ST L7980 User Manual

L7980

2 A step-down switching regulator

Features

2 A DC output current

4.5 V to 28 V input voltage

Output voltage adjustable from 0.6 V

250 kHz switching frequency, programmable up to 1 MHz

Internal soft-start and enable

Low dropout operation: 100% duty cycle

Voltage feed-forward

Zero load current operation

Overcurrent and thermal protection

VFQFPN3x3-8L and HSOP8 package

Applications

Consumer:

STB, DVD, DVD recorder, car audio, LCD TV and monitors

Industrial:

PLD, PLA, FPGA, chargers

Networking: XDSL, modems, DC-DC modules

Computer:

Optical storage, Hard disk drive, Printers, Audio/graphic cards

LED driving

VFQFPN8 3x3 HSOP8 exposed pad

Description

The L7980 is a step down switching regulator with 2.5 A (minimum) current limited embedded power MOSFET, so it is able to deliver up to 2 A current to the load depending on the application conditions.

The input voltage can range from 4.5 V to 28 V, while the output voltage can be set starting from 0.6 V to VIN.

Requiring a minimum set of external components, the device includes an internal 250 kHz switching frequency oscillator that can be externally adjusted up to 1 MHz.

The QFN and the HSOP packages with exposed

pad allow reducing the RthJA down to 60 °C/W and 40 °C/W respectively.

Figure 1. Application circuit

December 2010

Doc ID 15181 Rev 4

1/44

www.st.com

Contents

L7980

 

 

Contents

1

Pin settings

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 4

 

1.1

Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

 

1.2

Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

2

Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

3

Thermal data

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

4

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

5

Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8

 

5.1

Oscillator and synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

 

5.2

Soft-start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

 

5.3

Error amplifier and compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

 

5.4

Overcurrent protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

 

5.5

Enable function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

 

5.6

Hysteretic thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

6

Application informations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

 

6.1

Input capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

 

6.2

Inductor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

 

6.3

Output capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

 

6.4

Compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

 

 

6.4.1

Type III compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

 

 

6.4.2

Type II compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

 

6.5

Thermal considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

 

6.6

Layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

 

6.7

Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

7

Application ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

35

 

7.1

Positive buck-boost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

35

 

7.2

Inverting buck-boost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

37

2/44

Doc ID 15181 Rev 4

L7980

 

Contents

8

Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 39

9

Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 42

10

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 43

Doc ID 15181 Rev 4

3/44

Pin settings

L7980

 

 

1 Pin settings

1.1Pin connection

Figure 2. Pin connection (top view)

OUT

 

 

 

VCC

 

 

 

 

 

 

 

 

 

SYNCH

 

 

 

GND

EN

 

 

 

FSW

 

 

 

COMP

 

 

 

FB

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2Pin description

Table 1.

Pin description

N.

Type

Description

 

 

 

1

OUT

Regulator output

 

 

 

 

 

Master/Slave Synchronization. When it is left floating, a signal with a

 

 

phase shift of half a period respect to the power turn on is present at the

 

 

pin. When connected to an external signal at a frequency higher than the

2

SYNCH

internal one, then the device is synchronized by the external signal, with

zero phase shift.

 

 

 

 

Connecting together the SYNCH pin of two devices, the one with higher

 

 

frequency works as master and the other one as slave; so the two

 

 

powers turn on have a phase shift of half a period.

 

 

 

3

EN

A logical signal (active high) enable the device. With EN higher than 1.2

V the device is ON and with EN is lower than 0.3V the device is OFF.

 

 

 

 

 

4

COMP

Error amplifier output to be used for loop frequency compensation

 

 

 

 

 

Feedback input. Connecting the output voltage directly to this pin the

5

FB

output voltage is regulated at 0.6V. To have higher regulated voltages an

 

 

external resistor divider is required from Vout to FB pin.

 

 

 

 

 

The switching frequency can be increased connecting an external

6

FSW

resistor from FSW pin and ground. If this pin is left floating the device

 

 

works at its free-running frequency of 250kHz.

 

 

 

7

GND

Ground

 

 

 

8

VCC

Unregulated DC input voltage

4/44

Doc ID 15181 Rev 4

L7980

Maximum ratings

 

 

2 Maximum ratings

Table 2.

Absolute maximum ratings

 

 

 

Symbol

Parameter

Value

Unit

 

 

 

 

 

 

 

Vcc

Input voltage

 

30

 

 

 

 

 

 

 

 

OUT

Output DC voltage

 

-0.3 to VCC

 

FSW, COMP, SYNCH

Analog pin

 

-0.3 to 4

V

 

EN

Enable pin

 

-0.3 to VCC

 

 

FB

Feedback voltage

 

-0.3 to 1.5

 

 

 

 

 

 

 

 

PTOT

Power dissipation

VFQFPN

1.5.

W

 

 

 

 

 

at TA < 60°C

HSOP

2

 

 

 

 

 

 

 

 

 

 

 

TJ

Junction temperature range

-40 to 150

°C

 

Tstg

Storage temperature range

-55 to 150

°C

3

Thermal data

 

 

 

 

Table 3.

Thermal data

 

 

 

 

 

 

 

 

 

 

 

Symbol

 

Parameter

 

Value

Unit

 

 

 

 

 

 

 

 

RthJA

 

Maximum thermal resistance

VFQFPN

60

°C/W

 

 

 

 

 

 

junction-ambient (1)

 

 

 

 

HSOP

40

 

 

 

 

 

 

 

 

 

 

 

 

1. Package mounted on demonstration board.

Doc ID 15181 Rev 4

5/44

Electrical characteristics

L7980

 

 

4 Electrical characteristics

TJ=25 °C, VCC=12 V, unless otherwise specified.

Table 4.

Electrical characteristics

 

 

 

 

Symbol

Parameter

Test condition

 

Values

 

Unit

 

 

 

Min

Typ

Max

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC

Operating input voltage

(1)

4.5

 

28

 

range

 

 

 

 

 

 

 

 

 

 

V

VCCON

Turn on VCC threshold

(1)

 

 

4.4

 

 

 

 

VCCHYS

VCC UVLO Hysteresis

(1)

0.12

 

0.35

 

 

 

 

RDSON

MOSFET on resistance

 

 

160

180

 

 

 

 

(1)

 

160

250

 

 

 

 

 

 

 

 

 

 

 

 

ILIM

Maximum limiting current

 

2.5

3.0

3.5

A

Oscillator

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FSW

Switching frequency

 

225

250

275

KHz

 

 

 

 

(1)

220

 

275

 

 

 

 

 

 

 

 

 

 

 

 

VFSW

FSW pin voltage

 

 

1.254

 

V

D

Duty Cycle

 

0

 

100

%

 

 

 

 

 

 

 

 

FADJ

Adjustable switching

RFSW=33kΩ

 

1000

 

KHz

frequency

 

 

Dynamic characteristics

 

 

 

 

 

 

 

 

 

 

 

 

 

V

FB

Feedback voltage

4.5V<V <28V (1)

0.593

0.6

0.607

V

 

 

CC

 

 

 

 

DC characteristics

 

 

 

 

 

 

 

 

 

 

 

 

 

IQ

Quiescent current

Duty Cycle=0,

 

 

2.4

mA

VFB=0.8V

 

 

 

 

 

 

 

 

 

IQST-BY

Total stand-by quiescent

 

 

20

30

μA

current

 

 

Enable

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EN threshold voltage

Device OFF level

 

 

0.3

V

 

 

 

 

 

 

 

 

Device ON level

1.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EN current

EN=VCC

 

7.5

10

μA

Soft start

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FSW pin floating

7.4

8.2

9.1

 

TSS

Soft start duration

 

 

 

 

ms

F =1MHz,

 

 

 

 

 

 

SW

 

2

 

 

 

 

 

RFSW=33kΩ

 

 

 

 

 

 

 

 

 

 

Error amplifier

 

 

 

 

 

 

 

 

 

 

 

 

 

6/44

Doc ID 15181 Rev 4

L7980

 

 

Electrical characteristics

 

 

 

 

 

 

 

 

 

Table 4.

Electrical characteristics

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

Test condition

 

Values

 

Unit

 

 

 

 

 

Min

Typ

Max

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCH

High level output voltage

VFB<0.6V

3

 

 

V

 

VCL

Low level output voltage

VFB>0.6V

 

 

0.1

 

 

 

 

 

IO SOURCE

Source COMP pin

VFB=0.5V, VCOMP=1V

 

17

 

mA

 

IO SINK

Sink COMP pin

VFB=0.7V, VCOMP=1V

 

25

 

mA

 

GV

Open loop voltage gain

(2)

 

100

 

dB

 

 

 

 

 

Synchronization function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

High input voltage

 

2

 

3.3

V

 

 

 

 

 

 

 

 

 

Low input voltage

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Slave sink current

VSYNCH=2.9V

 

0.7

0.9

mA

 

 

Master output amplitude

ISOURCE=4.5mA

2.0

 

 

V

 

 

Output pulse width

SYNCH floating

 

110

 

ns

 

 

 

 

 

 

 

 

 

Input pulse width

 

70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Protection

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TSHDN

Thermal shutdown

 

 

150

 

°C

 

 

 

 

 

 

 

Hysteresis

 

 

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.Specification referred to TJ from -40 to +125°C. Specification in the -40 to +125°C temperature range are assured by design, characterization and statistical correlation.

2.Guaranteed by design.

Doc ID 15181 Rev 4

7/44

Functional description

L7980

 

 

5 Functional description

The L7980 is based on a “voltage mode”, constant frequency control. The output voltage VOUT is sensed by the feedback pin (FB) compared to an internal reference (0.6 V) providing an error signal that, compared to a fixed frequency sawtooth, controls the on and off time of the power switch.

The main internal blocks are shown in the block diagram in Figure 3. They are:

A fully integrated oscillator that provides sawtooth to modulate the duty cycle and the synchronization signal. Its switching frequency can be adjusted by an external resistor. The voltage and frequency feed forward are implemented.

The soft start circuitry to limit inrush current during the start up phase.

The voltage mode error amplifier

The pulse width modulator and the relative logic circuitry necessary to drive the internal power switch.

The high-side driver for embedded p-channel power MOSFET switch.

The peak current limit sensing block, to handle over load and short circuit conditions.

A voltage regulator and internal reference. It supplies internal circuitry and provides a fixed internal reference.

A voltage monitor circuitry (UVLO) that checks the input and internal voltages.

A thermal shutdown block, to prevent thermal run away.

Figure 3. Block diagram

 

 

 

 

 

VCC

 

TRIMMING

REGULATOR

UVLO

 

 

 

&

 

 

 

 

 

 

EN

EN

BANDGAP

PEAK

 

 

 

 

 

 

 

1.254V

3.3V

CURRENT

 

 

LIMIT

 

 

0.6V

 

 

 

 

 

 

 

 

 

SOFT-

THERMAL

 

 

COMP

START

SHUTDOWN

 

DRIVER

 

 

 

 

 

 

E/A

PWM

S

Q

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

OUT

 

 

 

 

SYNCH

 

 

OSCILLATOR

&

 

 

 

PHASE SHIFT

 

FB

FSW

GND

SYNCH

8/44

Doc ID 15181 Rev 4

L7980

Functional description

 

 

5.1Oscillator and synchronization

Figure 4 shows the block diagram of the oscillator circuit. The internal oscillator provides a constant frequency clock. Its frequency depends on the resistor externally connect to FSW pin. In case the FSW pin is left floating the frequency is 250 kHz; it can be increased as shown in Figure 6 by external resistor connected to ground.

To improve the line transient performance, keeping the PWM gain constant versus the input voltage, the voltage feed forward is implemented by changing the slope of the sawtooth according to the input voltage change (see Figure 5.a).

The slope of the sawtooth also changes if the oscillator frequency is increased by the external resistor. In this way a frequency feed forward is implemented (Figure 5.b) in order to keep the PWM gain constant versus the switching frequency (see Section 6.4 for PWM gain expression).

On the SYNCH pin the synchronization signal is generated. This signal has a phase shift of 180° with respect to the clock. This delay is useful when two devices are synchronized connecting the SYNCH pin together. When SYNCH pins are connected, the device with higher oscillator frequency works as Master, so the Slave device switches at the frequency of the Master but with a delay of half a period. This minimizes the RMS current flowing through the input capacitor [see L5988D data sheet].

Figure 4. Oscillator circuit block diagram

 

Clock

 

FSW

Clock

SYNCH

 

Synchronization

 

Generator

 

 

Ramp

Sawtooth

 

Generator

 

 

The device can be synchronized to work at higher frequency feeding an external clock signal. The synchronization changes the sawtooth amplitude, changing the PWM gain (Figure 5.c). This changing has to be taken into account when the loop stability is studied. To minimize the change of the PWM gain, the free running frequency should be set (with a resistor on FSW pin) only slightly lower than the external clock frequency. This pre-adjusting of the frequency will change the sawtooth slope in order to get negligible the truncation of sawtooth, due to the external synchronization.

Doc ID 15181 Rev 4

9/44

ST L7980 User Manual

Functional description

L7980

 

 

 

 

Figure 5.

Sawtooth: voltage and frequency feed forward; external synchronization

 

 

 

 

 

 

Figure 6. Oscillator frequency versus FSW pin resistor

10/44

Doc ID 15181 Rev 4

L7980

Functional description

 

 

5.2Soft-start

The soft-start is essential to assure correct and safe start up of the step-down converter. It avoids inrush current surge and makes the output voltage increases monothonically.

The soft -start is performed by a staircase ramp on the non-inverting input (VREF) of the error amplifier. So the output voltage slew rate is:

Equation 1

SROUT = SRVREF

 

1

R1

 

+ -------

 

 

 

R2

where SRVREF is the slew rate of the non-inverting input, while R1and R2 is the resistor divider to regulate the output voltage (see Figure 7). The soft-start stair case consists of 64

steps of 9.5 mV each one, from 0 V to 0.6 V. The time base of one step is of 32 clock cycles. So the soft start time and then the output voltage slew rate depend on the switching frequency.

Figure 7. Soft start scheme

Soft start time results:

Equation 2

32 64 SSTIME = -----------------

Fsw

For example with a switching frequency of 250 kHz the SSTIME is 8 ms.

5.3Error amplifier and compensation

The error amplifier (E/A) provides the error signal to be compared with the sawtooth to perform the pulse width modulation. Its non-inverting input is internally connected to a 0.6 V voltage reference, while its inverting input (FB) and output (COMP) are externally available for feedback and frequency compensation. In this device the error amplifier is a voltage mode operational amplifier so with high DC gain and low output impedance.

The uncompensated error amplifier characteristics are the following:

Doc ID 15181 Rev 4

11/44

Functional description

L7980

 

 

 

 

 

 

Table 5.

Uncompensated error amplifier characteristics

 

 

 

 

 

 

 

 

Low frequency gain

 

100dB

 

 

 

 

 

 

 

GBWP

 

4.5MHz

 

 

 

 

 

 

 

Slew rate

 

7V/μs

 

 

 

 

 

 

 

Output voltage swing

 

0 to 3.3V

 

 

 

 

 

 

 

Maximum source/sink current

 

17mA/25mA

 

 

 

 

 

In continuos conduction mode (CCM), the transfer function of the power section has two poles due to the LC filter and one zero due to the ESR of the output capacitor. Different kinds of compensation networks can be used depending on the ESR value of the output capacitor. In case the zero introduced by the output capacitor helps to compensate the double pole of the LC filter a type II compensation network can be used. Otherwise, a type III compensation network has to be used (see Chapter 6.4 for details about the compensation network selection).

Anyway the methodology to compensate the loop is to introduce zeros to obtain a safe phase margin.

12/44

Doc ID 15181 Rev 4

L7980

Functional description

 

 

5.4Overcurrent protection

The L7980 implements the overcurrent protection sensing current flowing through the power MOSFET. Due to the noise created by the switching activity of the power MOSFET, the current sensing is disabled during the initial phase of the conduction time. This avoids an erroneous detection of a fault condition. This interval is generally known as “masking time” or “blanking time”. The masking time is about 200 ns.

When the overcurrent is detected, two different behaviors are possible depending on the operating condition.

1.Output voltage in regulation. When the overcurrent is sensed, the power MOSFET is

switched off and the internal reference (VREF), that biases the non-inverting input of the error amplifier, is set to zero and kept in this condition for a soft start time (TSS, 2048 clock cycles). After this time, a new soft start phase takes place and the internal reference begins ramping (see Figure 8.a).

2.Soft start phase. If the overcurrent limit is reached the power MOSFET is turned off implementing the pulse by pulse overcurrent protection. During the soft start phase, under overcurrent condition, the device can skip pulses in order to keep the output current constant and equal to the current limit. If at the end of the “masking time” the current is higher than the overcurrent threshold, the power MOSFET is turned off and it will skip one pulse. If, at the next switching on at the end of the “masking time” the current is still higher than the threshold, the device will skip two pulses. This mechanism is repeated and the device can skip up to seven pulses. While, if at the end of the “masking time” the current is lower than the overcurrent threshold, the number of skipped cycles is decreased of one unit. At the end of soft start phase the output voltage is in regulation and if the overcurrent persists the behavior explained above takes place. (see Figure 8.b)

So the overcurrent protection can be summarized as an “hiccup” intervention when the output is in regulation and a constant current during the soft start phase. If the output is shorted to ground when the output voltage is on regulation, the overcurrent is triggered and the device starts cycling with a period of 2048 clock cycles between “hiccup” (power MOSFET off and no current to the load) and “constant current” with very short on-time and with reduced switching frequency (up to one eighth of normal switching frequency). See Figure 32. for short circuit behavior.

Doc ID 15181 Rev 4

13/44

Functional description

L7980

 

 

Figure 8. Overcurrent protection strategy

5.5Enable function

The enable feature allows to put in stand-by mode the device.With EN pin lower than 0.3V the device is disabled and the power consumption is reduced to less than 30 µA. With EN pin lower than 1.2 V, the device is enabled. If the EN pin is left floating, an internal pull down ensures that the voltage at the pin reaches the inhibit threshold and the device is disabled. The pin is also VCC compatible.

5.6Hysteretic thermal shutdown

The thermal shutdown block generates a signal that turns off the power stage if the junction temperature goes above 150°C. Once the junction temperature goes back to about 130°C, the device restarts in normal operation. The sensing element is very close to the PDMOS area, so ensuring an accurate and fast temperature detection.

14/44

Doc ID 15181 Rev 4

Loading...
+ 30 hidden pages