ST L6718 User Manual

Digitally controlled dual PWM with embedded drivers for VR12
VFQFPN56 - 7x7mm
VR12 compliant with 25 MHz SVID bus rev. 1.5
Second generation LTB Technology
Very compact dual controller:
– Up to 4 phases for core section with 2
internal drivers
– 1 phase for GFX section with internal driver
Input voltage up to 12 V
SMBus interface for power management
SWAP, Jmode, multi-rail only support
Programmable offset voltage
Single NTC design for TM, LL and IMON
thermal compensation (for each section)
VFDE for efficiency optimization
DPM - dynamic phase management
Dual differential remote sense
0.5% output voltage accuracy
Full-differential current sense across DCR
AVP - adaptive voltage positioning
Programmable switching frequency
Dual current monitor
Pre-biased output management
High-current embedded drivers optimized for
7 V operation
OC, OV, UV and FB disconnection protection
Dual VR_READY
VFQFPN56 7x7 mm package with exposed
pad
Applications
High-current VRM / VRD for desktop / server /
new generation workstation CPUs
DDR3 DDR4 memory supply for VR12
L6718
processors
Datasheet − preliminary data
Description
The L6718 is a very compact, digitally controlled and cost effective dual controller designed to power Intel pinstrapping is used to program the main parameters.
The device features from 2 to 4-phase programmable operation for the core section providing 2 embedded drivers. A single-phase with embedded driver and with independent control loop is used for GFX.
The L6718 supports power state transitions featuring VFDE and a programmable DPM, maintaining the best efficiency over all loading conditions without compromising transient response.
Second generation LTB Technology minimal cost output filter providing fast load transient response. The controller assures fast and independent protection against load overcurrent, under/overvoltage and feedback disconnections.
The device is available in VFQFPN56, 7x7 mm compact package with exposed pad.

Table 1. Device summary

Order code Package Packaging
L6718
L6718TR
®
VR12 processors. Dedicated
allows a
VFQFPN56 7x7mm Tray
VFQFPN56 7x7mm
Tape and
reel
July 2012 Doc ID 023399 Rev 1 1/71
This is preliminar y information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
www.st.com
71
Contents L6718
Contents
1 Typical application circuit and block diagram . . . . . . . . . . . . . . . . . . . . 7
1.1 Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Pin description and connection diagrams . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4 VID tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5 Device description and operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6 Device configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1 CPU mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2 DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3 SWAP mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3.1 MRO - multi-phase rail only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.4 Jmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.5 Phase number configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.6 Pinstrapping configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.6.1 CONFIG0 in CPU mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.6.2 CONFIG0 in DDR mode (STCOMP=GND) . . . . . . . . . . . . . . . . . . . . . . 34
6.6.3 CONFIG1 in CPU mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.6.4 CONFIG1 in DDR mode (STCOMP=GND) . . . . . . . . . . . . . . . . . . . . . . 37
6.6.5 CONFIG2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.6.6 CONFIG3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7 L6718 power manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.1 SMBus power manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2/71 Doc ID 023399 Rev 1
L6718 Contents
7.1.1 SMBus sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2 SMBus tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.3 DPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.4 VFDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.5 Power state indicator (PSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8 Output voltage positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.1 Multi-phase section - current reading and current sharing loop . . . . . . . . 50
8.2 Multi-phase section - defining load-line . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.3 Single-phase section - current reading . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.4 Single-phase section - defining load-line . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.5 Dynamic VID transition support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.6 DVID optimization: REF/SREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9 Output voltage monitoring and protection . . . . . . . . . . . . . . . . . . . . . . 55
9.1 Overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9.2 Overcurrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9.2.1 Multi-phase section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9.2.2 Overcurrent and power states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.2.3 Single-phase section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
10 Single NTC thermal monitor and compensation . . . . . . . . . . . . . . . . . 59
10.1 Thermal monitor and VR_HOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.2 Thermal compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.3 TM and TCOMP design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
11 Main oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
12 System control loop compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
12.1 Compensation network guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
12.2 LTB technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
13 Power dissipation and application details . . . . . . . . . . . . . . . . . . . . . . 65
13.1 High-current embedded drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
13.2 Boot diode and capacitor design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Doc ID 023399 Rev 1 3/71
Contents L6718
13.3 Device power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
14 Layout guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
14.1 Power components and connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
14.2 Small signal components and connections . . . . . . . . . . . . . . . . . . . . . . . 67
15 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
16 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4/71 Doc ID 023399 Rev 1
L6718 List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 3. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 4. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 5. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 6. VID table, both sections, commanded through serial bus . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 7. Phase number programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 8. CONFIG0/PSI0 pinstrapping in CPU MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 9. CONFIG0/PSI0 pinstrapping in DDR MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 10. CONFIG1/PSI1 pinstrapping in CPU MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 11. CONFIG1/PSI1 pinstrapping in DDR MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 12. CONFIG2/SDA pinstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 13. CONFIG3/SCL pinstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 14. SMBus addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 15. SMBus interface commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 16. SMBus VID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 17. Power status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 18. L6718 protection at a glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 19. Multi-phase section OC scaling and power states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 20. VFQFPN56 7x7 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 21. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Doc ID 023399 Rev 1 5/71
List of figures L6718
List of figures
Figure 1. Typical 4-phase application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2. Typical 3-phase application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 3. Typical 2-phase application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 4. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 5. Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 6. Device initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 7. SWAP mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 8. SMBus communication format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 9. Output current vs. switching frequency in PSK mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 10. Voltage positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 11. Current reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 12. DVID optimization circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 13. Thermal monitor connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 14. ROSC [KOhm] vs. switching frequency [kHz] per phase. . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 15. Equivalent control loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 16. Control loop Bode diagram and fine tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 17. VFQFPN56 7x7 package dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6/71 Doc ID 023399 Rev 1
L6718 Typical application circuit and block diagram
LS1
L1
CHF
Rtcm
Ctcm
+12V
Rg
BOOT
UGATE
PHASE
LGATE
VCC
L6743
EN
PWM4
CS3P
SC3N
SCSP
SCSN
SBOOT
VR12 μP LOAD
CORE
VR12 SVID
C
SOUTCSMLCC
PWM
GND
CDEC
SVCLK
ALERT#
SVDATA
CF
RF
CI
RI
RFB
CP
RGND
VSEN
FB
COMP
IMON
CSF
RSF
CSI
RSI
RSFB
CSP
SRGND
SVSEN
SFB
SCOMP
SIMON
CLTB RLTB
LTB
SPHASE
+7V
VCC5
+5V
GND
(PAD)
VR_HOT
EN
REF
SREF/JEN
+5V
ST L6718
ST L6718 (4+1) Reference Schematic
C
OUT
C
MLCC
HS1
LSs
Ls
CHF
Rtcm_s
Ctcm_s
+12V
Rg_s
HSs
LS2
L2
CHF
Rtcm
Ctcm
+12V
Rg
HS2
LS3
L3
CHF
Rtcm
Ctcm
+12V
Rg
HS3
LS4
L4
CHF
Rtcm
Ctcm
+12V
RG
HS4
+12V
BOOT
UGATE
PHASE
LGATE
VCC
L6743
EN
PWM
GND
CDEC
+12V
PWM3
SLGATE
SHGATE
CS1P CS1N
BOOT1
PHASE1
LGATE1
HGATE1
CS2P CS2N
BOOT2
PHASE2
LGATE2
HGATE2
CS4P
CS4N
OSC/FLT
SOSC/SFLT
ENABLE
SVREADY VREADY
VRHOT
TM
CONF1/PSI1 TCOMP STCOMP/DDR
CONF0/PSI0
SCL/CONFIG3
SDA/CONFIG2
VCC12
GPU
RSIMON
+5V
CSREF RSREF
CREF
RREF
RIMON
STM
RGate
RGate
RGate
RGate
RGate
RGate
RGate
RGate
RGate
RGate
Rboot
Rboot
Rboot
Rboot
Rboot
Cboot
Cboot
Cboot
Cboot
Cboot
AM12875v1

1 Typical application circuit and block diagram

1.1 Application circuit

Figure 1. Typical 4-phase application circuit

Doc ID 023399 Rev 1 7/71
Typical application circuit and block diagram L6718
LS1
L1
CHF
Rtcm
Ctcm
+12V
Rg
BOOT
UGATE
PHASE
LGATE
VCC
L6743B
EN
PWM4
CS3P
SC3N
SCSP
SCSN
SBOOT
VR12 μP LOAD
CORE
VR12 SVID
C
SOUTCSMLCC
PWM
GND
CDEC
SVCLK
ALERT#
SVDATA
CF
RF
CI
RI
RFB
CP
RGND
VSEN
FB
COMP
IMON
CSF
RSF
CSI
RSI
RSFB
CSP
SRGND
SVSEN
SFB
SCOMP
SIMON
CLTB RLTB
LTB
SPHASE
+7V
VCC5
+5V
GND
(PAD)
EN
REF
SREF/JEN
+5V
ST L6718
ST L6718 (3+1) Reference Schematic
C
OUT
C
MLCC
HS1
LSs
Ls
CHF
+12V
Rg_s
HSs
LS2
L2
CHF
+12V
HS2
LS2
L3
CHF
+12V
HS3
+12V
PWM3
SLGATE
SHGATE
CS1P
CS1N
BOOT1
PHASE1
LGATE1
HGATE1
CS2P
CS2N
BOOT2
PHASE2
LGATE2
HGATE2
CS4N
CS4P
OSC/OVP
SOSC/SOVP
ENABLE
SVREADY
VREADY
VRHOT
TM
CONF1/PSI1
TCOMP
STCOMP/DDR
CONF0/PSI0
SCL/CONFIG3
SDA/CONFIG2
VCC12
GPU
RSIMON
+5V
CSREF RSREF
CREF RREF
RIMON
STM
Rtcm_s
Ctcm_s
RGate
RGate
Rboot
Cboot
RGate
RGate
Rboot
Cboot
RGate
RGate
Rboot
Cboot
RGate
RGate
Rboot
Cboot
Rtcm
Ctcm
Rg
Rtcm
Ctcm
Rg
AM12876v1

Figure 2. Typical 3-phase application circuit

8/71 Doc ID 023399 Rev 1
L6718 Typical application circuit and block diagram
LS2
L1
CHF
+12V
PWM4
CS3N SC3P
SCSP SCSN
SBOOT
VR12 μP LOAD
CORE
VR12 SVID
C
SOUTCSMLCC
SVCLK
ALERT#
SVDATA
CF
RF
CI
RI
RFB
CP
RGND
VSEN
FB
COMP
IMON
CSF
RSF
CSI
RSI
RSFB
CSP
SRGND
SVSEN
SFB
SCOMP
SIMON
CLTB RLTB
LTB
SPHASE
+7V
VCC5
+5V
GND
(PAD)
EN
REF
SREF/JEN
+5V
ST L6718
ST L6718 (2+1) Reference Schematic
C
OUT
C
MLCC
HS1
LSs
Ls
CHF
+12V
HSs
LS2
L2
CHF
+12V
HS2
PWM3
SLGATE
SHGATE
CS1P CS1N
BOOT1
PHASE1
LGATE1
HGATE1
CS2P CS2N
BOOT2
PHASE2
LGATE2
HGATE2
CS4N
CS4P
OSC/FLT
SOSC/SFLT
ENABLE
SVREADY VREADY
VRHOT
TM
CONF1/PSI1 TCOMP STCOMP/DDR
CONF0/PSI0
SCL/CONFIG3
SDA/CONFIG2
VCC12
GPU
RSIMON
+5V
CSREF RSREF
CREF RREF
RIMON
STM
Rtcm_s
Ctcm_s
Rg_s
Rtcm
Ctcm
Rg
Rtcm
Ctcm
Rg
RGate
RGate
Rboot
Cboot
RGate
RGate
Rboot
Cboot
RGate
RGate
Rboot
Cboot
Rg
Rg
AM12877v1

Figure 3. Typical 2-phase application circuit

Doc ID 023399 Rev 1 9/71
Typical application circuit and block diagram L6718
PWM4
PWM3
PWM2
PWM1
LTB Technology
Modulator
& Frequency Limiter
Ramp & Clock
Generator with VFDE
S
S
S
S
Differential Current Sense
Current Balance
& Peak Curr Limit
Thermal
Compensation
and Gain adjust
CS1P CS1N
CS2P CS2N
CS3P CS3N
CS4P CS4N
LTB
ERROR
AMPLIFIER
TM
TCOMP
VRHOT
I
MON
I
DROOP
OCP
VR12 Bus Manager
FB
REF
COMP
SVD ATA
ALERT#
SVCLK
IMON
Dual DAC & Ref
Generator
VR12 Registers
CONFIG1/PSI1
CONFIG0/PSI0
RGND
VSEN
OV
+OVP_Trk
MultiPhase
Fault Manager
OC
SREF
Thermal
Sensing
and Monitor
TempZone
TempZone
Imon
SImon
Chan #
LTB Technology
Modulator
& Frequency Limiter
Ramp & Clock
Generator withVFDE
SOSC/SFLT
SHGATE
SPWM
ERROR
AMPLIFIER
I
SMON
I
SDROOP
OCP
SFB
SREF/JEN
SCOMP
SIMON
SRGND
SVSEN SOV
+OVP_Trk
SOC
SREF
SinglePhase
Fault Manager
VREADY
FLT
FLT
To SinglePhase
FLT Manager
To M ultiPhase FLT Manage
SVREADY
SFLT
SFLT
DDR
Differential
Current Sense
SCSP SCSN
Start-up Logic
VCC12
VCC5
ENABLE
S_EN
EN
S_EN
GND (PAD)
OSC /FLT
VSEN
I
REF
I
REF
I
SREF
I
SREF
STM
Thermal
Compensation
and Gain adjust
STCOMP/DDR
VCC12
SBOOT
SPHASE
SLGATE
SWAP
Anti Cross
Conduction
Anti Cross
Conduction
Anti Cross
Conduction
SDA/CONF2
SCL/CONF3
SMBus
Manager
SWAP
DDRTh
PWM4/PH#N
PMW3/SPWM
LGATE2
PHASE2
HGATE2
BOOT2
LGATE1
PHASE1
HGATE1
BOOT1
PH#N
L6718
JEN
AM12878v1

1.2 Block diagram

Figure 4. Block diagram

10/71 Doc ID 023399 Rev 1
L6718 Pin description and connection diagrams
12
11
10
9
8
7
6
5
4
3
2
1
31
32
33
34
35
36
37
38
39
40
41
42
56 55 54 53 52 51 50 49 48 47 46 45
15 16 17 18 19 20 21 22 23 24 25 26
SOSC/SFLT
SCSP
SCSN
STM
CONF0/PSI0
SHGATE
SPHASE
SLGATE
PWM4/PH#
PMW3//SPWM
PHASE1
SBOOT
LT B
VSEN
RGND
ALERT#
SV DATA
SVCLK
VRHOT
TM
CS3N
CS3P
CS1P
CS1N
CS2N
CS2P
CS4P
CS4N
VREADY
SVREADY
LGATE1
LGAE2
PHASE2
HGATE2
BOOT2
VCC12
IMON
REF
SRGND
SVSEN
SFB
SCOMP
SIMON
SREF
ENABLE
STCOMP/DDR
TCOMP
CONF1/PSI1
L6718
27 28
29
30
44 43
14
13
COMP
FB
CONF2/SDA
CONF3/SCL
VCC5
OSC/FLT
BOOT1
HGATE1
AM12879v1

2 Pin description and connection diagrams

Figure 5. Pin connection (top view)

Doc ID 023399 Rev 1 11/71
Pin description and connection diagrams L6718

2.1 Pin description

Table 2. Pin description

Pin# Name Function
Channel 1 current sense negative input. Connect through an RG resistor to the output-side of channel 1 inductor.
1CS1N
2CS1P
3CS3P
4CS3N
5TM
Filter the output-side of R
with 100 nF (typ.) to GND.
G
This pin is compared with VSEN for the feedback disconnection. See Section 14 for proper layout of this connection.
Channel 1 current sense positive input. Connect through an R-C filter to the phase-side of channel 1 inductor. See Section 14 for proper layout of this connection.
Channel 3 current sense positive input. Connect through an R-C filter to the phase-side of channel 3 inductor. Short to V
when not using channel 3.
OUT
See Section 14 for proper layout of this connection.
Channel 3 current sense negative input. Connect through an R Filter the output-side of R Connect to V See Section 14 for proper layout of this connection.
MULTI-RAIL SECTION
OUT
resistor to the output-side of channel 3 inductor.
G
with 100 nF (typ.) to GND.
G
through an RG resistor when not using channel 3.
Thermal monitor sensor. Connect with proper network embedding NTC to the multi-phase rail
power section. The IC senses the power section temperature and uses the information to define the VRHOT signal and temperature zone register.
By programming proper TCOMP gain, the IC also implements load-line thermal compensation for the multi-phase rail section. See Section 10 for details.
Voltage regulator HOT.
6 VRHOT
Open drain output, set free by controller when the temperature sensed through the TM pin exceeds TMAX (active low).
See Section 10.1 for details.
7 SVCLK
Serial clock
8 SVDATA Serial data
9ALERT# Alert
SVID BUS
12/71 Doc ID 023399 Rev 1
L6718 Pin description and connection diagrams
Table 2. Pin description (continued)
Pin# Name Function
Remote ground sense pin.
10 RGND
11 VSEN
12 LTB
13 FB
14 COMP
Connect to the negative side of the load to perform remote sense. See Section 14 for proper layout of this connection.
Output voltage monitor pin. Manages OVP/UVP protection and feedback disconnection. Connect to
the positive side of the load to perform remote sense. A fixed 50 uA current is sourced from this pin.
See Section 14 for proper layout of this connection.
Load transient boost technology input pin. Internally fixed at 1.67 V, connecting R
LT B
- C
LT B
vs. V
allows the load
OUT
transient boost technology to be enabled, as soon as the device detects a transient load it turns on all the PHASEs at the same time. Short to SGND to disable the function.
See Section 12.2 for details.
Error amplifier inverting input. Connect with an R
to VSEN and (RF - CF)// CP to COMP.
FB
A current proportional to the load current is sourced from this pin in order to implement the droop effect. See Section 8.2 for details.
MULTI-RAIL SECTION
Error amplifier output. Connect with (RF - CF)// CP to FB. The device cannot be disabled by pulling down this pin.
15 IMON
16 REF
Current monitor output. A current proportional to the multi-phase rail output current is sourced
from this pin. Connect through a resistor R
to GND to show a voltage
IMON
proportional to the current load. Based on pin voltage level, DPM and overcurrent protection can be triggered. Filtering through C allows control of the delay. See Section 9.2 for R
IMON
definition.
IMON
to GND
The reference used for the regulation of the multi-phase rail section is available on this pin with -100 mV + offset. Connect through an R
to RGND to optimize DVID transitions. See Section 8.6 for details.
C
REF
REF
-
Doc ID 023399 Rev 1 13/71
Pin description and connection diagrams L6718
Table 2. Pin description (continued)
Pin# Name Function
Single-phase rail remote ground sense.
17 SRGND
18 SVSEN
19 SFB
20 SCOMP
21 SIMON
22 SREF/JEN
Connect to the negative side of the single-phase rail load to perform remote sense.
See Section 14 for proper layout of this connection.
Single-rail output voltage monitor. Manages OVP/UVP protection and feedback disconnection. Connect to
the positive side of the load to perform remote sense. It is also the sense for the single-phase rail LTB.
Connect to the positive side of the single-phase rail load to perform remote sense.
See Section 14 for proper layout of this connection.
Error amplifier inverting input. Connect with a resistor R
to SVSEN and with (RSF - CSF)// CSP to
SFB
SCOMP. A current proportional to the load current is supplied from this pin in order to implement the droop effect. See Section 8.4 for details.
Error amplifier output. Connect with an (R
- CSF)// CSP to SFB. The device cannot be disabled
SF
by pulling this pin low.
SINGLE-RAIL SECTION
Current monitor output. A current proportional to the output current is sourced from this pin.
Connect through a resistor R overcurrent protection can be triggered. Filtering through C
to local GND. Based on pin voltage,
SIMON
SIMON
allows control of the delay for OC intervention. See Section 9.2 for R definition.
The reference used for the regulation of the single-rail section is available on this pin with -100 mV + offset. Connect through an R
SREF-CSREF
SRGND to optimize DVID transitions. See Section 8.6 for details. If Jmode is selected by Config1 pinstrapping, this pin is used as a logic
input for the single-phase rail enable. Pulling this pin up above 0.8 V, the single-phase rail turns on.
to GND
SIMON
to
Enable pin. External pull-up is needed on this pin. Forced low to disable the device with all MOSFETs OFF: all protection is
23 ENABLE
disabled except for preliminary overvoltage. Over 0.65 V the device turns up. Cycle this pin to recover latch from protection, filter with 1 nF (typ.) to
GND.
Thermal monitor sensor gain and DDR selected.
24
STCOMP/
DDR
Connect proper resistor divider between VCC5 and GND to define the gain to apply to the signal sensed by ST to implement thermal compensation for the single-phase rail. See Section 10 for details. Short to GND to disable thermal compensation and set the device to DDR mode.
SINGLE-RAIL SECTION
14/71 Doc ID 023399 Rev 1
L6718 Pin description and connection diagrams
Table 2. Pin description (continued)
Pin# Name Function
Thermal monitor sensor gain. Connect proper resistor divider between VCC5 and GND to define the
25 TCOMP
CONFIG1/
26
27
28
29 VCC5
30 OSC/FLT
PSI1
SDA /
CONFIG2
SCL /
CONFIG3
gain to apply to the signal sensed by TM to implement thermal compensation for the multi-phase rail.
Short to GND to disable the single NTC thermal compensation for multi­phase section. See Section 10 for details.
SINGLE-RAIL SECTION
Connect a resistor divider to GND and VCC5 to define power management configuration. See Section 6.6 for details.
At the end of the soft-start, this pin is internally pulled up or pulled down to indicate the power status. See Table 17 for details.
PINSTRAPPING
If SMBus power management is enabled through Config0 pinstrapping, connect to data signal of SMBus communicator.
If SMBus power management is disabled through Config0 pinstrapping, connect a resistor divider to GND and VCC5 to define power management characteristics. See Section 6.6.5 for details.
If SMBus power management is enabled through Config0 pinstrapping, connect to clock signal of SMBus communicator.
If SMBus power management is disabled through Config0 pinstrapping, connect a resistor divider to GND and VCC5 to define power management
SMBus / PINSTRAPPING
characteristics. See Section 6.6.5 for details.
Main IC power supply. Operative voltage is connected to 5 V filtered with 1 uF MLCC to GND.
Oscillator pin for multi-phase rail. Allows the programming of the switching frequency F
section. The equivalent switching frequency at the load side results in being multiplied by the number of phases active.
The pin is internally set to 1.8 V, frequency is programmed according to a resistor connected to GND or VCC with a gain of 10 kHz/µA. Free running is set to 200 kHz.
The pin is forced high (3.3 V) if a fault is detected on a multi-rail section. To recover from this condition, it is necessary to cycle VCC or enable. See
MULTI-RAIL SECTION
Section 11 for details.
for multi-phase
SW
31
SOSC /
SFLT
Oscillator pin for single-phase. Allows the programming of the switching frequency FSW for the single-
phase section. The pin is internally set to 1.8 V, frequency is programmed according to
the resistor connected to GND or VCC with a gain of 10 kHz/µA. Free running is set to 200 kHz.
The pin is forced high (3.3 V) if a fault is detected on a single-phase rail section. To recover from this condition, it is necessary to cycle VCC or
SINGLE-RAIL SECTION
enable. See Section 11 for details.
Doc ID 023399 Rev 1 15/71
Pin description and connection diagrams L6718
Table 2. Pin description (continued)
Pin# Name Function
Single-phase rail current sense positive input.
32 SCSP
33 SCSN
34 STM
CONFIG0
35
/PSI0
36 SBOOT
Connect through an R-C filter to the phase-side of single-phase rail inductor.
See Section 14 for proper layout of this connection.
Single-phase rail current sense negative input. Connect through an R
resistor to the output-side of single-phase rail
G
inductor. Filter the output-side of R
with 100 nF (typ.) to GND.
G
See Section 14 for proper layout of this connection.
Thermal monitor sensor. Connect with proper network embedding NTC to the single-phase power
SINGLE-RAIL SECTION
section. The IC senses the hot spot temperature and uses the information to define the VRHOT signal and temperature zone register.
By programming proper STCOMP gain, the IC also implements load-line thermal compensation for the single-phase section.
Short to GND if not used. See Section 10 for details.
Connect a resistor divider to GND and VCC5 to define power management characteristics. See Section 6.6 for details.
At the end of the soft-start, this pin is internally pulled up or pulled down to indicate the power status. See Table 17 for details.
PINSTRAPPING
Single-phase rail high-side driver supply. Connect through a capacitor (220 nF typ.) and a resistor (2.2 Ohm) to
SPHASE and provide a Shottky bootstrap diode. A small resistor in series to the boot diode helps to reduce boot capacitor overcharge.
Single-phase rail high-side driver output.
37 SHGATE
It must be connected to the HS MOSFET gate. A small series resistor helps to reduce the device-dissipated power and the negative phase spike.
Single-phase rail high-side driver return path.
38 SPHASE
It must be connected to the HS MOSFET source and provides return path for the HS driver.
SINGLE-RAIL SECTION
Single-phase rail low-side driver output.
39 SLGATE
It must be connected to the low-side MOSFET gate. A small series resistor helps to reduce device-dissipated power.
Fourth phase PWM output of the multi-phase rail and phase number selection pin.
Internally pulled up to 3.3 V, connect to external driver PWM4 when channel 4 is used. The device is able to manage the HiZ by setting the pin floating.
40
PWM4
/ PH#
Short to GND or leave floating to 3/2 phase operation, seeTa bl e 7 for details.
16/71 Doc ID 023399 Rev 1
L6718 Pin description and connection diagrams
Table 2. Pin description (continued)
Pin# Name Function
Third phase PWM output of multi-phase rail or PWM output for single­phase rail.
Connect to external driver PWM input if this channel is used.
PWM3 /
41
SPWM
42 PHASE1
43 HGATE1
44 BOOT1
Internally pull up to 3.3 V, connect to external driver PWM3 when channel 3 is used (seeTa b le 7 for details). The device is able to manage HiZ status by setting the pin floating.
If SWAP mode is selected by pinstrapping Config0, it must be connected to single-phase external driver SPWM, see Section 6.3 for details.
Channel 1 HS driver return path. It must be connected to the HS1 MOSFET source and provides return
path for the HS driver of channel 1.
Channel 1 HS driver output. It must be connected to the HS1 MOSFET gate. A small series resistor
helps to reduce the device-dissipated power and the negative phase spike.
Channel 1 HS driver supply. Connect through a capacitor (220 nF typ.) and a resistor (2.2 Ohm typ.) to
MULTI-RAIL SECTION
PHASE1 and provide a Shottky bootstrap diode. A small resistor in series to the boot diode helps to reduce boot capacitor overcharge.
45 VCC12
46 BOOT2
47 HGATE2
48 PHASE2
49 LGATE2
50 LGATE1
51 SVREADY
7 V supply. It is the low-side driver supply. It must be connected to the 7 V bus and
filtered with 2 x 1 µf MLCC caps vs. GND.
Channel 2 high-side driver supply. Connect through a capacitor (220 nF typ.) and a resistor (2.2 Ohm typ.) to
PHASE2 and provide a Shottky bootstrap diode. A small resistor in series to the boot diode helps to reduce boot capacitor overcharge.
Channel 2 high-side driver output. It must be connected to the HS2 MOSFET gate. A small series resistor
helps to reduce the device-dissipated power and the negative phase spike
Channel 2 HS driver return path. It must be connected to the HS2 MOSFET source and provides a return
path for the HS driver of channel 2.
Channel 2 low-side driver output.
MULTI-RAIL SECTION
It must be connected to the LS2 MOSFET gate. A small series resistor helps to reduce device-dissipated power.
Channel 1 low-side driver output. It must be connected to the LS1 MOSFET gate. A small series resistor
helps to reduce device-dissipated power.
Single-phase rail VREADY Open drain output set free after SS has finished and pulled low when
triggering any protection on the single-phase rail. Pull up to a voltage lower than 3.3 V (typ.), if not used it can be left floating.
Doc ID 023399 Rev 1 17/71
Pin description and connection diagrams L6718
Table 2. Pin description (continued)
Pin# Name Function
Multi-phase rail VREADY
52 VREADY
53 CS4N
54 CS4P
55 CS2P
56 CS2N
Open drain output set free after SS has finished and pulled low when triggering any protection on multi-phase rail. Pull up to a voltage lower than 3.3 V (typ.), if not used it can be left floating
Channel 4 current sense negative input. Connect through an R
resistor to the output-side of channel 4 inductor.
G
Filter the output-side of RG with 100 nF (typ.) to GND. Connect to V
through an RG resistor when not using channel 4.
OUT
See Section 14 for proper layout of this connection.
Channel 4 current sense positive input. Connect through an R-C filter to the phase-side of channel 3 inductor. Short to V
when not using channel 4.
OUT
See Section 14 for proper layout of this connection.
MULTI-RAIL SECTION
Channel 2 current sense positive input. Connect through an R-C filter to the phase-side of channel 2 inductor. See Section 14 for proper layout of this connection.
Channel 2 current sense negative input. Connect through an R
resistor to the output-side of channel 2 inductor.
G
Filter the output-side of RG with 100 nF (typ.) to GND. See Section 14 for proper layout of this connection.
PA D G N D
GND connection. Exposed pad connects also the silicon substrate. It makes a good thermal
contact with the PCB to dissipate the internal power. All internal references and logic are referenced to this pin.
Connect to power GND plane using 5.3 x 5.3 mm square area on the PCB and with 9 vias (uniformly distributed) to improve electrical and thermal conductivity.
18/71 Doc ID 023399 Rev 1
L6718 Pin description and connection diagrams

2.2 Thermal data

Table 3. Thermal data

Symbol Parameter Value Unit
R
T
T
THJA
MAX
STG
T
J
P
tot
Thermal resistance junction-to-ambient (Device soldered on 2s2p PC board)
TBD °C/W
Maximum junction temperature 150 °C
Storage temperature range -40 to 150 °C
Junction temperature range 0 to 125 °C
Max. power dissipation at T
= 25 °C TDB W
amb
Doc ID 023399 Rev 1 19/71
Electrical specifications L6718

3 Electrical specifications

3.1 Absolute maximum ratings

Table 4. Absolute maximum ratings

Symbol Parameter Value Unit
VCC12 To GND -0.3 to 7.5 V
V
BOOTX-VPHASEx
V
UGATEx-VPHASEx
LGATEx to GND -0.3 to VCC12 + 0.3 V
V
PHASEX
VCC5, STM, TM, PWM3, PWM4, SIMAX,IMAX, CONFIGX,
All other pins To GND -0.3 to 3.6 V
Maximum withstanding voltage range test condition: CDF-AEC­Q1000-002- “human body model” acceptance criteria: “normal performance”
Positive peak voltage t<400 ns 15 V
Negative peak voltage to GND t< 400 ns. BOOT>3.5 V
Positive peak voltage to GND t< 200 ns
To G N D -0 . 3 t o 7 V
BOOTx
Other pins ±1000 V

3.2 Electrical characteristics

(V
= 5 V ± 5%, TJ = 0 °C to 70 °C unless otherwise specified.)
CC

Table 5. Electrical characteristics

-0.3 to VCC12 + 0.3 V
-0.3 to VCC12 + 0.3 V
-8 V
35 V
±750 V
Symbol Parameter Test conditions Min. Typ. Max. Unit
Supply current
I
CC5
I
CC12
I
BOOTX
20/71 Doc ID 023399 Rev 1
VCC5 supply current
VCC12 supply current
BOOTX supply current
ENABLE = High 20 mA
ENABLE = Low 15 mA
ENABLE = High; Lgate open Phase To GND; BOOT=7 V
ENABLE = Low 1 mA
ENABLE = High; Ugate open Phase To GND; BOOT=7 V
12 mA
0.9 mA
L6718 Electrical specifications
Table 5. Electrical characteristics (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
Power-on
UVLO
VCC5
VCC5 turn-off VCC5 falling 3 V
VCC12 turn-on VCC12 rising 4.75 V
VCC5 turn-on VCC5 rising 4.1 V
UVLO
VCC12
VCC12 turn-off VCC12 falling 4 V
Oscillator, soft-start and enable
MP F
MP F
SP F
SP F
V
OSC
SW
SW
SW
SW
Initial oscillator accuracy OSC = open 180 200 220 kHz
Initial oscillator accuracy OSC = 62 K 429 475 521 kHz
Initial oscillator accuracy OSC = open 180 200 220 kHz
Initial oscillator accuracy OSC = 62 K 450 500 550 kHz
PWM ramp amplitude 1.5 V
Voltage at pin SOSC After latch 3 V
FAULT
Voltage at pin OSC After latch 3 V
SOFT START
SS time
Tu r n - on V
ENABLE
Tu r n- o ff V
SVI Serial Bus
Vboot > 0, from pinstrapping; multi­phase section
Vboot > 0, from pinstrapping; single­phase section
rising 0.65 V
ENABLE
falling 0.4 V
ENABLE
2.5 2.8 3.1 mV/μs
2.5 2.8 3.1 mV/μs
SVCLCK, SVDATA
SVDATA, ALERT#
Input high 0.6 V
Input low 0.4 V
Voltage low (ACK) I
Reference and current reading
K
VID
K
SVID
DROOP
DROOP
SDROOP
SDROOP
V
accuracy (MPhase)
OUT
V
accuracy (SPhase)
OUT
LL accuracy (MPhase) 0 to full load
LL accuracy (MPhase) 0 to full load
LL accuracy (SPhase) 0 to full load
LL accuracy (SPhase) 0 to full load
= -5 mA 50 mV
SINK
=0 A; N=4; RG= 810 Ω;
I
OUT
R
=2.125 kΩ
FB
I
=0 A
OUT
RG=1.1 kΩ; R
=0; N=4; VID>1 V
I
INFOx
= 6.662 kΩ
FB
RG=810 Ω; RFB=2.125 kΩ
=20 μA; N=4; VID>1 V
I
INFOx
RG=810 Ω; RFB=2.125 kΩ
=0; VID>1 V
I
SCSN
RG=1.1 kΩ; RFB=6.662 kΩ
=20 μA;VID>1 V
I
SCSN
RG=1.1 kΩ; RFB=6.662 kΩ
-0.5 0.5 %
-0.5 0.5 %
-2.5 2 μA
-3.5 4 μA
-0.75 0.75 μA
-1.5 1.5 μA
Doc ID 023399 Rev 1 21/71
Electrical specifications L6718
Table 5. Electrical characteristics (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
I
=0 μA; N=4;
k
IMON
k
SIMON
IMON accuracy (MPhase)
SIMON accuracy (SPhase)
INFOx
RG=810 Ω; RFB=2.125 kΩ
I
=20 μA; N=4;
INFOx
RG=810 Ω; RFB=2.125 kΩ
=0 μA;
I
SCSN
RG=1.1 kΩ; RFB=6.662 kΩ
I
=20 μA;
SCSN
RG=1.1 kΩ; RFB=6.662 kΩ
-1.5 1.5 μA
-2 2 μA
-0.75 0.75 μA
-1 1 μA
A
0
EA DC gain 100 dB
SR Slew rate COMP, SCOMP to GND = 10 pF 20 V/μs
DVI D
Slew rate fast
Multi-phase section
10 mV/μs
Slew rate slow 2.5 mV/μs
DVI D
Slew rate fast
Single-phase section
10 mV/μs
Slew rate slow 2.5 mV/μs
IMON ADC
GetReg(15h)
V
= 0.992 V
Accuracy C0 CF Hex
IMON
CC Hex
PWM OUTPUTS
PWM3 / SPWM
I
PWM3,IPWM4
Output high I = 1 mA 5 V
Output low I = -1 mA 0.2 V
Pull-up current 10 μA
Protection (both sections)
VSEN rising; wrt Ref. +175 mV
OVP Overvoltage protection
VSEN rising; wrt Ref. +500 mV
UVP Undervoltage protection VSEN falling; wrt Ref; Ref > 500 mV -500 mV
FBR DISC FB disconnection Vcs - rising above VSEN/SVSEN +700
FBG DISC FBG disconnection EA NI input wrt VID +500
VREADY, SVREADY,
Voltage low I = - 4 mA 0.4 V
VRHOT
1.70 V
V
OC_TOT
I
OC_TH
VRHOT Voltage low I
Overcurrent threshold V
IMON
, V
SIMON
rising
1.55 V
Constant current 35 μA
= -5 mA 13 mΩ
SINK
Gate drives control
t
RISE_UGATE
High-side rise time
BOOTx - PHASEx =7 V C
to GND=3.3 nF
UGATE
TBD ns
22/71 Doc ID 023399 Rev 1
Loading...
+ 49 hidden pages