ST L6728D User Manual

Single-phase PWM controller with Power Good
Features
Flexible power supply from 5 V to 12 V
Power conversion input as low as 1.5 V
0.8% output voltage accuracy
High-current integrated drivers
Power Good output
Sensorless and programmable OCP across
low-side R
OV / UV protection
VSEN disconnection protection
Oscillator internally fixed at 300 kHz
LSLess to manage pre-bias startup
Adjustable output voltage
Disable function
Internal soft-start
DFN10 package
Applications
Memory and termination supply
Subsystem power supply (MCH, IOCH, PCI,
etc.)
CPU and DSP power supply
Distributed power supply
General DC-DC converters

Table 1. Device summary

DS(on)
Order codes Package Packaging
L6728D
DFN10
Description
L6728D is a single-phase step-down controller with integrated high-current drivers that provides complete control logic and protection to simplify the design of general DC-DC converters by using a compact DFN10 package.
Device flexibility allows the management of conversions with power input (V
1.5 V, and device supply voltage ranging from 5 V to 12 V.
The L6728D provides a simple control loop with voltage mode EA. The integrated 0.8 V reference allows output voltages regulation with ±0.8% accuracy over line and temperature variations. The oscillator is internally fixed to 300 kHz.
The L6728D provides programmable dual level overcurrent protection, as well as overvoltage and undervoltage protection. Current information is monitored across the low-side MOSFET R eliminating the need for expensive and space­consuming sense resistors.
A PGOOD output easily provides real-time information on output voltage status, through the VSEN dedicated output monitor.
) as low as
IN
DS(on)
,
L6728D
Tube
DFN10
L6728DTR Tape and reel
February 2010 Doc ID 16498 Rev 1 1/33
www.st.com
33
Contents L6728D
Contents
1 Typical application circuit and block diagram . . . . . . . . . . . . . . . . . . . . 4
1.1 Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Pin description and connection diagram . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5 Device description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6 Driver section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.1 Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7 Soft-start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7.1 Low-side-less startup (LSLess) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
8 Overcurrent protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
8.1 Overcurrent threshold setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
9 Output voltage setting and protections . . . . . . . . . . . . . . . . . . . . . . . . 15
10 Application details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
10.1 Compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
10.2 Layout guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
11 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
11.1 Inductor design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
11.2 Output capacitor(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
11.3 Input capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2/33 Doc ID 16498 Rev 1
L6728D Contents
12 20 A demonstration board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
12.1 Board description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
12.1.1 Power input (Vin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
12.1.2 Output (Vout) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
12.1.3 Signal input (Vcc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
12.1.4 Test points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
12.1.5 Board characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
13 5 A demonstration board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
13.1 Board description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
13.1.1 Power input (Vin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
13.1.2 Output (Vout) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
13.1.3 Signal input (Vcc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
13.1.4 Test points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
13.1.5 Board characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
14 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
15 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Doc ID 16498 Rev 1 3/33
Typical application circuit and block diagram L6728D

1 Typical application circuit and block diagram

1.1 Application circuit

Figure 1. Typical application circuit of the L6728D

C
HF
VIN = 1.5V to 12V
L
C
BULK
Vout
C
OUT
LOAD
VCC = 5V to 12V
PGOOD
C
P
R
OS
C
DEC
R
PG
10
PGOOD
7
COMP
C
F
R
F
/ DIS
8
FB
VSEN
R
9
FB
6
VCC
L6728A
L6728D
GND
BOOT
UGATE
PHASE
LGATE
/ OC
5
R
1
3
2
4
OCSET
HS
LS
L6728A Reference Schematic
L6728D

1.2 Block diagram

Figure 2. Block diagram of the L6728D

VSEN
PGOOD
R
OS
V
MONITOR
OUT
300 kHz
OSCILLATOR
L6728A
L6728D
CLOCK
R
FB
VCC
CONTROL LOGIC
PROTECTIONS
ERROR AMPLIFIER
V
OC
OCTH
&
BOOT
CROSS CONDUCTION
ADAPTIVE ANTI
HS
UGATE
PHASE
PWM
VCC
LS
LGATE / OC
GND
+
0.8V
­I
OCSET
/ DIS
COMP
4/33 Doc ID 16498 Rev 1
FB
L6728D Pin description and connection diagram

2 Pin description and connection diagram

Figure 3. Pin connection (top view)

L6728D

2.1 Pin descriptions

Table 2. Pins description

Pin n° Name Function
1BOOT
HS driver supply. Connect through a capacitor (100 nF) to the floating node (LS-Drain) pin and provide necessary bootstrap diode from VCC.
HS driver return path, current-reading and adaptive-dead-time monitor. Connect to the LS
2 PHASE
drain to sense
R
DS(on)
drop to measure the output current. This pin is also used by the
adaptive-dead-time control circuitry to monitor when HS MOSFET is OFF.
3 UGATE HS driver output. Connect directly to HS MOSFET gate.
LGATE: LS driver output. Connect directly to LS MOSFET gate. OC: Overcurrent threshold set. During a short period of time following VCC rising over the UVLO threshold, a 10 μA current is sourced from this pin. Connect to GND with an R
4 LGATE / OC
program the OC threshold. The resulting voltage at this pin is sampled and held internally as the OC set point. The maximum programmable OC threshold is 0.55 V. A voltage greater than
0.6 V activates an internal clamp and causes the OC threshold to be set at the maximum value.
5GND
6VCC
All internal references, logic and drivers are connected to this pin. Connect to the PCB ground plane.
Device and driver power supply. Operating range from 5 V to 12 V. Filter with at least 1 µF MLCC to GND.
COMP: Error amplifier output. Connect with an R
7 COMP / DIS
control loop. DIS: The device can be disabled by pushing this pin lower than 0.75 V (typ). By setting the pin free, the device is enabled again.
resistor greater than 5 kΩ to
OCSET
- CF // CP to FB to compensate the device
F
8FB
Error amplifier inverting input. Connect with a resistor R output resistor divider may be used to regulate voltages higher than the reference.
to the output regulated voltage. An
FB
Regulated voltage sense pin for OVP and UVP protection and PGOOD. Connect to the output
9 VSEN
regulated voltage, or to the output resistor divider if the regulated voltage is higher than the reference.
10 PGOOD
Open drain output set free after SS has finished and pulled low when VSEN is outside the relative window. Pull up to a voltage equal or lower than VCC. If not used it can be left floating.
Doc ID 16498 Rev 1 5/33
Thermal data L6728D

3 Thermal data

Table 3. Thermal data

Symbol Parameter Value Unit
R
R
T
T
P
th(JA)
th(JC)
MAX
STG
T
J
TOT
Thermal resistance junction-to-ambient (device soldered on 2s2p, 67 mm x 69 mm board)
45 °C/W
Thermal resistance junction-to-case 5 °C/W
Maximum junction temperature 150 °C
Storage temperature range -40 to 150 °C
Junction temperature range -40 to 125 °C
Maximum power dissipation at TA = 25 °C 2.25 W
6/33 Doc ID 16498 Rev 1
L6728D Electrical specifications

4 Electrical specifications

4.1 Absolute maximum ratings

Table 4. Absolute maximum ratings

Symbol Parameter Value Unit
VCC to GND -0.3 to 15 V
V
BOOT, VUGATE
V
PHASE
V
LGATE
to PHASE to GND to GND; t < 200 ns
to GND to GND; t < 200 ns
to GND -0.3 to VCC+0.3 V
FB, COMP, VSEN to GND -0.3 to 3.6 V
PGOOD to GND -0.3 to VCC+0.3 V
15 33 45
-5 to 18
-8 to 30
V
V

4.2 Electrical characteristics

VCC = 5 V to 12 V; TJ = 0 to 70 °C unless otherwise specified

Table 5. Electrical characteristics

Symbol Parameter Test conditions Min. Typ. Max. Unit
Supply current and power-ON
I
CC
I
BOOT
UVLO
Oscillator
F
SW
ΔV
OSC
d
MAX
Reference and error amplifier
A
GBWP Gain-bandwidth product
SR Slew-rate
DIS Disable threshold COMP falling 0.70 0.85 V
VCC supply current UGATE and LGATE = OPEN 6 mA
BOOT supply current UGATE = OPEN; PHASE to GND 0.7 mA
VCC Turn-ON VCC rising 4.1 V
Hysteresis 0.2 V
Main oscillator accuracy 270 300 330 kHz
PWM ramp amplitude 1.4 V
Maximum duty cycle 80 %
Output voltage accuracy -0.8 - 0.8 %
0
DC gain
(1)
(1)
(1)
120 dB
15 MHz
8V/μs
Doc ID 16498 Rev 1 7/33
Electrical specifications L6728D
Table 5. Electrical characteristics (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
Gate drivers
I
UGATE
R
UGATE
I
LGATE
R
LGATE
HS source current BOOT - PHASE = 5 V 1.5 A
HS sink resistance BOOT - PHASE = 5 V 1.1 Ω
LS source current VCC = 5 V 1.5 A
LS sink resistance VCC = 5 V 0.65 Ω
Overcurrent protection
I
OCSET
V
OC_SW
OCSET current source
OC switch-over threshold V
Sourced from LGATE pin, during OC setting phase.
LGATE/OC
rising 600 mV
91011μA
Over and undervoltage protections
VSEN rising 0.970 1.000 1.030 V
OVP OVP threshold
un-latch, VSEN falling 0.35 0.40 0.45 V
UVP UVP threshold VSEN falling 0.570 0.600 0.630 V
VSEN VSEN bias current Sourced from VSEN 100 nA
PGOOD
Upper threshold VSEN rising 0.860 0.890 0.920 V
PGOOD
Lower threshold VSEN falling 0.680 0.710 0.740 V
V
PGOODL
1. Guaranteed by design, not subject to test.
PGOOD voltage low I
= -4 mA 0.4 V
PGOOD
8/33 Doc ID 16498 Rev 1
L6728D Device description

5 Device description

The L6728D is a single-phase PWM controller with embedded high-current drivers which provides complete control logic and protection features for easy implementation of a general DC-DC step-down converter. Designed to drive N-channel MOSFETs in a synchronous buck topology, this 10-pin device provides a high level of integration to allow a reduction in cost and size of power supply solutions, while also providing real-time PGOOD in a compact DFN10 3x3 mm package.
The L6728D is designed to operate from a 5 V or 12 V supply. The output voltage can be precisely regulated to as low as 0.8 V with ±0.8% accuracy over line and temperature variations. The switching frequency is internally set to 300 kHz.
This device provides a simple control loop with a voltage-mode error amplifier. The error amplifier features a 15 MHz gain-bandwidth product and 8 V/µs slew rate, allowing high regulator bandwidth for fast transient response.
To prevent load damage, the L6728D provides protection against overcurrent, overvoltage, undervoltage and feedback disconnection. The overcurrent trip threshold is programmable using a resistor connected from Lgate to GND. Output current is monitored across the low­side MOSFET R resistors. Output voltage is monitored through the dedicated VSEN pin.
, eliminating the need for expensive and space-consuming sense
DS(on)
The L6728D implements soft-start by increasing the internal reference in closed-loop regulation. The low side-less feature allows the device to perform soft-start over a pre­biased output, avoiding high current return through the output inductor and dangerous negative spike at the load side.
The L6728D is available in a compact DFN10 3x3 mm package with exposed pad.
Doc ID 16498 Rev 1 9/33
Driver section L6728D

6 Driver section

The integrated high-current drivers permit the use of different types of power MOSFETs (also multiple MOSFETs to reduce the equivalent R transition.
The driver for the high-side MOSFET uses the BOOT pin for supply and the PHASE pin for return. The driver for low-side MOSFET uses the VCC pin for supply and the GND pin for return.
The controller embodies an anti-shoot-through and adaptive dead-time control to minimize low side body diode conduction time, maintaining good efficiency while eliminating the need for a Schottky diode:
to check the high-side MOSFET turn-off, the PHASE pin is sensed. When the voltage
at the PHASE pin drops, the low-side MOSFET gate drive is suddenly applied
to check the low-side MOSFET turn-off, the LGATE pin is sensed. When the voltage at
LGATE has fallen, the high-side MOSFET gate drive is suddenly applied
If the current flowing in the inductor is negative, voltage on the PHASE pin will never drop. To allow the low-side MOSFET to turn on even in this case, a watchdog controller is enabled. If the source of the high-side MOSFET does not drop, the low side MOSFET is switched on, thereby allowing the negative current of the inductor to recirculate. This mechanism allows the system to regulate even if the current is negative.
), maintaining fast switching
DS(on)
Power conversion input is flexible: 5 V, 12 V bus or any bus that allows the conversion (see maximum duty cycle limitations) to be chosen freely.

6.1 Power dissipation

The L6728D embeds high current MOSFET drivers for both high side and low side MOSFETs. It is therefore important to consider the power that the device is going to dissipate in driving them, in order to avoid overcoming the maximum junction operating temperature.
Two main factors contribute to device power dissipation: bias power and driver power.
Device bias power (P
supply pins, and is quantifiable as follows (assuming HS and LS drivers with the same VCC of the device):
Driver power is the power needed by the driver to continuously switch on and off the
external MOSFETs. It is a function of the switching frequency and total gate charge of the selected MOSFETs. It can be quantified considering that the total power P dissipated to switch the MOSFETs (easily calculable) is dissipated by three main factors: external gate resistance (when present), intrinsic MOSFET resistance and intrinsic driver resistance. This last factor is the most important one to be determined to calculate the device power dissipation. The total power dissipated to switch the MOSFETs is:
) depends on the static consumption of the device through the
DC
P
DC
V
CCICCIBOOT
+()=
SW
P
SW
10/33 Doc ID 16498 Rev 1
F
SW
Q
gHSVBOOT
Q
+()=
gLSVCC
Loading...
+ 23 hidden pages