ST L6730B User Manual

Adjustable step-down controller with synchronous rectification
Features
Input voltage range from 1.8V to 14V
Supply voltage range from 4.5V to 14V
±0.8% accuracy over line voltage and temperature (0°C~125°C)
Fixed frequency voltage mode control
t
0% to 100% duty cycle
Selectable 0.6V or 1.2V internal voltage
External input voltage reference
Soft-start and inhibit
High current embedded drivers
Predictive anti-crossconduction control
Selectable uvlo threshold (5V or 12V BUS)
Programmable high-side and low-side R
Switching frequency programmable from
Master/slave synchronization with 180° phase
Pre-bias start up capability (L6730)
Selectable source/sink or source only
Selectable constant current or hiccup mode
lower than 100ns
ON
reference
DS(on)
sense over-current-protection
100kHz to 1MHz
shift
capability after soft-start (L6730)
overcurrent protection after soft-start (L6730B)
L6730B
HTSSOP20
Power good output with programmable delay
Over voltage protection with selectable
latched/not-latched mode
Thermal shut-down
Package: HTSSOP20
Applications
High performance / high density DC-DC
modules
Low voltage distributed DC-DC
niPOL converters
DDR memory supply
DDR memory bus termination supply
L6730
Order Codes
Part number Package Packing
L6730 HTSSOP20 Tube
L6730TR HTSSOP20 Tape & Reel
L6730B HTSSOP20 Tube
L6730BTR HTSSOP20 Tape & Reel
June 2006 Rev 2 1/52
www.st.com
52
Contents L6730 - L6730B
Contents
1 Summary description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Pin connections and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5 Device description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Internal LDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3 Bypassing the LDO to avoid the voltage drop with low Vcc . . . . . . . . . . . . . 14
5.4 Internal and external references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.5 Error amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.6 Soft-start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.7 Driver section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.8 Monitoring and protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.9 Adjustable masking time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.10 Multifunction pin (S/O/U L6730) (CC/O/U L6730B) . . . . . . . . . . . . . . . . . . . 27
5.11 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.12 Thermal Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.13 Minimum ON-time TON(MIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.14 Bootstrap anti-discharging system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.14.1 Fan power supply failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.14.2 No-Sink at zero current operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2/52
L6730 - L6730B Contents
6 Application details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.1 Inductor design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Output capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.3 Input capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.4 Compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.5 Two quadrant or one quadrant operation mode (L6730) . . . . . . . . . . . . . . . . 36
7 L6730 Demo board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.2 PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8 I/O Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
10 POL Demoboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
11 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
12 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3/52
Summary description L6730 - L6730B

1 Summary description

The controller is an integrated circuit ... designed using BiCMOS-DMOS, v5 (BCD5) technology that provides complete control logic and protection for high performance, step-down DC/DC and niPOL converters.
It is designed to drive N-Channel MOSFETs in a synchronous rectified buck converter topology. The output voltage of the converter can be precisely regulated down to 600mV, with a maximum tolerance of ±0.8%, or to 1.2V, when one of the internal references is used. It is also possible to use an external reference from 0V to 2.5V.
The input voltage can range from 1.8V to 14V, while the supply voltage can range from 4.5V to 14V. High peak current gate drivers provide for fast switching to the external power section and the output current can be in excess of 20A, depending on the number of the external MOSFETs used. The PWM duty cycle can range from 0% to 100% with a minimum on-time (T lower than 100ns, making conversions with a very low duty cycle and very high switching frequency possible.
The device provides voltage-mode control. It includes a 400kHz free-running oscillator that is adjustable from 100kHz to 1MHz. The error amplifier features a 10MHz gain-bandwidth-product and 5V/µs slew-rate that permits to realize high converter bandwidth for fast transient response. The device monitors the current by using the R MOSFET(s), eliminating the need for a current sensing resistor and guaranteeing an effective over current-protection in all the application conditions. When necessary, two different current limit protections can be externally set through two external resistors. A leading edge adjustable blanking time is also available to avoid false over-current-protection (OCP) intervention in every application condition.
of both the high-side and low-side
DS(ON)
ON(MIN)
)
It is possible to select the HICCUP mode or the constant current protection (L6730B) after the soft-start phase.
During this phase constant current protection is provided. It is possible to select the sink-source or the source-only mode capability (before the device powers on) by acting on a multifunction pin (L6730). The L6730 disables the sink mode capability during the soft-start in order to allow a proper start-up also in pre-biased output voltage conditions. The L6730B can always sink current and, so it can be used to supply the DDR Memory BUS termination. Other features include Master-Slave synchronization (with 180° phase shift), Power-Good with adjustable delay, over voltage-protection, feed back disconnection, selectable UVLO threshold (5V and 12V Bus), and thermal shutdown. The HTSSOP20 package allows the realization for very compact DC/DC converters.
4/52
L6730 - L6730B Summary description

1.1 Functional description

Figure 1. Block diagram

VCC=4.5V to14V
V
=1.8V to14V
in
SS/INH SYNCH
OSC
EAREF
PGOOD
SINK/OVP/UVLO*
TMASK
PGOOD
OCL
Monitor
Protection
and Ref
+
-
MASKING TIME
ADJUSTMENT
OCH
OSC
L6730/B
0.6V
1.2V
LDO
-
+
FB
VCCDR
PWM
+
-
E/A
COMP
BOOT
HGATE
PHASE
LGATE
PGND
GND
Vo
1. In the L6730B the multifunction pin is: CC/OVP/UVLO.
5/52
Electrical data L6730 - L6730B

2 Electrical data

2.1 Maximum rating

Table 1. Absolute maximum ratings

Symbol Parameter Value Unit
V
VCC to GND and PGND, OCH, PGOOD
CC
V
BOOT - VPHASE
V
HGATE - VPHASE
V
BOOT
V
PHASE
Boot Voltage 0 to 6 V
BOOT -0.3 to 24 V
PHASE -1 to 18
PHASE Spike, transient < 50ns (F
= 500KHz)
SW
-0.3 to 18 V
0 to V
BOOT
- V
PHASE
-3
+24
V
V
OCH Pin
SS, FB, EAREF, SYNC, OSC, OCL, LGATE, COMP, S/O/ U, TMASK, PGOODELAY, V
CCDR
Maximum Withstanding Voltage Range
-0.3 to 6 V
±1500
Test Condition: CDF-AEC-Q100-002 "Human Body Model"
OTHER PINS ±2000
Acceptance Criteria: "Normal Performance"

2.2 Thermal data

Table 2. Thermal data

Symbol Description Value Unit
(1)
R
thJA
T
STG
T
J
T
A
1. Package mounted on demoboard
Max. Thermal Resistance Junction to ambient 50 °C/W
Storage temperature range -40 to +150 °C
Junction operating temperature range -40 to +125 °C
Ambient operating temperature range -40 to +85 °C
VPGOOD Pin ±1000
6/52
L6730 - L6730B Pin connections and functions

3 Pin connections and functions

Figure 2. Pins connection (Top view)

PGOOD DELAY
PGOOD DELAY
SINK/OVP/UVLO
TMASK
TMASK
SS/INH
SS/INH
EAREF
EAREF
1. In the L6730B the multifunction pin is: CC/OVP/UVLO.
SYNCH
SYNCH
GND
GND
FB
FB
COMP
COMP
OSC
OSC
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10
10
HTSSOP20
HTSSOP20
20
20
19
19
18
18
17
17
16
16
15
15
14
14
13
13
12
12
11
11
PGOOD
PGOOD
VCC
VCC
VCCDR
VCCDR
LGATE
LGATE
PGND
PGND
BOOT
BOOT
HGATE
HGATE
PHASE
PHASE
OCH
OCH
OCL
OCL

Table 3. Pins connection

Pin n. Name Description
A capacitor connected between this pin and GND introduces a delay between the internal PGOOD comparator trigger and the external signal rising edge. No
1 PGOOD DELAY
delay can be introduced on the falling edge of the PGOOD signal. The delay can be calculated with the following formula:
2 SYNCH
SINK/OVP/UVLO
L6730
3
CC/OVP/UVLO
L6730B
()
pFCPGDelay = 5.0
Two or more devices can be synchronized by connecting the SYNCH pins together. The device operating with the highest F The Slave devices will operate at 180° phase shift from the Master. The best way to synchronize devices is to set their FSW at the same value. If it is not used, the SYNCH pin can be left floating.
With this pin it is possible: – To enable-disable the sink mode current capability after SS (L6730); – To enable-disable the constant current OCP after SS (L6730B); – To enable-disable the latch mode for the OVP; – To set the UVLO threshold for the 5V BUS and 12V BUS. The device captures the analog value present at this pin at the start-up when
meets the UVLO threshold.
V
CC
s]
SW will be the Master device.
7/52
Pin connections and functions L6730 - L6730B
Table 3. Pins connection
The user can select two different values for the leading edge blanking time on
4
T
MASK
the peak overcurrent protection by connecting this pin to V device captures the analog value present at this pin at the start-up when VCC meets the UVLO threshold.
5 GND All of the internal references are referenced to this pin.
This pin is connected to the error amplifier inverting input. Connect it to Vout
6FB
through the compensation network. This pin is also used to sense the output voltage in order to manage the over voltage conditions and the PGood signal.
7COMP
This pin is connected to the error amplifier output and used to compensate the voltage control loop.
The soft-start time is programmed connecting an external capacitor from this
8 SS/INH
pin and GND. The internal current generator forces a current of 10µA through the capacitor. This pin is also used to inhibit the device: when the voltage at this pin is lower than 0.5V the device is disabled.
It is possible to set two internal references 0.6V / 1.2V or provide an external reference from 0V to 2.5V:
9 EAREF
V
V
V
from 0% to 80% of V
EAREF
from 80% to 95% of V
EAREF
from 95% to 100% of V
EAREF
An internal clamp limits the maximum V
−> External Reference
CCDR
CCDR
CCDR
−> V
=1.2V
REF
−> V
REF
at 2.5V (typ.). The device
EAREF
=0.6V
captures the analog value present at this pin at the start-up when V the UVLO threshold.
CCDR or GND. The
meets
CC
10 OSC
Connecting an external resistor from this pin to GND, the external frequency can be increased according with the following equation:
6
1088.9
400
Connecting a resistor from this pin to V
+=KRKHzFsw
CCDR
)(
OSC
(5V), the switching frequency can
be lowered according with the following equation:
7
1001.3
400
=KRKHzFsw
OSC
)(
If the pin is left open, the switching frequency is 400 KHz. Normally this pin is at a voltage of 1.2V. In OVP the pin is pulled up to 4.5V (only in latched mode). Don’t connect a capacitor from this pin to GND.
8/52
L6730 - L6730B Pin connections and functions
Table 3. Pins connection
A resistor connected from this pin to ground sets the valley- current-limit. The valley current is sensed through the low-side MOSFET(s). The internal current
11 OCL
12 OCH
generator sources a current of 100µA (I external resistor (R
). The over-current threshold is given by the following
OCL
equation:
I
VALLEY
Connecting a capacitor from this pin to GND helps in reducing the noise injected from V
to the device, but can be a low impedance path for the high-
CC
frequency noise related to the GND. Connect a capacitor only to a “clean” GND.
A resistor connected from this pin and the high-side MOSFET(s) drain sets the peak-current-limit. The peak current is sensed through the high-side MOSFET(s). The internal 100µA current generator (I
the drain through the external resistor (R given by the following equation:
I
PEAK
) from this pin to ground through the
OCL
R
I
OCL
OCL
=
R2
DSonLS
) sinks a current from
OCH
). The over-current threshold is
OCH
R
I
OCH
OCH
=
R
DSonHS
This pin is connected to the source of the high-side MOSFET(s) and provides
13 PHASE
the return path for the high-side driver. This pin monitors the drop across both the upper and lower MOSFET(s) for the current limit together with OCH and OCL.
14 HGATE This pin is connected to the high-side MOSFET(s) gate.
The high-side driver is supplied through this pin. Connect a capacitor from this
15 BOOT
pin to the PHASE pin, and a diode from V
CCDR to this pin (cathode versus
BOOT).
16 PGND
This pin has to be connected closely to the low-side MOSFET(s) source in order to reduce the noise injection into the device.
17 LGATE This pin is connected to the low-side MOSFET(s) gate.
18
19
V
CCDR
V
CC
5V internally regulated voltage. It is used to supply the internal drivers and as a voltage reference. Filter it to GND with at least a 1µF ceramic cap.
Supply voltage pin. The operative supply voltage range is from 4.5V to 14V.
This pin is an open collector output and it is pulled low if the output voltage is
20 PGOOD
not within the specified thresholds (90%-110%). If not used it may be left floating. Pull up this pin to V
with a 10K resistor to obtain a logical signal.
CCDR
9/52
L6730 - L6730B Electrical characteristics

4 Electrical characteristics

V
= 12V, TA = 25°C unless otherwise specified
CC

Table 4. Electrical characteristics

Symbol Parameter Test Condition Min. Typ. Max. Unit
V
SUPPLY CURRENT
CC
VCC Stand By current
I
CC
quiescent current
V
CC
Power-ON
Tu r n - O N V
5V BUS
Tu r n - O F F V
Tu r n - O N V
12V BUS
Tu r n - O F F V
Tu r n - O N V
V
V
CCDR
IN OK
Regulation
Tu r n - O F F V
V
CCDR
Soft Start and Inhibit
I
SS
Soft Start Current
threshold V
CC
threshold V
CC
threshold V
CC
threshold V
CC
threshold
OCH
threshold
OCH
voltage
OSC = open; SS to GND 7 9
OSC= open; HG = open, LG = open, PH=open
= 1.7V
OCH
= 1.7V
OCH
= 1.7V
OCH
= 1.7V
OCH
4.0 4.2 4.4
3.6 3.8 4.0
8.3 8.6 8.9
7.4 7.7 8.0
8.5 10
1.1 1.25 1.47
0.9 1.05 1.27
=5.5V to 14V
V
CC
= 1mA to 100mA
I
DR
4.555.5V
SS = 2V 7 10 13
SS = 0 to 0.5V 20 30 45
mA
V
µA
Oscillator
f
OSC
f
OSC,RT
V
OSC
Initial Accuracy OSC = OPEN 380 400 420 KHz
Total Accuracy
Ramp Amplitude 2.1 V
Output Voltage (1.2V MODE)
V
FB
Output Voltage 1.190 1.2 1.208 V
Output Voltage (0.6 MODE)
V
FB
Output Voltage 0.597 0.6 0.603 V
RT = 390KΩ to V
CCDR
RT = 18KΩ to GND
-15 15 %
10/52
L6730 - L6730B Electrical characteristics
Table 4. Electrical characteristics
Symbol Parameter Test Condition Min. Typ. Max. Unit
Error Amplifier
R
EAREF
I
FB
Ext Ref
Clamp
V
OFFSET
G
V
EAREF Input Resistance Vs. GND 70 100 150 k
I.I. bias current
V
FΒ
0.290 0.5 µA
= 0V
2.3 V
Error amplifier offset Vref = 0.6V -5 +5 mV
Open Loop Voltage Gain Guaranteed by design 100 dB
GBWP Gain-Bandwidth Product Guaranteed by design 10 MHz
SR Slew-Rate
COMP = 10pF Guaranteed by design
5V/µs
Gate Drivers
R
HGATE_ON
R
HGATE_OFF
R
LGATE_ON
R
LGATE_OFF
High Side Source Resistance
High Side Sink Resistance
Low Side Source Resistance
Low Side Sink Resistance
V
BOOT
V
BOOT
V
CCDR
V
CCDR
- V
- V
= 5V
= 5V
PHASE
PHASE
= 5V
= 5V
1.7
1.12
1.15
0.6
Protections
I
OCH
I
OCL
OVP
I
OSC
OCH Current Source
OCL Current Source 90 100 110 µΑ
Over Voltage Trip (V
FB
/ V
EAREF
)
OSC Sourcing Current
= 1.7V
V
OCH
V
Rising
FB
= 0.6V
V
EAREF
V
Falling
FB
= 0.6V
V
EAREF
> OVP Trip V
V
FB
OSC
= 3V
90 100 110 µΑ
120 %
117 %
30 mA
Power Good
V
PGOOD
Upper Threshold (V
FB
/ V
EAREF
)
Lower Threshold (VFB / V
EAREF
)
PGOOD Voltage Low
V
Rising
FB
V
Falling
FB
I
PGOOD
= -5mA
108 110 112 %
88 90 92 %
0.5 V
11/52
Electrical characteristics L6730 - L6730B
Table 5. Thermal Characterizations (V
CC
= 12V)
Symbol Parameter Test Condition Min Typ Max Unit
Oscillator
f
OSC
Initial Accuracy
OSC = OPEN;
=0°C~ 125°C
T
J
376 400 424 KHz
Output Voltage (1.2V MODE)
T
= 0°C~ 125°C
V
FB
Output Voltage
J
T
= -40°C~ 125°C
J
1.188 1.2 1.212 V
1.185 1.2 1.212 V
Output Voltage (0.6V MODE)
T
= 0°C~ 125°C
V
FB
Output Voltage
J
T
= -40°C~ 125°C
J
0.596 0.6 0.605 V
0.593 0.6 0.605 V
12/52
L6730 - L6730B Device description

5 Device description

5.1 Oscillator

The switching frequency is internally fixed to 400kHz. The internal oscillator generates the triangular waveform for the PWM charging and discharging an internal capacitor (F 400kHz). This current can be varied using an external resistor (R pin and GND or V maintained at fixed voltage (typ. 1.2V), the frequency is increased (or decreased) proportionally to the current sunk (sourced) from (into) the pin. In particular by connecting R frequency is increased (current is sunk from the pin), according to the following relationship:
in order to change the switching frequency. Since the OSC pin is
CCDR
6
1088.9
400
+=KRKHzFsw
OSC
(1)
)(
) connected between OSC
T
versus GND the
T
SW
=
Connecting R the following relationship:
Switching frequency variation vs. R

Figure 3. Switching frequency variation versus RT.

to V
T
reduces the frequency (current is sourced into the pin), according to
CCDR
400
=KRKHzFsw
OSC
is shown in Figure 3..
T
Switching Frequency Variation
1500
1400
1300
1200
1100
1000
900
800
700
Fsw (KHz)
600
500
400
300
200
100
Rosc connected to GND
Rosc connected to Vccdr
0 100 200 300 400 500 600 700 800 900 1000
7
1001.3
(2)
)(
Rosc (KOHM )
13/52
Device description L6730 - L6730B

5.2 Internal LDO

An internal LDO supplies the internal circuitry of the device. The input of this stage is the VCC pin and the output (5V) is the V

Figure 4. LDO block diagram.

pin (see Figure 4.).
CCDR
4.5V÷14V
LDO

5.3 Bypassing the LDO to avoid the voltage drop with low Vcc

The LDO can be by passed by providing 5V voltage directly to V V
pins must be shorted together as shown in Figure 5. V
CCDR
CCDR
least 1µF capacitor to sustain the internal LDO during the recharge of the bootstrap capacitor. V
also represents a voltage reference for Tmask pin, S/O/U pin (L6730) or CC/O/U pin
CCDR
(L6730B) and PGOOD pin (see Table 3: Pins connection).
If Vcc
5V the internal LDO works in dropout with an output resistance of about 1Ω.
The maximum LDO output current is about 100mA, and so the output voltage drop can be 100mV. The LDO can be bypassed to avoid this.
. In this case Vcc and
CCDR
pin must be filtered with at

Figure 5. Bypassing the LDO

14/52
L6730 - L6730B Device description
V
V
V
V

5.4 Internal and external references

It is possible to set two internal references, 0.6V and 1.2V, or provide an external reference from 0V to 2.5V. The maximum value of the external reference depends on the V 4V the clamp operates at about 2V (typ.), while with V
greater than 5V the maximum external
CC
reference is 2.5V (typ).
V
V
V
from 0% to 80% of V
EAREF
from 80% to 95% of V
EAREF
from 95% to 100% of V
EAREF
−> External reference
CCDR
−> V
CCDR
CCDR
−> V
REF
REF
= 1.2V
= 0.6V
Providing an external reference from 0V to 450mV the output voltage will be regulated but some restrictions must be considered:
The minimum OVP threshold is set at 300mV.
The under-voltage-protection doesn’t work.
The PGOOD signal remains low.
To set the resistor divider it must be considered that a 100K pull-down resistor is integrated into the device (see Figure 6.). Finally it must be taken into account that the voltage at the EAREF pin is captured by the device at the start-up when Vcc is about 4V.
: with VCC =
CC

5.5 Error amplifier

Figure 6. Error Amplifier Reference

CCDR
EAREF
100K
0.6
1.2
EXT
2.5
Error Amplifier Ref.
15/52
Device description L6730 - L6730B
V
V
V

5.6 Soft-start

When both VCC and VIN are above their turn-on thresholds (VIN is monitored by the OCH pin) the start-up phase takes place. Otherwise the SS pin is internally shorted to GND. At start-up, a ramp is generated charging the external capacitor C initial value for this current is 35µA and charges the capacitor up to 0.5V. After that it becomes 10µA until the final charge value of approximately 4V (see Figure 5.).

Figure 7. Device start-up: Voltage at the SS pin.

with an internal current generator. The
SS
ss
Vss
0.5V
0.5V
0. 5V
4V
cc
Vcc
in
Vin
4. 2V
4.2V or 8.6V
1. 25V
1.25V
4V
t
t
16/52
Loading...
+ 36 hidden pages