ST L6712, L6712A User Manual

L6712

L6712A

TWO-PHASE INTERLEAVED DC/DC CONTROLLER

1 Features

2 PHASE OPERATION WITH SYNCHRONOUS RECTIFIER CONTROL

ULTRA FAST LOAD TRANSIENT RESPONSE

INTEGRATED HIGH CURRENT GATE DRIVERS: UP TO 2A GATE CURRENT

3 BIT PROGRAMMABLE OUTPUT FROM

0.900V TO 3.300V OR WITH EXTERNAL REF.

±0.9% OUTPUT VOLTAGE ACCURACY

3mA CAPABLE AVAILABLE REFERENCE

INTEGRATED PROGRAMMABLE REMOTE SENSE AMPLIFIER

PROGRAMMABLE DROOP EFFECT

10% ACTIVE CURRENT SHARING ACCURACY

DIGITAL 2048 STEP SOFT-START

CROWBAR LATCHED OVERVOLTAGE PROT.

NON-LATCHED UNDERVOLTAGE PROT.

OVERCURRENT PROTECTION REALIZED USING THE LOWER MOSFET'S RdsON OR A SENSE RESISTOR

OSCILLATOR EXTERNALLY ADJUSTABLE AND INTERNALLY FIXED AT 150kHZ

POWER GOOD OUTPUT AND INHIBIT FUNCTION

PACKAGES: SO-28 & VFQFPN-36

Figure 1. Packages

SO28

VFQFPN-36 (6x6x1.0mm)

Table 1. Order Codes

Package

Tube

Tape & Reel

SO

L6712D,

L6712DTR,

L6712AD

L6712ADTR

 

 

 

 

VFQFPN

L6712Q,

L6712QTR,

 

L6712AQ

L6712AQTR

optimized for high current DC/DC applications.

Output voltage can be programmed through the integrated DAC from 0.900V to 3.300V; programming the "111" code, an external reference from 0.800V to 3.300V is used for the regulation.

Programmable Remote Sense Amplifier avoids use of external resistor divider and recovers losses along distribution line.

1.1 Applications

HIGH CURRENT DC/DC CONVERTERS

DISTRIBUTED POWER SUPPLY

2 Description

The device implements a dual-phase step-down controller with a 180 phase-shift between each phase

The device assures a fast protection against load over current and Over / Under voltage.An internal crowbar is provided turning on the low side mosfet if Over-voltage is detected.

Output current is limited working in Constant Current mode: when Under Voltage is detected, the device resets, restarting operation.

 

Rev. 3

June 2005

1/29

 

 

ST L6712, L6712A User Manual

L6712A L6712

Figure 2. Block Diagram

 

 

 

OSC / INH

 

SGND

 

 

VCCDR

 

 

 

 

 

 

 

 

 

 

 

 

BOOT1

 

BAND-GAP

 

 

 

 

 

 

 

 

HS

UGATE1

 

REFERENCE

 

PHASE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PGOOD

 

 

 

 

PWM1

 

 

 

 

PHASE1

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LOGIC ANDOSCILLATOR

 

VCC

CURRENT CORRECTION

CH1

ADAPTIVEANTI

CONDUCTIONCROSS

LS

LGATE1

 

 

 

 

OCP

VID2

 

 

 

VCCDR

PWMLOGIC

 

ISEN1

VID1

DAC

PROTECTIONS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VID0

 

 

 

 

 

TOTAL

CURRENT

 

PGNDS1

 

 

 

 

 

 

 

 

 

 

CH1 OCP

CH2 OCP

CURRENT

READING

 

 

 

 

 

CURRENT AVG

 

 

 

 

PGND

 

 

 

 

 

 

 

 

 

 

 

DIGITAL

 

 

 

 

CURRENT

 

PGNDS2

 

SOFT-START

 

 

 

 

READING

 

 

 

 

 

VPROG

 

 

 

 

 

 

 

ISEN2

 

 

 

 

 

CURRENT CORRECTION

 

 

CROSS CONDUCTION

LS

LGATE2

REF_IN/OUT

 

 

 

 

 

CH2

 

 

 

 

 

 

ADAPTIVE ANTI

 

 

 

 

 

 

 

OCP

 

 

 

 

 

 

 

 

 

 

FBG

 

 

DROOP

 

 

LOGIC PWM

 

PHASE2

 

 

 

I

 

 

 

 

FBR

 

 

 

 

PWM2

 

 

 

FB START

 

 

 

HS

 

 

 

 

 

 

UGATE2

 

 

 

 

 

 

 

REMOTE

 

 

 

 

 

 

AMPLIFIER

I

 

 

 

 

Vcc

 

 

 

 

 

 

 

 

ERROR

 

 

 

 

BOOT2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AMPLIFIER

 

 

 

 

 

 

 

VSEN

 

DROOP FB

COMP

Vcc

 

 

 

 

Table 2. Absolute Maximum Ratings

Symbol

Parameter

Value

Unit

 

 

 

 

VCC, VCCDR

To PGND

15

V

VBOOT-VPHASE

Boot Voltage

15

V

VUGATE1-VPHASE1

 

15

V

VUGATE2-VPHASE2

 

 

 

 

LGATE1, PHASE1, LGATE2, PHASE2 to PGND

-0.3 to Vcc+0.3

V

 

 

 

 

 

VID0 to VID2

-0.3 to 5

V

 

 

 

 

 

All other pins to PGND

-0.3 to 7

V

 

 

 

 

VPHASEx

Sustainable Peak Voltage. T<20ns @ 600kHz

26

V

UGATEX Pins

Maximum Withstanding Voltage Range

±1500

V

 

Test Condition: CDF-AEC-Q100-002”Human Body Model”

 

 

OTHER PINS

±2000

V

Acceptance Criteria: “Normal Performance”

 

 

 

 

 

 

 

Table 3. Thermal Data

Symbol

Parameter

SO28

VFQFPN36

Unit

 

 

 

 

 

Rthj-amb

Thermal Resistance Junction to Ambient

60

30

°C/W

 

4 layer PCB (2s2p)

 

 

 

 

 

 

 

 

Tmax

Maximum junction temperature

150

150

°C

Tstg

Storage temperature range

-40 to 150

-40 to 150

°C

Tj

Junction Temperature Range

-40 to 125

-40 to 125

°C

PMAX

Max power dissipation at Tamb = 25°C

2

3.5

W

2/29

L6712A L6712

Figure 3. Pin Connection (Top view)

LGATE1

1

28

PGND

VCCDR

2

27

LGATE2

PHASE1

3

26

PHASE2

UGATE1

4

25

UGATE2

BOOT1

5

24

BOOT2

VCC

6

23

PGOOD

SGND

7

22

VID2

COMP

8

21

VID1

FB

9

20

VID0

DROOP

10

19

FBR

REF_IN/OUT

11

18

FBG

VSEN

12

17

OSC/INH/FAULT

ISEN1

13

16

ISEN2

PGNDS1

14

15

PGNDS2

SO28

 

OT2OB

N.C.

GPOOD

VID2

VID1

VID0

FBR

FBG

N.C.

 

 

27

26

25

24

23

22

21

20

19

 

UGATE2

28

 

 

 

 

 

 

 

18

OSC

 

 

 

 

 

 

 

 

PHASE2

29

 

 

 

 

 

 

 

17

N.C.

 

 

 

 

 

 

 

 

LGATE2

30

 

 

 

 

 

 

 

16

ISEN2

 

 

 

 

 

 

 

 

PGND

31

 

 

 

 

 

 

 

15

PGNDS2

 

 

 

 

 

 

 

 

PGND

32

 

 

 

 

 

 

 

14

PGNDS1

 

 

 

 

 

 

 

 

LGATE1

33

 

 

 

 

 

 

 

13

ISEN1

 

 

 

 

 

 

 

 

VCCDR

34

 

 

 

 

 

 

 

12

VSEN

 

 

 

 

 

 

 

 

PHASE1

35

 

 

 

 

 

 

 

11

REF_IN/OUT

 

 

 

 

 

 

 

 

UGATE1

36

 

 

 

 

 

 

 

10

N.C.

 

 

 

 

 

 

 

 

 

1

2

3

4

5

6

7

8

9

 

 

N.C

BOOT1

N.C.

VCC

SGND

SGND

COMP

FB

DROOP

 

VFQFPN-36

Corner Pin internally connected to the Exposed Pad.

Table 4. Electrical Characteristcs

(VCC = 12V±10%, TJ = 0°C to 70°C unless otherwise specified)

Symbol

Parameter

Test Condition

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

Vcc SUPPLY CURRENT

 

 

 

 

 

 

 

 

 

 

 

 

ICC

VCC supply current

HGATEx and LGATEx open

7.5

10

12.5

mA

 

 

VCCDR=BOOTx=12V

 

 

 

 

 

 

 

 

 

 

 

ICCDR

VCCDR supply current

LGATEx open; VCCDR=12V

1.5

3

4

mA

IBOOTx

Boot supply current

HGATEx open; PHASEx to

0.5

1

1.5

mA

 

 

PGND; VCC=BOOTx=12V

 

 

 

 

 

 

 

 

 

 

 

POWER-ON

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Turn-On VCC threshold

VCC Rising; VCCDR=5V

8.2

9.2

10.2

V

 

 

 

 

 

 

 

 

Turn-Off VCC threshold

VCC Falling; VCCDR=5V

6.5

7.5

8.5

V

 

 

 

 

 

 

 

 

Turn-On VCCDR

VCCDR Rising

4.2

4.4

4.6

V

 

Threshold

VCC=12V

 

 

 

 

 

 

 

 

 

 

 

 

Turn-Off VCCDR

VCCDR Falling

4.0

4.2

4.4

V

 

Threshold

VCC=12V

 

 

 

 

 

 

 

 

 

 

 

OSCILLATOR AND INHIBIT

 

 

 

 

 

 

 

 

 

 

 

 

fOSC

Initial Accuracy

OSC = OPEN

135

150

165

kHz

 

 

OSC = OPEN; Tj=0°C to 125°C

127

 

178

kHz

INH

Inhibit threshold

ISINK=5mA

0.5

 

 

V

dMAX

Maximum duty cycle

L6712, OSC = OPEN: IDROOP=0

72

80

-

%

 

 

OSC = OPEN; IDROOP=70µA

30

40

-

%

 

 

L6712A, OSC = OPEN

85

90

 

%

 

 

 

 

 

 

 

∆Vosc

Ramp Amplitude

 

 

3

 

V

 

 

 

 

 

 

 

FAULT

Voltage at pin OSC

OVP Active

4.75

5.0

5.25

V

 

 

 

 

 

 

 

3/29

L6712A L6712

Table 4. Electrical Characteristcs (continued)

(VCC = 12V±10%, TJ = 0°C to 70°C unless otherwise specified)

Symbol

Parameter

Test Condition

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

REFERENCE AND DAC

 

 

 

 

 

 

 

 

 

 

 

 

(1)

Output Voltage Accuracy

VIDx See Table 5, VID ≠ “11x“

-0.9

-

0.9

%

VOUT

 

 

 

 

 

 

 

 

VID = “110“

-1.0

-

1.0

%

 

 

 

 

 

 

 

REF_IN/OUT

Reference Accuracy

VIDx See Table 5, VID ≠ “111”

VOUT -5

VOUT

VOUT+5

mV

 

Current Capability

 

3

 

 

mA

 

 

 

 

 

 

 

 

Load Regulation

IREF = from 0 to 3mA

 

 

5.0

mV

VPROG / REF_IN/

Accuracy with external

VID=“111”;

-2.0

 

2.0

%

OUT

reference

REF_IN/OUT = 0.8V to 3.3V

 

 

 

 

 

 

 

 

 

 

 

REF_IN/OUT

Input impedance

 

 

400

 

kΩ

IVID

VID pull-up Current

VIDx =SGND

 

5

 

µA

VVID

VID pull-up Voltage

VIDx = OPEN

 

3

 

V

VIDIL

VID Input Levels

Input Low

 

 

0.4

V

VIDIH

 

Input High

1.0

 

 

V

ERROR AMPLIFIER

 

 

 

 

 

 

 

 

 

 

 

 

VOS_EA

Offset

FB = COMP

-5

 

5

mV

 

DC Gain

 

 

80

 

dB

 

 

 

 

 

 

 

SR

Slew-Rate

COMP=10pF

 

15

 

V/µs

IFB_START

Start-up Current

FB=SGND; During Soft Start…

65

 

 

µA

DIFFERENTIAL AMPLIFIER (REMOTE BUFFER)

 

 

 

 

 

 

 

 

 

 

 

VOS_RA

Offset

VSEN = FBG

-8

 

8

mV

 

DC Gain

 

 

80

 

dB

 

 

 

 

 

 

 

SR

Slew Rate

VSEN = 10pF

 

15

 

V/µs

DIFFERENTIAL CURRENT SENSING

 

 

 

 

 

 

 

 

 

 

 

 

IISEN1, IISEN2

Bias Current

ILOAD = 0

45

50

55

µA

IPGNDSx

Bias Current

 

45

50

55

µA

IISEN1, IISEN2

Bias Current at

 

80

85

90

µA

 

Over Current Threshold

 

 

 

 

 

 

 

 

 

 

 

 

IDROOP

Droop Current

ILOAD 0

 

0

1

µA

 

 

ILOAD = 100%

47.5

50

52.5

µA

GATE DRIVERS

 

 

 

 

 

 

 

 

 

 

 

 

 

tRISE HGATE

High Side

BOOTx-PHASEx=10V;

 

15

30

ns

 

Rise Time

CHGATEx to PHASEx=3.3nF

 

 

 

 

IHGATEx

High Side

BOOTx-PHASEx=10V

 

2

 

A

 

Source Current

 

 

 

 

 

 

 

 

 

 

 

 

RHGATEx

High Side

BOOTx-PHASEx=12V;

1.5

2

2.5

 

Sink Resistance

 

 

 

 

 

 

 

 

 

 

 

 

tRISE LGATE

Low Side

VCCDR=10V;

 

30

55

ns

 

Rise Time

CLGATEx to PGNDx=5.6nF

 

 

 

 

ILGATEx

Low Side

VCCDR=10V

 

1.8

 

A

 

Source Current

 

 

 

 

 

 

 

 

 

 

 

 

RLGATEx

Low Side

VCCDR=12V

0.7

1.1

1.5

 

Sink Resistance

 

 

 

 

 

 

 

 

 

 

 

 

4/29

L6712A L6712

Table 4. Electrical Characteristcs (continued)

(VCC = 12V±10%, TJ = 0°C to 70°C unless otherwise specified)

Symbol

Parameter

Test Condition

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

PROTECTIONS

 

 

 

 

 

 

 

 

 

 

 

 

 

PGOOD

Upper Threshold

VSEN Rising

108

112

115

%

 

 

 

 

 

 

 

 

Lower Threshold

VSEN Falling

84

88

92

%

 

 

 

 

 

 

 

OVP

Over Voltage Threshold

VSEN Rising

115

122

130

%

 

 

 

 

 

 

 

UVP

Under Voltage Trip

VSEN Falling

55

60

65

%

 

 

 

 

 

 

 

VPGOODL

PGOOD Voltage Low

IPGOOD = -4mA

 

 

0.4

V

IPGOODH

PGOOD Leakage

VPGOOD = 5V

 

 

1

µA

Note: 1. Output voltage is specified including Error Amplifier Offset in the trimming chain. Remote Amplifier is not included.

Table 5. Voltage Identification (VID) Codes.

VID2

VID1

VID0

Output Voltage (V)

 

 

 

 

1

1

1

Ext. Ref.

 

 

 

 

1

1

0

0.900

 

 

 

 

1

0

1

1.250

 

 

 

 

1

0

0

1.500

 

 

 

 

0

1

1

1.715

 

 

 

 

0

1

0

1.800

 

 

 

 

0

0

1

2.500

 

 

 

 

0

0

0

3.300

 

 

 

 

Table 6. Pin Function

 

N. (*)

Name

Description

SO

 

VFQFPN

 

 

 

 

 

 

 

 

 

1

 

33

LGATE1

Channel 1 LS driver output.

 

 

 

 

A little series resistor helps in reducing device-dissipated power.

 

 

 

 

 

2

 

34

VCCDR

LS drivers supply: it can be varied from 5V to 12V buses.

 

 

 

 

Filter locally with at least 1µF ceramic cap vs. PGND.

 

 

 

 

 

3

 

35

PHASE1

Channel 1 HS driver return path. It must be connected to the HS1 mosfet source

 

 

 

 

and provides the return path for the HS driver of channel 1.

 

 

 

 

 

4

 

36

UGATE1

Channel 1 HS driver output.

 

 

 

 

A little series resistor helps in reducing device-dissipated power.

 

 

 

 

 

5

 

2

BOOT1

Channel 1 HS driver supply. This pin supplies the relative high side driver.

 

 

 

 

Connect through a capacitor (100nF typ.) to the PHASE1 pin and through a diode

 

 

 

 

to VCC (cathode vs. boot).

 

 

 

 

 

6

 

4

VCC

Device supply voltage. The operative supply voltage is 12V ±10%.

 

 

 

 

Filter with 1µF (Typ.) capacitor vs. GND.

7

 

5,6

SGND

All the internal references are referred to this pin. Connect it to the PCB signal

 

 

 

 

ground.

 

 

 

 

 

8

 

7

COMP

This pin is connected to the error amplifier output and is used to compensate the

 

 

 

 

control feedback loop.

 

 

 

 

 

9

 

8

FB

This pin is connected to the error amplifier inverting input and is used to

 

 

 

 

compensate the control feedback loop.

 

 

 

 

 

5/29

L6712A L6712

Table 6. Pin Function (continued)

 

N. (*)

Name

Description

SO

 

VFQFPN

 

 

 

 

 

 

 

 

 

10

 

9

DROOP

A current proportional to the sum of the current sensed in both channel is

 

 

 

 

sourced from this pin (50µA at full load, 70µA at the Constant Current threshold).

 

 

 

 

Short to FB to implement the Droop effect: the resistor connected between FB

 

 

 

 

and VSEN (or the regulated output) allows programming the droop effect.

 

 

 

 

Otherwise, connect to GND directly or through a resistor (43kΩ max) and filter

 

 

 

 

with 1nF capacitor. In this last case, current information can be used for other

 

 

 

 

purposes.

11

 

11

REF_IN /

Reference input/output. Filter vs. GND with 1nF ceramic capacitor (a total of

 

 

 

OUT

100nF capacitor is allowed).

 

 

 

 

It reproduces the reference used for the regulation following VID code: when

 

 

 

 

VID=111, the reference for the regulation must be connected on this pin.

 

 

 

 

References ranging from 0.800V up to 3.300V can be accepted.

 

 

 

 

 

12

 

12

VSEN

Connected to the output voltage it is able to manage Over & Under-voltage

 

 

 

 

conditions and the PGOOD signal. It is internally connected with the output of the

 

 

 

 

Remote Sense Amplifier for Remote Sense of the regulated voltage.

 

 

 

 

Connecting 1nF capacitor max vs. GND can help in reducing noise injection at

 

 

 

 

this pin.

 

 

 

 

If no Remote Sense is implemented, connect it directly to the regulated voltage in

 

 

 

 

order to manage OVP, UVP and PGOOD.

 

 

 

 

 

13

 

13

ISEN1

Channel 1 current sense pin. The output current may be sensed across a sense

 

 

 

 

resistor or across the low-side mosfet RdsON. This pin has to be connected to the

 

 

 

 

low-side mosfet drain or to the sense resistor through a resistor Rg.

 

 

 

 

The net connecting the pin to the sense point must be routed as close as

 

 

 

 

possible to the PGNDS net in order to couple in common mode any picked-up

 

 

 

 

noise.

 

 

 

 

 

14

 

14

PGNDS1

Channel 1 Power Ground sense pin. The net connecting the pin to the sense

 

 

 

 

point must be routed as close as possible to the ISEN1 net in order to couple in

 

 

 

 

common mode any picked-up noise.

 

 

 

 

 

15

 

15

PGNDS2

Channel 2 Power Ground sense pin. The net connecting the pin to the sense

 

 

 

 

point must be routed as close as possible to the ISEN2 net in order to couple in

 

 

 

 

common mode any picked-up noise.

 

 

 

 

 

16

 

16

ISEN2

Channel 2 current sense pin. The output current may be sensed across a sense

 

 

 

 

resistor or across the low-side mosfet RdsON. This pin has to be connected to the

 

 

 

 

low-side mosfet drain or to the sense resistor through a resistor Rg.

 

 

 

 

The net connecting the pin to the sense point must be routed as close as

 

 

 

 

possible to the PGNDS net in order to couple in common mode any picked-up

 

 

 

 

noise.

 

 

 

 

 

17

 

18

OSC/INH

Oscillator pin.

 

 

 

FAULT

It allows programming the switching frequency of each channel: the equivalent

 

 

 

 

switching frequency at the load side results in being doubled.

 

 

 

 

Internally fixed at 1.24V, the frequency is varied proportionally to the current sunk

 

 

 

 

(forced) from (into) the pin with an internal gain of 6kHz/µA (See relevant section

 

 

 

 

for details). If the pin is not connected, the switching frequency is 150kHz for

 

 

 

 

each channel (300kHz on the load).

 

 

 

 

The pin is forced high (5V Typ.) when an Over Voltage is detected; to recover

 

 

 

 

from this condition, cycle VCC.

 

 

 

 

Forcing the pin to a voltage lower than 0.6V, the device stops operation and

 

 

 

 

enters the inhibit state.

 

 

 

 

 

18

 

20

FBG

Remote sense amplifier inverting input. It has to be connected to the negative

 

 

 

 

side of the load to perform programmable remote sensing through apposite

 

 

 

 

resistors (see relative section).

 

 

 

 

 

19

 

21

FBR

Remote sense amplifier non-inverting input. It has to be connected to the positive

 

 

 

 

side of the load to perform programmable remote sensing through apposite

 

 

 

 

resistors (see relative section).

 

 

 

 

 

6/29

 

 

 

L6712A L6712

Table 6. Pin Function (continued)

 

 

 

 

N. (*)

Name

Description

SO

VFQFPN

 

 

 

 

 

 

 

20 to 22

22 to 24

VID0-2

Voltage IDentification pins. These input are internally pulled-up. They are used to

 

 

 

program the output voltage as specified in Table 1 and to set the PGOOD, OVP

 

 

 

and UVP thresholds.

 

 

 

Connect to GND to program a ‘0’ while leave floating to program a ‘1’.

 

 

 

 

23

25

PGOOD

This pin is an open collector output and is pulled low if the output voltage is not

 

 

 

within the above specified thresholds and during soft-start.

 

 

 

It cannot be pulled up above 5V. If not used may be left floating.

 

 

 

 

24

27

BOOT2

Channel 2 HS driver supply. This pin supplies the relative high side driver.

 

 

 

Connect through a capacitor (100nF typ.) to the PHASE2 pin and through a diode

 

 

 

to VCC (cathode vs. boot).

 

 

 

 

25

28

UGATE2

Channel 2 HS driver output.

 

 

 

A little series resistor helps in reducing device-dissipated power.

 

 

 

 

26

29

PHASE2

Channel 2 HS driver return path. It must be connected to the HS2 mosfet source

 

 

 

and provides the return path for the HS driver of channel 2.

 

 

 

 

27

30

LGATE2

Channel 2 LS driver output.

 

 

 

A little series resistor helps in reducing device-dissipated power.

 

 

 

 

28

31,

PGND

LS drivers return path.

 

32

 

This pin is common to both sections and it must be connected through the

 

 

 

closest path to the LS mosfets source pins in order to reduce the noise injection

 

 

 

into the device.

 

 

 

 

 

PAD

THERMAL

Thermal pad connects the silicon substrate and makes a good thermal contact

 

 

PAD

with the PCB to dissipate the power necessary to drive the external

 

 

 

mosfets.Connect to the GND plane with several vias to improve thermal

 

 

 

conductivity.

 

 

 

 

(*) Pin not reported in QFN column have to be considered as Not Connected, not internally bonded.

Figure 4. Reference Schematic

Vin

 

 

 

 

 

 

 

 

GNDin

 

 

 

 

 

 

CIN

 

 

 

 

 

 

 

 

 

 

 

 

VCCDR

 

 

VCC

 

 

 

 

 

BOOT1

 

 

BOOT2

 

 

 

 

HS1

UGATE1

 

 

UGATE2

HS2

 

 

 

 

 

 

 

 

 

L1

 

PHASE1

 

 

PHASE2

L2

 

 

 

 

 

 

 

 

 

 

LS1

LGATE1

 

 

LGATE2

COUT

LOAD

 

 

 

 

 

 

LS2

 

 

 

 

ISEN1

 

 

ISEN2

 

 

 

 

 

Rg

 

 

 

Rg

 

 

 

 

PGNDS1

 

L6712

PGNDS2

 

 

 

 

 

 

 

 

 

 

 

 

 

Rg

L6712A

PGND

Rg

 

 

 

 

 

 

 

S2

 

 

 

 

 

 

 

 

VID2

 

 

PGOOD

 

 

S1

 

 

 

 

 

PGOOD

 

 

 

 

 

 

 

 

VID1

 

 

COMP

 

S0

 

 

 

 

 

 

 

 

VID0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REF_IN/OUT

 

 

 

CF

 

 

 

 

 

 

 

DROOP

RF

 

 

 

 

OSC / INH

 

 

 

 

 

 

 

 

 

FB

 

 

 

 

 

 

 

 

 

 

 

 

 

SGND

 

 

 

RFB

 

 

 

 

 

 

 

VSEN

 

 

 

 

 

 

FBR

FBG

 

 

 

 

 

 

 

 

 

 

 

7/29

L6712A L6712

3 Device Description

The device is an integrated circuit realized in BCD technology. It provides complete control logic and protections for a high performance dual-phase step-down converter optimized for high current DC/DC applications. It is designed to drive N-Channel Mosfets in a two-phase synchronous-rectified buck topology. A 180 deg phase shift is provided between the two phases allowing reduction in the input capacitor current ripple, reducing also the size and the losses. The output voltage of the converter can be precisely regulated, programming the VID pins, from 0.900 to 3.300V with a maximum tolerance of ±0.9% over temperature and line voltage variations. The programmable Remote Sense Amplifier avoids the use of external resistor divider allowing recovering drops across distribution lines and also adjusting output voltage to different values from the available reference. The device provides an average current-mode control with fast transient response. It includes a 150kHz free-running oscillator externally adjustable through a resistor. The error amplifier features a 15V/µs slew rate that permits high converter bandwidth for fast transient performances. Current information is read across the lower mosfets RdsON or across a sense resistor placed in series to the LS mos in fully differential mode. The current information corrects the PWM outputs in order to equalize the average current carried by each phase. Current sharing between the two phases is then limited at ±10% over static and dynamic conditions unless considering the sensing element spread. Droop effect can be programmed in order to minimize output filter and load transient response: the function can be disabled and the current information available on the pin can be used for other purposes. The device protects against Over-Current, with an OC threshold for each phase, entering in constant current mode. Since the current is read across the low side mosfets, the device keeps constant the bottom of the inductors current triangular waveform. When an Under Voltage is detected the device resets with all mosfets OFF and suddenly re-starts. The device also performs a crowbar Over-Voltage protection that immediately latches the operations turning ON the lower driver and driving high the FAULT pin.

3.1 OSCILLATOR

The switching frequency is internally fixed at 150kHz. Each phase works at the frequency fixed by the oscillator so that the resulting switching frequency at the load side results in being doubled.

The internal oscillator generates the triangular waveform for the PWM charging and discharging with a constant current an internal capacitor. The current delivered to the oscillator is typically 25µA (Fsw=150kHz) and may be varied using an external resistor (ROSC) connected between OSC pin and SGND or Vcc. Since the OSC pin is maintained at fixed voltage (Typ. 1.237V), the frequency is varied proportionally to the current sunk (forced) from (into) the pin considering the internal gain of 6KHz/µA.

In particular connecting it to SGND the frequency is increased (current is sunk from the pin), while connecting ROSC to Vcc=12V the frequency is reduced (current is forced into the pin), according to the following relationships:

ROSC vs. GND: FSW

=

150[KHz] +

1.237

6

 

kHz

 

 

 

7.422 106

 

 

 

 

---------------

 

----------

 

 

 

= 150[kHz] + -----------------------------[kHz]

 

 

 

 

ROSC

 

 

 

µA

 

 

 

ROSC[KΩ]

 

 

 

 

 

 

 

 

 

 

ROSC vs. 12V: FSW =

150[KHz]

121.237

6

 

kHz

 

 

6.457 107

[kHz]

 

 

------------------------

 

 

 

----------µA

 

 

= 150[kHz] – -----------------------------

 

 

 

ROSC

 

 

 

 

 

 

ROSC[KΩ]

 

 

 

 

 

 

 

 

 

 

Forcing 25µA into this pin, the device stops switching because no current is delivered to the oscillator

8/29

L6712A L6712

Figure 5. ROSC vs. Switching Frequency

 

14000

 

 

 

 

 

12V

12000

 

 

 

 

 

10000

 

 

 

 

 

) vs.

 

 

 

 

 

8000

 

 

 

 

 

Rosc(K

6000

 

 

 

 

 

4000

 

 

 

 

 

 

 

 

 

 

 

 

2000

 

 

 

 

 

 

0

 

 

 

 

 

 

25

50

75

100

125

150

Frequency (kHz)

 

800

 

 

 

 

 

GND

700

 

 

 

 

 

600

 

 

 

 

 

 

 

 

 

 

 

)vs.

500

 

 

 

 

 

400

 

 

 

 

 

Rosc(K

 

 

 

 

 

300

 

 

 

 

 

200

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

0

 

 

 

 

 

 

150

250

350

450

550

650

Frequency (kHz)

3.2 DIGITAL TO ANALOG CONVERTER AND REFERENCE

The built-in digital to analog converter allows the adjustment of the output voltage from 0.900V to 3.300V as shown in Figure 6. Different voltages can be reached simply changing the Remote Amplifier Gain that acts as a resistor divider (See relevant section).

The internal reference is trimmed during production process to have an output voltage accuracy of ±0.9% and a zero temperature coefficient around 70°C including also error amplifier offset compensation. It is programmed through the voltage identification (VID) pins. These are inputs of an internal DAC that is realized by means of a series of resistors providing a partition of the internal voltage reference. The VID code drives a multiplexer that select a voltage on a precise point of the divider (see Figure 6). The DAC output is delivered to an amplifier obtaining the VPROG voltage reference (i.e. the set-point of the error amplifier). Internal pull-ups are provided (realized with a 5µA current generator up to 3V typ.); in this way, to program a logic "1" it is enough to leave the pin floating, while to program a logic "0" it is enough to short the pin to SGND.

The device offers a bi-directional pin REF_IN/OUT: the internal reference used for the regulation is usually available on this pin with 3mA of maximum current capability except when VID code 111 is programmed; in this case the device accepts an external reference through the REF_IN/OUT pin and regulates on it. When external reference is used, it must range from 0.800V up to 3.300V to assure proper functionality of the device.

Figure 6 shows a block schematic of how the Reference for the regulation is managed when internal or external reference is used.

The voltage identification (VID) pin configuration or the external reference provided also sets the powergood thresholds (PGOOD) and the Over/Under voltage protection (OVP/UVP) thresholds.

9/29

Loading...
+ 20 hidden pages