage mode error amplifier.

The pulse width modulator and the relative logic circuitry necessary to drive the internal power switch.

The high-side driver for embedded P-channel power MOSFET switch.

The peak current limit sensing block, to handle overload and short-circuit conditions.

A voltage regulator and internal reference. To supply the internal circuitry and provide a fixed internal reference.

A voltage monitor circuitry (UVLO) that checks the input and internal voltages.

A thermal shutdown block, to prevent thermal runaway.

Figure 3. Block diagram

 

 

 

 

 

VCC

 

TRIMMING

REGULATOR

UVLO

 

 

 

&

 

 

 

 

 

 

EN

EN

BANDGAP

PEAK

 

 

 

 

 

 

 

1.254V

3.3V

CURRENT

 

 

LIMIT

 

 

0.6V

 

 

 

 

 

 

 

 

 

SOFT-

THERMAL

 

 

COMP

START

SHUTDOWN

 

DRIVER

 

 

 

 

 

 

E/A

PWM

S

Q

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

OUT

 

 

 

 

SYNCH

 

 

 

 

&

 

 

 

OSCILLATOR

PHASE SHIFT

 

FB

FSW

GND

SYNCH

8/44

Doc ID 022446 Rev 2

L7985

Functional description

 

 

5.1Oscillator and synchronization

Figure 4 shows the block diagram of the oscillator circuit. The internal oscillator provides a constant frequency clock. Its frequency depends on the resistor externally connect to the FSW pin. If the FSW pin is left floating, the frequency is 250 kHz; it can be increased as shown in Figure 6 by an external resistor connected to ground.

To improve the line transient performance, keeping the PWM gain constant versus the input voltage, the voltage feed-forward is implemented by changing the slope of the sawtooth according to the input voltage change (see Figure 5.a).

The slope of the sawtooth also changes if the oscillator frequency is increased by the external resistor. In this way a frequency feed-forward is implemented (Figure 5.b) in order to keep the PWM gain constant versus the switching frequency (see Section 6.4 for PWM gain expression).

On the SYNCH pin the synchronization signal is generated. This signal has a phase shift of 180° with respect to the clock. This delay is useful when two devices are synchronized connecting the SYNCH pin together. When the SYNCH pins are connected, the device with a higher oscillator frequency works as master, so the slave device switches at the frequency of the master but with a delay of half a period. This minimizes the RMS current flowing through the input capacitor (see the L5988D datasheet).

Figure 4. Oscillator circuit block diagram

 

Clock

 

FSW

Clock

SYNCH

 

Synchronization

 

Generator

 

 

Ramp

 

 

Generator

Sawtooth

 

 

The device can be synchronized to work at higher frequency feeding an external clock signal. The synchronization changes the sawtooth amplitude, changing the PWM gain (Figure 5.c). This change has to be taken into account when the loop stability is studied. To minimize the change of PWM gain, the free-running frequency should be set (with a resistor on the FSW pin) only slightly lower than the external clock frequency. This pre-adjusting of the frequency changes the sawtooth slope in order to render the truncation of sawtooth negligible, due to the external synchronization.

Doc ID 022446 Rev 2

9/44

ST L7985 User Manual

Functional description

L7985

 

 

 

 

Figure 5.

Sawtooth: voltage and frequency feed-forward; external synchronization

 

 

 

 

 

 

Figure 6. Oscillator frequency vs. FSW pin resistor

10/44

Doc ID 022446 Rev 2

L7985

Functional description

 

 

5.2Soft-start

The soft-start is essential to assure correct and safe startup of the step-down converter. It avoids inrush current surge and makes the output voltage increase monothonically.

The soft-start is performed by a staircase ramp on the non-inverting input (VREF) of the error amplifier. So the output voltage slew rate is:

Equation 1

SR

 

= SR

 

 

 

1

R1

OUT

VREF

+ -------

 

 

 

 

 

R2

where SRVREF is the slew rate of the non-inverting input, while R1and R2 is the resistor divider to regulate the output voltage (see Figure 7). The soft-start staircase consists of 64

steps of 9.5 mV each, from 0 V to 0.6 V. The time base of one step is of 32 clock cycles. So the soft-start time and then the output voltage slew rate depend on the switching frequency.

Figure 7. Soft-start scheme

Soft-start time results:

Equation 2

32 64 SSTIME = -------------------

Fsw

For example, with a switching frequency of 250 kHz, the SSTIME is 8 ms.

Doc ID 022446 Rev 2

11/44

Functional description

L7985

 

 

5.3Error amplifier and compensation

The error amplifier (E/A) provides the error signal to be compared with the sawtooth to perform the pulse width modulation. Its non-inverting input is internally connected to a 0.6 V voltage reference, while its inverting input (FB) and output (COMP) are externally available for feedback and frequency compensation. In this device the error amplifier is a voltage mode operational amplifier, therefore, with high DC gain and low output impedance.

The uncompensated error amplifier characteristics are the following:

Table 5. Uncompensated error amplifier characteristics

Low frequency gain

100 dB

 

 

GBWP

4.5 MHz

 

 

Slew rate

7 V/ s

 

 

Output voltage swing

0 to 3.3 V

 

 

Maximum source/sink current

17 mA/25 mA

 

 

In continuous conduction mode (CCM), the transfer function of the power section has two poles due to the LC filter and one zero due to the ESR of the output capacitor. Different kinds of compensation networks can be used depending on the ESR value of the output capacitor. If the zero introduced by the output capacitor helps to compensate the double pole of the LC filter, a type II compensation network can be used. Otherwise, a type III compensation network must be used (see Chapter 6.4 for details of the compensation network selection).

Anyway, the methodology to compensate the loop is to introduce zeroes to obtain a safe phase margin.

12/44

Doc ID 022446 Rev 2

L7985

Functional description

 

 

5.4Overcurrent protection

The L7985 implements overcurrent protection by sensing current flowing through the power MOSFET. Due to the noise created by the switching activity of the power MOSFET, the current sensing is disabled during the initial phase of the conduction time. This avoids an erroneous detection of a fault condition. This interval is generally known as “masking time” or “blanking time”. The masking time is about 200 ns.

If the overcurrent limit is reached, the power MOSFET is turned off, implementing pulse-by- pulse overcurrent protection. In the overcurrent condition, the device can skip turn-on pulses in order to keep the output current constant and equal to the current limit. If, at the end of the “masking time”, the current is higher than the overcurrent threshold, the power MOSFET is turned off and one pulse is skipped. If, at the following switching on, when the “masking time” ends, the current is still higher than the overcurrent threshold, the device skips two pulses. This mechanism is repeated and the device can skip up to seven pulses. While, if at the end of the “masking time”, the current is lower than the overcurrent threshold, the number of skipped cycles is decreased by one unit (see Figure 8).

So, the overcurrent/short-circuit protection acts by switching off the power MOSFET and reducing the switching frequency down to one eighth of the default switching frequency, in order to keep constant the output current around the current limit.

This kind of overcurrent protection is effective if the output current is limited. To prevent the current from diverging, the current ripple in the inductor during the on-time must not be higher than the current ripple during the off-time. That is:

Equation 3

V-----IN------------V----OUT------------------R----DSON------------------------I---OUT-----------------DCR---------------------I--OUT----------

D =

V-----OUT--------------+----V----F-----+-----R----DSON------------------------I--OUT-------------+-----DCR----------------------I-OUT----------- (1 D)

L FSW

 

L FSW

If the output voltage is shorted, VOUT 0, IOUT=ILIM, D/FSW=TON_MIN, (1-D)/FSW 1/FSW. So, from Equation 3, the maximum switching frequency that guarantees to limit the current

results:

Equation 4

F*

=

(VF + DCR ILIM)

 

1

(---V----IN------------(---R----DSON------------------+-----DCR---------------)--------I---LIM---------)

------------------------

SW

 

 

TON_MIN

 

 

 

With RDSON=300 m, DRC=0.08 , the worst condition is with VIN=38 V, ILIM=2.5A; the maximum frequency to keep the output current limited during the short-circuit results 74

kHz.

The pulse-by-pulse mechanism, which reduces the switching frequency down to one eighth of the maximum FSW, adjusted by the FSW pin, assures that a full effective output current limitation is 74 kHz*8=592 kHz.

If, with VIN=38 V, the switching frequency is set higher than 592 kHz, during short-circuit condition the system finds a different equilibrium with higher current. For example, with FSW=700 kHz and the output shorted to ground, the output current is limited around:

Doc ID 022446 Rev 2

13/44

Functional description

 

 

 

L7985

 

 

 

 

 

Equation 5

 

 

 

 

IOUT =

VIN

FSW* VF

TON_MIN

= 3.68A

T----ON---------_---MIN----------)---+-----(--R-----DSON------------------+-----DCR--------------)---------F----SW*--------

(DRC

 

where FSW* is 700 kHz divided by eight.

Figure 8. Overcurrent protection

5.5Enable function

The enable feature allows to put the device into standby mode. With the EN pin lower than 0.3 V the device is disabled and the power consumption is reduced to less than 30 µA. With the EN pin lower than 1.2 V, the device is enabled. If the EN pin is left floating, an internal pull-down ensures that the voltage at the pin reaches the inhibit threshold and the device is disabled. The pin is also VCC compatible.

5.6Hysteretic thermal shutdown

The thermal shutdown block generates a signal that turns off the power stage if the junction temperature goes above 150 °C. Once the junction temperature returns to about 130 °C, the device restarts in normal operation. The sensing element is very close to the PDMOS area, so ensuring an accurate and fast temperature detection.

14/44

Doc ID 022446 Rev 2

Loading...
+ 30 hidden pages