ST L6706 User Manual

Features
L6706
VR11.1 single phase controller with integrated driver
8-bit programmable output up to 1.60000 V -
High current embedded driver
High output voltage accuracy
Programmable droop function
Imon output
Load transient boost LTB Technology™ to
Intel
VR11.1 DAC
minimize the number of output capacitors
Full differential current sense across inductor
Differential remote voltage sensing
Adjustable voltage offset
LSLess startup to manage pre-biased output
Feedback disconnection protection
Preliminary overvoltage protection
Programmable overcurrent protection
Programmable overvoltage protection
Adjustable switching frequency
SSEND and OUTEN signal
VFQFPN-40 6x6 mm package with exp. pad
VFQFPN-40 6 x 6 mm
Description
The device implements a single phase step-down controller with integrated high current driver in a compact 6x6 mm body package with exposed pad.
The device embeds VR11.x DACs: the output voltage ranges up to 1.60000 V managing D-VID with high output voltage accuracy over line and temperature variations.
Imon capability guarantee full compatibility with VR11.1 enabling additional power saving technique.
Programmable droop function allows to supply all the latest Intel CPU rails.
Applications
VTT and VAXG rails
CPU power supply
High density DC/DC converters
Load transient boost LTB Technology™ reduces system cost by providing the fastest response to load transition.
The controller assures fast protection against load over current and under / over voltage. Feedback disconnection prevents from damaging the load in case of disconnections in the system board.
In case of over-current, the system works in constant current mode until UVP.

Table 1. Device summary

January 2010 Doc ID 15698 Rev 2 1/47
Order codes Package Packing
L6706
Tr ay
VFQFPN-40
L6706TR Tape and reel
www.st.com
47
Contents L6706
Contents
1 Principle application circuit and block diagram . . . . . . . . . . . . . . . . . . . 4
1.1 Principle application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Pins description and connection diagrams . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Voltage identifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5 Device description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6 DAC and current reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7 Differential remote voltage sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8 Voltage positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8.1 Offset (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8.2 Droop function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
9 Droop thermal compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
10 Output current monitoring (IMON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
11 Load transient boost technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
12 Dynamic VID transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
13 Enable and disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
14 Soft-start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2/47 Doc ID 15698 Rev 2
L6706 Contents
14.1 Low-side-less startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
15 Output voltage monitor and protections . . . . . . . . . . . . . . . . . . . . . . . . 34
15.1 Undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
15.2 Preliminary overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
15.3 Over voltage and programmable OVP . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
15.4 Overcurrent protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
15.5 Feedback disconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
16 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
17 Driver section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
18 System control loop compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
19 Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
20 Layout guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
20.1 Power components and connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
20.2 Small signal components and connections . . . . . . . . . . . . . . . . . . . . . . . 43
20.3 Embedding L6706 - Based VR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
21 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
22 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Doc ID 15698 Rev 2 3/47
Principle application circuit and block diagram L6706

1 Principle application circuit and block diagram

1.1 Principle application circuit

Figure 1. Principle application circuit

L
V
IN
= 12V
GND
SS_END
IN
5V
SB
Optional:Pre-OVP
Optional:
See DS
VTT
1k
V
cc
To Vcc
R
SSOSC
D
10k
VID bus from CPU
To Enable circuitry
L6706 REF.SCH
R
OVP
R
OCSET
R
OFFSET
R
LTBGAIN
R
OSC_SGND
R
OSC_VCC
R
SS_FLIM
R
Q
FLIMT
35
37
1
3
2
12
13
11
10
14
15
29
27 26
25 24 23 22 21 20
16
IN
VCCDR
PGND
DGND
VCC
SGND
OVPSEL
OCSET
OFFSET
LTBGAIN
OSC/FAULT
SSOSC/FLIMIT
SSEND
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0
OUTEN
EXPAD
UGATE
PHASE
L6706
41
BOOT
LGATE
COMP
VSEN
IMON
INT1
INT3
INT4
INT2
CS-
CS+
LTB
FB
FBG
(a)
38
40
39
36
18
Rg
HS1
LS1
V
IN
17
L1
R
C
220nF
C
IN
Vcc_core
C
OUT
LOAD
R
OUT
GND_core
8
4
C
F
C
P
R
5
C
i
R
i
6
F
R
FB
R
FB1
R
FB2
R
FB3
Optional:
See DS
C
LTB
R
LTB
NTC
7
9
CI
MON
R
1
R
+3V3
19
+12V
31
33
28
2
R
3
NTC
R
IMON_OS
R
IMON_TOT
Optional:
See DS
+3V3
a. Refer to the application note for the reference schematic.
4/47 Doc ID 15698 Rev 2
L6706 Principle application circuit and block diagram

1.2 Block diagram

Figure 2. Block diagram

OSC / FAULT
SSOSC/
FLIMT
VID0 VID1 VID2 VID3 VID4 VID5 VID6 VID7
OSCILLATOR
DIGITAL
SOFT START
DAC
WITH DYNAMIC
VID CONTROL
GND DROP RECOVERY
INT1
INT2
FBG
INT3
VREF
INT4
BOOT
UGATE
PHASE
VCCDR
LGATE
PGND
VCC
SGND
DGND
SSEND
50uA
INFO
+.1240V
CH CURRENT
READING
+.1240V
20uA
LTB
LTB
OUTEN
OUTEN
I
DROOP
I
OVP
10uA
LTBGAIN
CS-
CS+
OCSET
OCSET
OVPSEL
IMON
LOGIC PWM
ADAPTIVE ANTI
CROSS CONDUCTION
PWM
LTB
INT1
INT2
SSOSC
OUTEN
DROOP
I
CONTROL LOGIC
AND PROTECTIONS
DELIVERED CURRENT
OFFSET
I
ERROR
AMPLIFIER
FB
COMP
INT3
L6706
INT4
OFFSET
I
PWM1
OFFSET
VCC
VCCDR
OCSET
INFO
OVP
COMPARATOR
+.1240V
+175mV
1.800V / OVP
VSEN
Doc ID 15698 Rev 2 5/47
Pins description and connection diagrams L6706

2 Pins description and connection diagrams

Figure 3. Pins connection (top view)

SSEND
INT2
VID7
VID6
VID5
VID4
VID3
VID2
10
VID1
20
19
18
17
16
15
14
13
12
11
VID0
INT1
CS-
CS+
OUTEN
SSOSC/FLIMIT
OSC/FAULT
OCSET
OVPSEL
OFFSET
INT3
N.C.
INT4
N.C.
VCCDR
LGATE
PGND
PHASE
UGATE
BOOT
N.C.
27 26 25 24 23 22 21
28
30
29
31
32
33
34
35
36
37
38
39
40
123456789
L6706

2.1 Pin description

Table 2. Pin description

Name Description
1DGND
2SGND
3VCC
4COMP
5FB
Digital GND. It must be connected to PGND (power ground).
All the internal references are referred to this pin. Connect it to the PCB signal ground.
Device supply voltage pin. The operative supply voltage is 12 V ±15%. Filter with 1 x 1 µF MLCC capacitor
vs. SGND.
Error amplifier output. Connect with an R
pulling down this pin.
Error amplifier inverting input pin. Connect with a resistor R
current proportional to the load current is sourced from this pin in order to implement the droop effect. See “Droop function” Section for details.
SGND
DGND
VCC
FB
COMP
VSEN
FBG
LT B
IMON
LTBGAIN
- CF//CP vs. FB pin. The device cannot be disabled by
F
vs. VSEN and with an RF - CF//CP vs. COMP pin. A
FB
6 VSEN
Output voltage monitor, manages OVP/UVP protections and FB disconnection. Connect to the positive side of the load to perform remote sense. See “Layout
guidelines” Section for proper layout of this connection.
7FBG
Connect to the negative side of the load to perform remote sense. See “Layout
guidelines” Section for proper layout of this connection.
6/47 Doc ID 15698 Rev 2
L6706 Pins description and connection diagrams
Table 2. Pin description (continued)
Name Description
Load transient boost pin.
- C
Internally fixed at 2 V, connecting a R
8LTB
load transient boost technology™: as soon as the device detects a transient load it turns on the PHASE. Short to SGND to disable the function.See “Load
transient boost technology” Section for details.
Current monitor output pin.
9IMON
A current proportional to the load current is sourced from this pin. Connect through a resistor R pin voltage is clamped to 1.1 V max.
Load transient boost technology™ gain pin.
10 LTBGAIN
Internally fixed at 1.24 V, connecting a R setting the GAIN of the LTB action. See See “Load transient boost technology”
Section for details.
Offset programming pin. Internally fixed at 1.240 V, connecting a R
11 OFFSET
setting a current that is mirrored into FB pin in order to program a positive offset according to the selected RFB. Short to SGND to disable the function.
See “Offset (optional)” Section for details.
Over voltage programming pin. Internally pulled up by 20 µA (min) to 3.3 V. Leave floating to use built-in
12 OVPSEL
protection thresholds (OVPTH= VID + 175 mV typ). Connect to SGND through a R voltage according to the R
OVP” Section for details.
LT B
LTBGAIN
OFFSET
vs. V
resistor vs SGND allows
LT B
to SGND (or FBG) to implement a load indicator. The
MON
resistor and filter with 100 pF (max) to set the OVP threshold to a fixed
OVP
resistor.See “Over voltage and programmable
OVP
allows to enable the
OUT
resistor vs. SGND allows
Over current setting, psi action pin.
13 OCSET
Connect to SGND through a R
resistor to set the OCP threshold. See
OCSET
“Overcurrent protection” Section for details.
Oscillator, fault pin.
. Frequency is programmed
SW
14
OSC/
FAULT
It allows programming the switching frequency F according to the resistor connected from the pin vs. SGND or VCC with a gain of 9.1 kHz/µA (see relevant section for details). Leaving the pin floating programs a switching frequency of 200 kHz. The pin is forced high (3.3 V typ) to signal an OVP/UVP fault: to recover from this condition, cycle VCC or the OUTEN pin. See “Oscillator” Section for details.
Soft-start oscillator pin. By connecting a resistor RSS to GND, it allows programming the soft-start time.
will proportionally change with a gain of 25 [µs / kΩ]. The
SS
to the programmed VID code. The pin is kept to a
BOOT
has to be considered also when the
BOOT
15
SSOSC/
FLIMIT
Soft-start time T same slope implemented to reach V reference moves from V fixed 1.240 V. See “Soft-start” Section for details. It also allows to select maximum LTB frequency. See “Load transient boost technology” Sectionfor details.
Doc ID 15698 Rev 2 7/47
Pins description and connection diagrams L6706
Table 2. Pin description (continued)
Name Description
Output enable pin. Internally pulled up by 10 µA (typ) to 3 V. Forced low, the device stops
16 OUTEN
17 CS+
18 CS-
operations with all MOSFETs OFF: all the protections are disabled except for preliminary over voltage. Leave floating, the device starts-up implementing soft­start up to the selected VID code. Cycle this pin to recover latch from protections; filter with 1 nF (typ) vs. SGND.
Current sense positive input. Connect through an R-C filter to the phase-side of the output inductor. See Section 20: Layout guidelines on page 43 for proper layout of this
connection.
Current sense negative input. Connect through a Rg resistor to the output-side of the output inductor. See Section 20: Layout guidelines on page 43 for proper layout of this
connection.
19 INT1
20 to 27
28 INT2
VID0 to
VID7
Test mode pin. It must be left unconnected or connected to 3.3 V.
Voltage identification pins. (not internally pulled up). Connect to SGND to program a '0' or connect to the external Pull-up resistor to
program a '1'. They allow programming output voltage as specified in Ta bl e 7 .
Test mode pin. It must be connected to SGND.
Soft-start end signal.
29 SSEND
Open drain output sets free after SS has finished and pulled low when triggering any protection. Pull up to a voltage lower than 3.3 V, if not used it can be left floating.
30 N.C. Not internally connected.
31 INT3
Test mode pin. It must be connected to 12 V.
32 N.C. Not internally connected.
33 INT4
Test mode pin. It must be connected to 12 V.
34 N.C. Not internally connected.
LS driver supply.
35 VCCDR
VCDDR pin voltage has to be the same of VCC pin. Filter with 1 x 1 µF MLCC capacitor vs. PGND.
36 LGATE
37 PGND
LS driver output. A small series resistor helps in reducing device-dissipated power.
Power ground pin (LS drivers return path). Connect to power ground plane.
HS driver return path.
38 PHASE
It must be connected to the HS MOSFET source and provides return path for the HS driver.
8/47 Doc ID 15698 Rev 2
L6706 Pins description and connection diagrams
Table 2. Pin description (continued)
Name Description
HS driver output.
39 UGATE
It must be connected to the HS MOSFET gate. A small series resistors helps in reducing device-dissipated power.
HS driver supply.
40 BOOT
Connect through a capacitor (100 nF typ.) to PHASE and provide necessary Bootstrap diode. A small resistor in series to the boot diode helps in reducing Boot capacitor overcharge.
Exposed pad connects the silicon substrate. As a consequence it makes a good thermal contact with the PCB to dissipate the power necessary to drive the external MOSFETs.
Connect it to the power ground plane using 4.3 x 4.3 mm square area on the
PA D
Thermal
PA D
PCB and with nine vias, to improve thermal conductivity.

2.2 Thermal data

Table 3. Thermal data

Symbol Parameter Value Unit
R
thJA
R
thJC
T
MAX
T
stg
T
J
Thermal resistance junction to ambient (Device soldered on 2s2p PC board)
35 °C / W
Thermal resistance junction to case 1 °C / W
Maximum junction temperature 150 °C
Storage temperature range -40 to 150 °C
Junction temperature range -10 to 125 °C
Doc ID 15698 Rev 2 9/47
Electrical specifications L6706

3 Electrical specifications

3.1 Absolute maximum ratings

Table 4. Absolute maximum ratings

Symbol Parameter Value Unit
V
CC, VCCDR
V
BOOT
V
PHASE
V
UGATE
V
PHASE
V
PHASE
To P GN D 1 5 V
­Boot voltage 15 V
­15 V
LGATE to PGND -0.3 to Vcc+0.3 V
All other pins to PGND -0.3 to 3.6 V
Negative peak voltage to PGND; T < 400 ns VCC = VCCDR = 12 V
Positive voltage to PGND VCC = VCCDR = 12 V
Positive peak voltage to PGND; T < 200 ns VCC = VCCDR = 12 V
-8 V
26 V
30 V
Maximum withstanding voltage range test condition: CDF-AEC-Q100-002- “human body model”
+/- 1750 V
acceptance criteria: “normal performance”
10/47 Doc ID 15698 Rev 2
L6706 Electrical specifications

3.2 Electrical characteristics

VCC = 12 V ± 15%, TJ = 0 °C to 70 °C unless otherwise specified

Table 5. Electrical characteristics

Symbol Parameter Test conditions Min. Typ. Max. Unit
Supply current and power-on
I
CC
I
CCDR
I
BOOT
VCC supply current
VCCDR supply current LGATE = OPEN, VCCDR = 12 V 5 7 mA
BOOT supply current
UGATE and LGATE open; VCC = VBOOT = 12 V
UGATE = OPEN, PHASE to PGND; VCC = BOOT = 12 V
23 27 mA
23mA
Power-on
VCC turn-ON VCC rising; VCCDR = VCC 3.7 4.0 V
UVLO
VCC
VCC turn-OFF VCC falling; VCCDR = VCC 3.3 3.5 V
Oscillator and inhibit
F
OSC
TD
TD
TD
Initial accuracy
1
2
3
SS delay time 1 1.5 ms
SS TD2 time R
SS TD3 time 50 200 μs
OSC = OPEN OSC = OPEN; TJ = 0 to 125 °C
= 20 kΩ 500 μs
SSOSC
180 175
200 200
Rising thresholds voltage 0.80 0.85 0.90 V
Output enable
OUTEN
Hysteresis 100 mV
Output pull-up current OUTEN to SGND 10 μA
ΔVosc Ramp amplitude 1.5 V
FAULT Voltage at pin OSC/FAULT OVP and UVP Active 3.3 V
220 225
kHz kHz
Reference and DAC
K
V
VID
VID
Error amplifier
VID
BOOT
IH
IL
A
0
Output voltage accuracy
VID = 1.000 V to VID = 1.600 V FB = VOUT; FBG = GNDOUT
VID = 0.800 V to VID = 1.000 V FB = VOUT; FBG = GNDOUT
VID = 0.500 V to VID = 0.800 V FB = VOUT; FBG = GNDOUT
-0.5 - 0.5 %
-5 - +5 mV
-8 - +8 mV
Boot voltage 1.081 V
Input low 0.35 V
VID thresholds
Input high 0.8 V
EA DC gain 130 dB
Doc ID 15698 Rev 2 11/47
Electrical specifications L6706
Table 5. Electrical characteristics (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
SR EA slew-rate COMP = 10 pF to SGND 25 V/μs
Differential current sensing and offset
V
OCSET
K
IDROOP
K
IOFFSET
I
OFFSET
V
OFFSET
Gate drivers
t
RISE UGATE
I
UGATE
R
UGATE
t
RISE LGATE
I
LGATE
R
LGATE
Protections
OVP
Programmable
OVP
OCSET pin voltage 1.120 1.260 1.400 mV
Droop current deviation from nominal value
Offset current accuracy I
Rg = 1 kΩ; I
= 50 μA to 250 μA-5-5%
OFFSET
= 25 μA; -2 - +2 μA
DROOP
OFFSET current range 0 250 μA
OFFSET pin bias I
High side rise time
BOOT-PHASE = 12 V; C
= 0 to 250 μA1.240V
OFFSET
to PHASE = 3.3 nF
UGATE
20 ns
High side source current BOOT-PHASE = 12 V 1.5 A
High side sink resistance BOOT-PHASE = 12 V 1.8 Ω
Low side rise time
VCCDR = 12 V; C
to PGND = 5.6 nF
LGATE
25 ns
Low side source current VCCDR = 12 V 2 A
Low side sink resistance VCCDR = 12 V 1.2 Ω
Over voltage protection (VSEN rising)
current OVP = SGND 20 22 24 μA
I
OVP
Before V
BOOT
Above VID (after TD
) 150 175 200 mV
3
1.24 1.300 V
Comparator offset voltage OVP = 1.800 V -20 0 20 mV
UVLO
OVP
Pre-OVP
Preliminary over voltage protection
VCC> UVLO VSEN rising
Hysteresis 350 mV
UVP Under voltage threshold VSEN falling; below VID 550 600 650 mV
V
SSEND
SS_END voltage low I = -4 mA 0.4 V
12/47 Doc ID 15698 Rev 2
< VCC < UVLO
and OUTEN = SGND
VCC
VCC
1.750 1.800 1.850 V
L6706 Voltage identifications

4 Voltage identifications

Table 6. Voltage Identification (VID) mapping Intel VR11.x

VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0
800 mV 400 mV 200 mV 100 mV 50 mV 25 mV 12.5 mV 6.25 mV

Table 7. Voltage Identification (VID) Intel VR11.x

HEX code
Output
voltage
(1)
HEX code
Output
voltage
HEX code
(1)
(1)
Output
voltage
HEX code
(1)
Output
voltage
0 0 OFF 4 0 1.21250 8 0 0.81250 C 0 0.41250
0 1 OFF 4 1 1.20625 8 1 0.80625 C 1 0.40625
0 2 1.60000 4 2 1.20000 8 2 0.80000 C 2 0.40000
0 3 1.59375 4 3 1.19375 8 3 0.79375 C 3 0.39375
0 4 1.58750 4 4 1.18750 8 4 0.78750 C 4 0.38750
0 5 1.58125 4 5 1.18125 8 5 0.78125 C 5 0.38125
0 6 1.57500 4 6 1.17500 8 6 0.77500 C 6 0.37500
0 7 1.56875 4 7 1.16875 8 7 0.76875 C 7 0.36875
0 8 1.56250 4 8 1.16250 8 8 0.76250 C 8 0.36250
0 9 1.55625 4 9 1.15625 8 9 0.75625 C 9 0.35625
0 A 1.55000 4 A 1.15000 8 A 0.75000 C A 0.35000
0 B 1.54375 4 B 1.14375 8 B 0.74375 C B 0.34375
0 C 1.53750 4 C 1.13750 8 C 0.73750 C C 0.33750
0 D 1.53125 4 D 1.13125 8 D 0.73125 C D 0.33125
0 E 1.52500 4 E 1.12500 8 E 0.72500 C E 0.32500
0 F 1.51875 4 F 1.11875 8 F 0.71875 C F 0.31875
(1)
1 0 1.51250 5 0 1.11250 9 0 0.71250 D 0 0.31250
1 1 1.50625 5 1 1.10625 9 1 0.70625 D 1 0.30625
1 2 1.50000 5 2 1.10000 9 2 0.70000 D 2 0.30000
1 3 1.49375 5 3 1.09375 9 3 0.69375 D 3 0.29375
1 4 1.48750 5 4 1.08750 9 4 0.68750 D 4 0.28750
1 5 1.48125 5 5 1.08125 9 5 0.68125 D 5 0.28125
1 6 1.47500 5 6 1.07500 9 6 0.67500 D 6 0.27500
1 7 1.46875 5 7 1.06875 9 7 0.66875 D 7 0.26875
1 8 1.46250 5 8 1.06250 9 8 0.66250 D 8 0.26250
1 9 1.45625 5 9 1.05625 9 9 0.65625 D 9 0.25625
Doc ID 15698 Rev 2 13/47
Voltage identifications L6706
Table 7. Voltage Identification (VID) Intel VR11.x
HEX code
Output
voltage
(1)
HEX code
Output
voltage
HEX code
(1)
(1)
(continued)
Output
voltage
HEX code
(1)
Output
voltage
1 A 1.45000 5 A 1.05000 9 A 0.65000 D A 0.25000
1 B 1.44375 5 B 1.04375 9 B 0.64375 D B 0.24375
1 C 1.43750 5 C 1.03750 9 C 0.63750 D C 0.23750
1 D 1.43125 5 D 1.03125 9 D 0.63125 D D 0.23125
1 E 1.42500 5 E 1.02500 9 E 0.62500 D E 0.22500
1 F 1.41875 5 F 1.01875 9 F 0.61875 D F 0.21875
2 0 1.41250 6 0 1.01250 A 0 0.61250 E 0 0.21250
2 1 1.40625 6 1 1.00625 A 1 0.60625 E 1 0.20625
2 2 1.40000 6 2 1.00000 A 2 0.60000 E 2 0.20000
2 3 1.39375 6 3 0.99375 A 3 0.59375 E 3 0.19375
2 4 1.38750 6 4 0.98750 A 4 0.58750 E 4 0.18750
2 5 1.38125 6 5 0.98125 A 5 0.58125 E 5 0.18125
2 6 1.37500 6 6 0.97500 A 6 0.57500 E 6 0.17500
2 7 1.36875 6 7 0.96875 A 7 0.56875 E 7 0.16875
2 8 1.36250 6 8 0.96250 A 8 0.56250 E 8 0.16250
2 9 1.35625 6 9 0.95625 A 9 0.55625 E 9 0.15625
2 A 1.35000 6 A 0.95000 A A 0.55000 E A 0.15000
(1)
2 B 1.34375 6 B 0.94375 A B 0.54375 E B 0.14375
2 C 1.33750 6 C 0.93750 A C 0.53750 E C 0.13750
2 D 1.33125 6 D 0.93125 A D 0.53125 E D 0.13125
2 E 1.32500 6 E 0.92500 A E 0.52500 E E 0.12500
2 F 1.31875 6 F 0.91875 A F 0.51875 E F 0.11875
3 0 1.31250 7 0 0.91250 B 0 0.51250 F 0 0.11250
3 1 1.30625 7 1 0.90625 B 1 0.50625 F 1 0.10625
3 2 1.30000 7 2 0.90000 B 2 0.50000 F 2 0.10000
3 3 1.29375 7 3 0.89375 B 3 0.49375 F 3 0.09375
3 4 1.28750 7 4 0.88750 B 4 0.48750 F 4 0.08750
3 5 1.28125 7 5 0.88125 B 5 0.48125 F 5 0.08125
3 6 1.27500 7 6 0.87500 B 6 0.47500 F 6 0.07500
3 7 1.26875 7 7 0.86875 B 7 0.46875 F 7 0.06875
3 8 1.26250 7 8 0.86250 B 8 0.46250 F 8 0.06250
3 9 1.25625 7 9 0.85625 B 9 0.45625 F 9 0.05625
3 A 1.25000 7 A 0.85000 B A 0.45000 F A 0.05000
3 B 1.24375 7 B 0.84375 B B 0.44375 F B 0.04375
14/47 Doc ID 15698 Rev 2
L6706 Voltage identifications
Table 7. Voltage Identification (VID) Intel VR11.x
HEX code
Output
voltage
(1)
HEX code
Output
voltage
HEX code
(1)
(1)
(continued)
Output
voltage
HEX code
(1)
Output
voltage
3 C 1.23750 7 C 0.83750 B C 0.43750 F C 0.03750
3 D 1.23125 7 D 0.83125 B D 0.43125 F D 0.03125
3 E 1.22500 7 E 0.82500 B E 0.42500 F E OFF
3 F 1.21875 7 F 0.81875 B F 0.41875 F F OFF
1. According to INTEL specs, the device automatically regulates output voltage 19 mV lower to avoid any external offset to modify the built-in 0.5% accuracy improving TOB performances. Output regulated voltage is than what extracted from the table lowered by 19 mV.
(1)
Doc ID 15698 Rev 2 15/47
Loading...
+ 32 hidden pages