ST L6701 User Manual

查询L6701供应商
3 Phase Controller for VR10, VR9 and K8 CPUs
Features
MULTI-DAC: VR9, VR10 AND K8 DAC
SELECTABLE THROU GH SING L E PIN
ADJUSTABLE REFEREN CE OFFSET
HIGH CURRENT INTEGRATED DRIVERS
DYNAMIC VID MANAGEMENT
ACCURATE FULLY-DIFFERENTIAL LOAD-
LINE CURRENT-SENSE ACROSS MAIN INDUCTORS MAKES BOM INDEPENDENT ON THE LAYOUT
PRECISE CURRENT-SHARING AND OCP
ACROSS LS M OSFET S
CONSTANT OVER-CURRENT PROTECTION
FEEDBACK DISCONNECTION
PROTECTION
PRELIMINARY OV PROTE CTIO N
OSCILLATOR INTERNALLY FIXED AT
100kHz (300kHz RIPPLE) EXT ADJUSTABLE
SS_END / PGOOD SIGNAL
INTEGRATED REMOTE-SENSE BUFFER
PWSSO36 PACKAGE WITH EXPOSED PAD
Applications
HIGH CURRENT VRM / VRD FOR DESKTOP
/ SERVER/ WORKSTATION CPUs
HIGH DENSITY DC / DC CONVERTERS
L6701
PowerSSO-36
Description
L6701 is an extremely simple, low-cost solution to implement a three phase step-down controller with integrated high-current drivers in a com pact PowerSSO-36 package with exposed pad.
The device embeds three selectable DACs: with a single pin it is possible to pro gram the device to work in compatibility with VR9, VR10 or K8 applications managing D-VID with ±0.7% output voltage accuracy over line and temperature variations. Additional programmable offset can be added to the reference voltage with a single external resistor.
Fast protection against load over current let the system works in Constant Current mode until UVP. Preliminary OVP allows full load protection in case of startup with failed HS. Furthermore, feedback disconnection prevents from damaging the load in case o f misconnections in the system board.
Combined use of DCR and R sensing assures precision in voltage positioning and safe current sharing and OCP per each phase.
DS(on)
current
Order co des
Part number Package Packing
L6701 PowerSSO-36 Tube
L6701TR PowerSSO-36 Tape & Reel
Rev 1
December 2005 1/44
www.st.com
44
L6701
Contents
1 Device Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Pins description and connection diagrams . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5 Typical application circuit and block diagram . . . . . . . . . . . . . . . . . . . . . 11
5.1 Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
5.2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6 VID Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7 Configuring the Device: DAC Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.1 Single-Wire CPU Automatic Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8 Driver Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8.1 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
9 Current Sharing Loop and Current Reading . . . . . . . . . . . . . . . . . . . . . . . 20
9.1 Current Sharing Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9.2 Current Reading for Current Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
10 Output Voltage Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
10.1 Load-Line (Droop Function - Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
10.2 Fully-Differential Load-Line (Droop Function - Optional) . . . . . . . . . . . . . . . 22
10.3 Offset (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
10.4 Remote Voltage Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
10.5 Maximum Duty Cycle limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2/44
L6701
11 Dynamic VID Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
12 Soft Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
12.1 Low-Side-Less Startup (LSLess) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
13 Output voltage Monitor and Protections . . . . . . . . . . . . . . . . . . . . . . . . . . 29
13.1 Under Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
13.2 Preliminary Over Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
13.3 Over Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
13.4 Feedback Disconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
13.5 PGOOD (Only for VR9 and K8 Modes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
13.6 Over Current Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
14 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
15 System Control Loop Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
15.1 Compensation Network Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
16 Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
16.1 Power Components and Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
16.2 Small Signal Components and Connections . . . . . . . . . . . . . . . . . . . . . . . . . 39
16.3 Embedding L6701-based VRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
17 Package Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
18 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3/44
1 Device Descr iption L6701
1 Device Description
L6701 is multi-phase PWM controller with embedded high-current drivers that provides complete control logic and protections for a high-performance step-down DC-DC voltage regulator, optimized for advanced microprocessor power supply. Multi-phase buck is the simplest and most cost-effective topology employable to satisfy the increasing current demand of newer microprocessors and the modern high-current DC/DC converters and POLs requirements. It allows distributing equally load and power between the phases using smaller, cheaper and most common external power MOSF ETs and inductors. Moreover, thanks to the equal phase-shift between each phase, the input and output capacitor count results in being reduced. Phase-interleaving causes in fact input rms current and output ripple voltage reduction and shows an effective output switching frequency increase: the 100kHz free-running frequency per phase, externally adjustable through a resistor, results multiplied on the output by the number of phases so reaching 300kHz in free-running.
L6701 includes multiple DACs, selectable through an apposite pin, allowing compatibility with both Intel VR9, VR10 and AMD Hammer specifications, also performing D-VID transitions accordingly. In particular for Intel CPUs, it allows to automatically recognize the CPU with a single-wire connection, without any additional external component, by proper connecting the selector pin to the proper CPU pin.
Precise voltage positioning (LL) is possible thanks to an accurate fully-differential current-sense across the main inductors still using only two pins for current-reading (pat. pend.): this makes any BOM insensitive to the board layout saving time in the design stage.
The device internally balance the current driven by each phase by sensing the voltage drop across the LS MOSFET R causing the device to work in constant-current mode.
The controller provides output voltage protections to avoid any load damage due to failed components and/or feedback misconnec tions. Over-Voltage protects the load from dangerous over stress latching immediately the device by turning-on the lower driver and driving high the FAULT pin. Furthermore, preliminary-OVP protection also allows the device to protect the load from dangerous OVP when V causes the device to stop switching when set while Over-Current protection, with a threshold for each phase, causes the device to enter in constant current mode until the latched UVP.
L6701 implements soft-start increasing the reference up to the final value in 2048 clock cycles in closed loop regulation. Low-Side-Less feature allows the device to perform soft-start over pre-biased output avoiding dangerous current return through the main inductors as well as negative spike at the load side.
The compact PowerSSO-36 package with exposed thermal pad allows dissipating the power to drive the external MOSFET through the system board.
. OC protection is effective with a threshold for each phase
DS(on)
is not above the UVLO threshold. Under-Voltage protection
CC
4/44
L6701 2 Pins descrip tion and connection diagrams
2 Pins description a nd connection diagram s
Figure 1. Pins connection (Top view)
SSEND / PGOOD
OSC / EN / FAULT
2.1 Pin description
Table 1. Pins description
Pin n°
1SGND
2VCC
Name Function
SGND
VCC
LGATE1
PGND LGATE2 LGATE3
BOOT1 UGATE1 PHASE1
BOOT2 UGATE2 PHASE2
BOOT3 UGATE3 PHASE3
DAC_SEL
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
COMP FB VSEN CS­CS+ ISEN1 ISEN2 ISEN3 FBG FBR VID5 VID0 VID1 VID2 VID3 VID4 REF_OUT REF_IN
All the internal references are referred to this pin. Co nnect to the PCB Signal Ground.
Device Power Supply and LS driver supply. Operative voltage is 12V ±15%. Filter with at least 1µF MLCC vs. ground.
3LGATE1
Channel 1 LS Driver Output. A small series resist or hel ps in reducing device-dissipat ed power.
4 PGND LS Drivers return path. Connect to Power ground Plane.
5LGATE2
6LGATE3
Channel 2 LS Driver Output. A small series resist or hel ps in reducing device-dissipat ed power.
Channel 3 LS Driver Output. A small series resist or hel ps in reducing device-dissipat ed power.
Channel 1 HS driver supply. Connect through a capacitor (100nF typ.) to PHASE1 and provide necessary
7 BOOT1
Bootstrap dio de. A small series resistor upstream the boot diode helps i n reducing Boot cap acitor
overcharge.
8UGATE1
Channel 1 HS driver output. A small series resistors helps in reducing device-dissipated power.
Channel 1 HS driver return path.
9 PHASE1
It must be connected to the HS1 MOSFET sour ce and provides return path for the HS driver of channel 1.
5/44
2 Pins description and connection diagrams L6701
Table 1. Pins description (continued)
Pin n°
Name Function
10 BOOT2
11 UGATE2
12 PHASE2
13 BOOT3
14 UGATE3
15 PHASE3
Channel 2 HS driver supply. Connect through a capacitor (100nF typ.) to PHASE2 and provide necessary
Bootstrap dio de. A small series resistor upstream the boot diode helps i n reducing Boot cap acitor
overcharge. Channel 2 HS driver output.
A small series resistors helps in reducing device-dissipated power. Channel 2 HS driver return path.
It must be connected to the HS2 MOSFET sour ce and provides return path for the HS driver of channel 2.
Channel 3 HS driver supply. Connect through a capacitor (100nF typ.) to PHASE3 and provide necessary
Bootstrap dio de. A small series resistor upstream the boot diode helps i n reducing Boot cap acitor
overcharge. Channel 3 HS driver output.
A small series resistors helps in reducing device-dissipated power. Channel 3 HS driver return path.
It must be connected to the HS3 MOSFET sour ce and provides return path for the HS driver of channel 3.
16
SSEND /
PGOOD
17 DAC_SEL
18
OSC / EN /
FAULT
SSEND - Intel VR10 Mode. Soft Start END Signal. Open Drain Output set free af ter SS has finished and pulled low when triggering
any protection. Pull up to 5V (typ) or lower , if not used it can be left floating. PGOOD - Intel VR9 & AMD Hammer Mode. Open Drain Output set free after SS has finished and pulled low when VSEN is
lower than t he relative threshold. Pull up to 5V (typ) or lower, if n ot used it can be left floati ng.
DAC SELection pin.
It allows progr ammin g the DAC tabl e for th e regul atio n. Int ernal ly pull ed- up to 5V. Short to GND to program VR9 DAC, leave floating to progr am K8 DAC while connect to GND t hrough 82k to program VR10 DAC.
Information about the selected DAC is latched bef ore the system start-up. See
Section 7.1 for connections to enab le CPU auto-detection.
OSC: It allows programming t he swit ching frequency F
of each channel.
SW
Switching frequency can be increased according to the resistor connected from the pin vs. SGND with a gain of 4kHz/µA (see Section 14). Leaving the pin floating it program s a switching frequency of 100kHz per phase (300kHz on the load).
EN: Forced low, the device stops operations with all MOSFETs OFF: all the protections are disabled except for Preliminary Over Voltage. When set low it resets the devi ce from any latching condition.
FAULT: The pin is forc ed high (5V) to signal an OVP / UVP FAULT: to recover from this conditio n, cycle VCC or the OSC pin. See Section13 for details.
6/44
L6701 2 Pins descrip tion and connection diagrams
Table 1. Pins description (continued)
Pin n°
Name Function
19 REF_IN
20 REF_OUT
VID4
21 to 26
VID0, VID5
27 FBR
28 FBG
ISEN3
29 to 31
ISEN1
to
to
Reference Input for the regul ation. Connect directly or through a resistor to the REF_OUT pin. See Section 10.3 for
details. This pi n is used as input for the protections. Reference Output.
Connect directly or through a resistor to the REF_IN pin. See Section 10.3 for details.
Voltage IDentific ati on Pins. Internally pulled up by 12.5µA to 5V , connect to SGND to program a '0' or leave
floating to progra m a '1' . They allow programming outp ut vol tage as specified in
Table 5, Table 6 and Table 7 according to DAC_SEL status.
Remote Buffer Non Inverting Input. Connect to the positiv e side of the load to perform remote sense. See Section 16 for proper layout of this connection.
Remote Buffer Inverting Input. Connect to the negative si de of the load to perform remot e sense. See Section 16 for proper layout of this connection.
LS Current Sense Pins. These pins are used for current balance phase-to-phase as well as for the
system OCP. Connect through a resi stor R
to the relative PHASEx pin. See
ISEN
Section 9 and Section 13.6 for details.
32 CS+
33 CS-
34 VSEN
35 FB
36 COMP
PAD
THERMAL
PAD
Droop Current Sense non-inverting input. Connect through R
network to the main inductors. Directly connect to
PH-CPH
output voltage wh en Droop function is not required. See Section 10.1 and
Section 10.2 for details.
Droop Current Sense inverting input. Connect through resistor R
to the main inductors common node. Le ave floating
D
when Droop Function is not required. See Section 10.1 and Section 10.2 for details.
This pin also monitors t he output for any feedback di sconnection. See
Section 13.4 for details.
Remote Buffer Out put. It manages OVP and UVP protections and PGOOD (when applicable). See Section 13 for details.
Error Amplifier Inver ting I nput. Conn ect with a resi stor R R
- CF toward COMP.
F
Error Amplifier Output . Connect with an R
- CF vs. FB.
F
vs. VSEN and with an
FB
The device cannot be disabled by pulling down this pin. Thermal pad connects the Silicon substrate and makes good thermal contact
with the PCB to dissipate the power necessary to drive the ext ernal MOSFETs. Connect to the PGND plane with sever al VI As to i mprove thermal conductivity.
7/44
3 Maximum Ratings L6701
3 Maximum Ratings
3.1 Absolute maxi mum ratings
Table 2. Absolute Maximum Ratings
Symbol Parameter Value Unit
V
CC
V
BOOTx
V
UGATEx
- V
- V
PHASEx
PHASEx
to PGND 15 V Boot Vol tage 15 V
15 V
LGA TEx, PHASEx, to PGNDx
-0.3 to VCC + 0.3
VID0 to V ID 5 -0.3 to 5 V All other Pins to PGNDx -0.3 to 7 V
V
PHASEx
Positive Peak Voltage; T<20ns @ 600kHz 26 V Negative Peak Voltage; TBD V
3.2 Thermal data
Table 3. Thermal data
Symbol Parameter Value Unit
R
R
T T
P
THJA
THJC
MAX
STG
T
TOT
Thermal Resistan ce Junction to Ambient (Device soldered on 2s2p PC Board)
30 °C/W
Thermal Resistan ce Junction to Case 1 °C/W Maximum Junction Temperature 150 °C Storage Temperature Range -40 to 150 °C Junction Temperature Range 0 to 125 °C
J
Maximum Power Dissipation at 25°C (Device soldered on 2s2p PC Board)
3.3 W
V
8/44
L6701 4 Electrical specifications
4 Electrical specifications
4.1 Electrical characteristics
Table 4. Electrical Characteristics
(V
= 12V±15%, TJ = 0°C to 70°C unless otherwise specified).
CC
Symbol Parameter Te st condi tions Min. Typ. Max. Unit
Supply Current and Power-ON
I
CC
I
BOOTx
UVLO
UVLO
VCC Supply current
BOOTx Supply Current
VCC Turn-ON VCC Rising
VCC
Turn-OFF VCC Falling
V
CC
Pre-OVP Turn-ON
OVP
Pre-OVP Turn-OFF
HGATEx and LGATEx = OPEN BOOTx = 12V
HGA TEx = OPEN; PHASEx to PGNDx; BOOTx = 12V
V
Rising
CC
V
Falling
CC
17 mA
0.7 mA
9.2 V
7V
3.8 V
3V
Oscillator and Inhib it
F
SW
OSC
d
MAX
V
OSC
Main Oscillator Accuracy
Disable Thresholds 0.5 V
IL
Maximum Duty Cycle
PWMx Ramp Amplitude 3 V
OSC = OPEN OSC = OPEN; T
OSC = OPEN; I OSC = OPEN; I
= 0°C to 125°C
J
= 0µA
ISENx
= 35µA
ISENx
90 100 110 kHz
80 % 40 %
FAULT Voltage at Pin OSC OVP Active 5 V
Reference and DAC
k
VID
I
VID
VID
VID
FBR = V VR10 and VR9 DACs; V
Output Voltage Accuracy
FBR = V K8 DAC; V
; FBG = GND
OUT
; FBG = GND
OUT
> 1V
OUT
OUT
OUT
OUT
;
> 1V
;
-0.7 0.7 %
-1 1 %
VID Pull-up Current 25 µA
IL
VR9 and VR10 Mode; Input Low K8 Mode; Input Low
0.4
0.8
V V
VID Input Thresholds
IH
VR9 and VR10 Mode; Input Low K8 Mode; Input Low
0.8 2
V V
9/44
4 Electric al specifications L6701
Table 4. Electrical Characteristics (continued)
(V
= 12V±15%, TJ = 0°C to 70°C unless otherwise specified).
CC
Symbol Parameter Te st condi tions Min. Typ. Max. Unit
Error Amplifier and Remote Buffer
A
0
EA DC Gain 80 dB
SR Slew Rate COMP = 10pF to SGND 15 V/µs
RB DC Gain 1 V/V
CMRR
Remote Buffer Common Mode Rejection Ratio
40 dB
Differential Curr ent Sensing and Offset
I
OCTH
k
IDROOP
I
OFFSET
Over Current Threshold 35 µA
I
Droop Current Deviation
= 0 to 105µA; RD=5.1k
DROOP
-3 3 µA
Offset Current 10 11.5 13 µA
Gate Drivers
t
RISE_UGA
TEx
I
UGATEx
R
UGATEx
t
RISE_LGA
TEx
I
LGATEx
R
LGATEx
HS Rise Time
HS Source Current BOOTx - PHASEx = 10V 1.5 A HS Sink Resistance BOOTx - PHASEx = 12V 2.5
LS Rise Ti me
LS Source Current VCC = 10V 1.5 A LS Sink Resistance VCC = 12V 1.8
BOOTx - PHASEx = 10V; C
to PHASEx = 3.3nF
UGATEx
VCC = 10V; C
to PGNDx = 5.6nF
LGATEx
15 ns
20 ns
Protections
OVP Over Voltage Protection
Pre-OVP
Preliminary Over vol tage Protection
VSEN Rising, VR10 and K8 Mode VSEN Rising, VR9 Mode
FBR Rising, VR10 and K8 Mode FBR Rising, VR9 Mode
1.85
2.05
1.8
2.0
1.9
2.1
1.9
2.1
1.95
2.15
2.0
2.2
Hysteresis 300 mV
UVP Under Voltage Protection VSEN Falling; Below VID -475 -400 -325 mV
PGOOD PGOOD Threshold
V
SSEND/
PGOOD
SSEND / PGOOD Voltage Low
K8 and VR9 Mode; VSEN Falling; Below VID
I = -4mA
-280 -230 -180 mV
0.4
10/44
V V
V V
V
L6701 5 Typical application circuit and block diagram
5 Typi cal application ci rcuit and block diagram
5.1 Application circuit
Figure 2. Typical application cir cuit
VIN
GNDIN
2
VCC
LIN
BOOT1
to BOOT1
CIN
7
VIN
to BOOT2
to BOOT3
ISEN1
BOOT2
ISEN2
BOOT3
ISEN3
CS+
CS-
8
9
3
31
R
ISEN
10
11
12
5
30
R
ISEN
13
14
15
6
29
R
ISEN
32
33
R
D
16
HS1
LS1
HS2
LS2
HS3
LS3
VIN
VIN
RPHRPHR
L1
L2
COUT
L3
PH
C
PH
Vcc_core
LOAD
PGOOD
4
PGND
1
SGND
17
DAC_SEL
18
OSC/EN/FAULT
26
VID5
21
VID4
22
VID3
23
VID2
24
VID1
25
VID0
19
REF_IN
R
C
OS
OS
C
R
R
FB
20
REF_OUT
36
COMP
F
F
35
FB
34
VSEN
27
FBR
28
FBG
UGATE1
PHASE1
LGATE1
UGATE2
PHASE2
LGATE2
UGATE3
L6701
PHASE3
LGATE3
SSEND / PGOOD
L6701 REFERENCE SCHEMATIC
11/44
5 T ypical application circuit and block diagram L6701
Figure 3. Typical Applicat i on Circuit: Fully Differential Curr ent Sense (Pat.Pend.)
VIN
GNDIN
2
VCC
4
PGND
1
SGND
17
DAC_SEL
18
OSC/EN/FAULT
26
VID5
21
VID4
22
VID3
23
VID2
24
VID1
25
VID0
19
REF_IN
R
C
OS
OS
C
R
R
FB
20
REF_OUT
36
COMP
F
F
35
FB
34
VSEN
27
FBR
28
FBG
LIN
BOOT1
UGATE1
PHASE1
LGATE1
ISEN1
BOOT2
UGATE2
PHASE2
LGATE2
ISEN2
BOOT3
UGATE3
L6701
PHASE3
LGATE3
ISEN3
CS+
CS-
SSEND / PGOOD
to BOOT1
CIN
7
8
9
3
31
R
ISEN
10
11
12
5
30
R
ISEN
13
14
15
6
29
R
ISEN
32
33
VIN
HS1
L1
LS1
VIN
HS2
L2
LS2
VIN
HS3
L3
LS3
R
D
R
D
R
D
RPHRPHR
PH
C
PH
C
PH
C
PH
16
to BOOT2
to BOOT3
COUT
Vcc_core
LOAD
PGOOD
L6701 FULLY DIFFERENTIAL REFERENCE SCHEMATIC
12/44
L6701 5 Typical application circuit and block diagram
5.2 Block diagram
Figure 4. Block diagram
BOOT1
UGATE1
VCC
PGND
SGND
OSC / EN / FAULT
VID0 VID1 VID2 VID3 VID4 VID5
DAC_SEL
PGND
SGND
3 PHASE
OSCILLATOR
DIGITAL
SOFT START
MULTIPLE DAC
WITH DYNAMIC
PHASE1
HS1 LS1 HS2 LS2 HS3 LS3
LOGIC PWM
ADAPTIVE ANTI
CROSS CONDUCTION
VCC
OSC/EN/FAULT
DAC_SEL
I
OS
I
VID CONTROL
DROOP
AMPLIFIER
LGATE1
VCC
CURRENT SHARING CORRECTION
PWM1 PWM2 PWM3
OVP UVP, PGOOD
x3
ERROR
BOOT2
UGATE2
PHASE2
PGND
CROSS CONDUCTION
PWM1 PWM2 PWM3
L6701
CONTROL LOGIC
AND PROTECTIONS
I
INFO
CURRENT READING
VCC
LOGIC PWM
ADAPTIVE ANTI
CURRENT SHARING CORRECTION
DROOP
LGATE2
PGND
1V
BOOT3
UGATE3
ADAPTIVE ANTI
CROSS CONDUCTION
OCP1
OCP2
OCP3
REMOTE BUFFER
PHASE3
LOGIC PWM
CURRENT SHARING CORRECTION
PH1
LOW SIDE MOSFET
CURRENT READING
AND OVER CURRENT
SSEND / PGOOD
64k
VCC
PH2
64k
PH3
LGATE3
64k
64k
PGNDVCC
AVG
ISEN1 ISEN2 ISEN3
SSEND / PGOOD
REF_OUT
REF_IN
FB
COMP
CS-
CS+
VSEN
FBR
FBG
13/44
6 VID Tables L6701
6 VID Tables
Table 5. Vo ltage IDentification (VID) for Intel VR10 DAC.
VID4 VID3 VID2 VID1 VID0 VID5
010101 1.6000 110101 1.2000 010110 1.5875 110110 1.1875 010111 1.5750 110111 1.1750 011000 1.5625 111000 1.1625 011001 1.5500 111001 1.1500 011010 1.5375 111010 1.1375 011011 1.5250 111011 1.1250 011100 1.5125 111100 1.1175 011101 1.5000 111101 1.1000 011110 1.4875 111110 OFF 011111 1.4750 111111 OFF 100000 1.4625 000000 1.0875 100001 1.4500 000001 1.0750 100010 1.4375 000010 1.0625 100011 1.4250 000011 1.0500 100100 1.4125 000100 1.0375
Output
Voltage
VID4 VID3 VID2 VID1 VID0 VID5
(1)
Output
Voltage
(1)
100101 1.4000 000101 1.0250 100110 1.3875 000110 1.0125 100111 1.3750 000111 1.0000 101000 1.3625 001000 0.9875 101001 1.3500 001001 0.9750 101010 1.3375 001010 0.9625 101011 1.3250 001011 0.9500 101100 1.3125 001100 0.9375 101101 1.3000 001101 0.9250 101110 1.2875 001110 0.9125 101111 1.2750 001111 0.9000 110000 1.2625 010000 0.8875 110001 1.2500 010001 0.8750 110010 1.2375 010010 0.8625
14/44
Loading...
+ 30 hidden pages