ST L6566B User Manual

现货库存、技术资料、百科信息、热点资讯,精彩尽在鼎好!
Features
Selectable multi-mode operation:
fixed frequency or quasi-resonant
Advanced light load management
Low quiescent current (< 3 mA)
Adaptive UVLO
Line feedforward for constant power capability
vs mains voltage
Pulse-by-pulse OCP, shutdown on overload
(latched or autorestart)
Transformer saturation detection
Programmable frequency modulation for EMI
reduction
Latched or autorestart OVP
Brownout protection
-600/+800 mA totem pole gate driver with
active pull-down during UVLO
SO16N package
Figure 1. Block diagram
FMOD
OSC
MOD E/S C
ZCD
AC_O K
VRE F
10
1
HV
I
HV
V
CC
5
6
13
12
100 mV
11
16
50 mV
3 V
VOLTAG E
REGULATOR
ADAP TIVE UVL O
OSCILL ATOR
-
+
15 µA
&
UVLO_SHF
ZERO CURRENT
DETECTOR
OVERVOLTAGE
0.450V
0.485V
SS
14
SOFT-START
&
FAULT MNGT
Ref er e nc e
voltages
Internal supply
UVL O
-
+
MODE SELECTION
&
TURN -ON LO GIC
PROTECTION
-
+
Multi-mode controller for SMPS
Applications
Hi-end AC-DC adapter/charger
LCD TV/monitor, PDP
digital consumer, IT equipment
single-stage PFC
COMP
915
TIME OUT
LOW CLAMP
& DISABLE
Vth
V
CC
400 uA
+
-
5.7V
BURST-MODE
TIME
OVPL
OUT
OVP
LATCH
IC_LATCH
AC_ FAI L
UVLO
DISABLE
VFF
OFF2
LINE VOLTAGE
FEEDFORWARD
+-
OCPPWM
R
Q
S
OFF2
OVP
+-
V
CC
+-
Hiccup-mode
OCP logic
OCP2
DRIVER
7.7V
I
charge
6.4V
3
+
1.5 V
SO16N
­OVPL
Q
LEB
V
CC
14V
-
4.5V
+
L6566B
CS
7
4
GD
DIS
8
May 2008 Rev 2 1/51
www.st.com
51
Contents L6566B
Contents
1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Pin settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1 High-voltage start-up generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Zero current detection and triggering block; oscillator block . . . . . . . . . . 21
5.3 Burst-mode operation at no load or very light load . . . . . . . . . . . . . . . . . . 24
5.4 Adaptive UVLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.5 PWM control block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.6 PWM comparator, PWM latch and voltage feedforward blocks . . . . . . . . 27
5.7 Hiccup-mode OCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.8 Frequency modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.9 Latched disable function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.10 Soft-start and delayed latched shutdown upon overcurrent . . . . . . . . . . . 33
5.11 OVP block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.12 Brownout protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.13 Slope compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.14 Summary of L6566B power management functions . . . . . . . . . . . . . . . . 41
2/51
L6566B Contents
6 Application examples and ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3/51
List of tables L6566B
List of tables
Table 2. Pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 3. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 4. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 5. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 6. L6566B light load management features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 7. L6566B protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 8. External circuits that determine IC behavior upon OVP and OCP . . . . . . . . . . . . . . . . . . . 45
Table 9. SO16N mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 10. Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 11. Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4/51
L6566B List of figures
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 2. Typical system block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 3. Pin connection (through top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 4. Multi-mode operation with QR option active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 5. High-voltage start-up generator: internal schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 6. Timing diagram: normal power-up and power-down sequences . . . . . . . . . . . . . . . . . . . . 19
Figure 7. Timing diagram showing short-circuit behavior (SS pin clamped at 5V). . . . . . . . . . . . . . . 20
Figure 8. Zero current detection block, triggering block, oscillator block and related logic . . . . . . . . 20
Figure 9. Drain ringing cycle skipping as the load is gradually reduced . . . . . . . . . . . . . . . . . . . . . . 22
Figure 10. Operation of ZCD, triggering and oscillator blocks (QR option active) . . . . . . . . . . . . . . . . 23
Figure 11. Load-dependent operating modes: timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 12. Addition of an offset to the current sense lowers the burst-mode operation threshold. . . . 25
Figure 13. Adaptive UVLO block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 14. Possible feedback configurations that can be used with the L6566B . . . . . . . . . . . . . . . . . 26
Figure 15. Externally controlled burst-mode operation by driving pin COMP: timing diagram. . . . . . . 27
Figure 16. Typical power capability change vs. input voltage in QR flyback converters . . . . . . . . . . . 28
Figure 17. Left: Overcurrent setpoint vs. VFF voltage; right: Line Feedforward function block . . . . . . 29
Figure 18. Hiccup-mode OCP: timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 19. Frequency modulation circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 20. Operation after latched disable activation: timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 21. Soft-start pin operation under different operating conditions and settings . . . . . . . . . . . . . 34
Figure 22. OVP Function: internal block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 23. OVP function: timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 24. Maximum allowed duty cycle vs. switching frequency for correct OVP detection. . . . . . . . 37
Figure 25. Brownout protection: internal block diagram and timing diagram . . . . . . . . . . . . . . . . . . . . 38
Figure 26. Voltage sensing techniques to implement brownout protection with the L6566B . . . . . . . . 39
Figure 27. Slope compensation waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 28. Typical low-cost application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 29. Typical full-feature application schematic (QR operation) . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 30. Typical full-feature application schematic (FF operation) . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 31. Frequency foldback at light load (FF operation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 32. Latched shutdown upon mains overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5/51
Description L6566B
1 Description
The L6566B is an extremely versatile current-mode primary controller ICs, specifically designed for high-performance offline flyback converters. It is also suited for single-stage single-switch input-current-shaping converters (single-stage PFC) for applications supposed to comply with EN61000-3-2 or JEITA-MITI regulations.
Both fixed-frequency (FF) and quasi-resonant (QR) operation are supported. The user can pick either of the two depending on application needs. The device features an externally programmable oscillator: it defines converter’s switching frequency in FF mode and the maximum allowed switching frequency in QR mode.
When FF operation is selected, the ICs work like a standard current-mode controller with a maximum duty cycle limited at 70 % min. The oscillator frequency can be modulated to mitigate EMI emissions.
QR operation, when selected, occurs at heavy load and is achieved through a transformer demagnetization sensing input that triggers MOSFET’s turn-on. Under some conditions, ZVS (zero-voltage switching) can be achieved. Converter’s power capability rise with the mains voltage is compensated by line voltage feedforward. At medium and light load, as the QR operating frequency equals the oscillator frequency, a function (valley skipping) is activated to prevent further frequency rise and keep the operation as close to ZVS as possible.
With either FF or QR operation, at very light load the ICs enter a controlled burst-mode operation that, along with the built-in non-dissipative high-voltage start-up circuit and the low quiescent current, helps keep low the consumption from the mains and meet energy saving recommendations.
An innovative adaptive UVLO helps minimize the issues related to the fluctuations of the self-supply voltage due to transformer’s parasites.
The protection functions included in this device are: not-latched input undervoltage (brownout), output OVP (auto-restart or latch-mode selectable), a first-level OCP with delayed shutdown to protect the system during overload or short circuit conditions (auto­restart or latch-mode selectable) and a second-level OCP that is invoked when the transformer saturates or the secondary diode fails short. A latched disable input allows easy implementation of OTP with an external NTC, while an internal thermal shutdown prevents IC overheating.
Programmable soft-start, leading-edge blanking on the current sense input for greater noise immunity, slope compensation (in FF mode only), and a shutdown function for externally controlled burst-mode operation or remote ON/OFF control complete the equipment of this device.
6/51
L6566B Description
Figure 2. Typical system block diagram
Rectified
& F iltered
Mains
Voltage
FLYBA CK DC-DC CONVERT E R
L6566B
outdc
V
7/51
Pin settings L6566B
2 Pin settings
2.1 Connections
Figure 3. Pin connection (through top view)
HVS AC_OK
1
16
2.2 Pin description
Table 1. Pin functions
Pin Function
High-voltage start-up. The pin, able to withstand 700 V, is to be tied directly to the rectified mains voltage. A 1 mA internal current source charges the capacitor connected between Vcc pin (5) and GND pin (3) until the voltage on the Vcc pin reaches the turn-on threshold, then it is shut down. Normally, the generator is re-
1HVS
2N.C.
3GND
4GD
enabled when the Vcc voltage falls below 5 V to ensure a low power throughput during short circuit. Otherwise, when a latched protection is tripped the generator is re-enabled 0.5 V below the turn-on threshold, to keep the latch supplied; or, when the IC is turned off by pin COMP (9) pulled low the generator is active just below the UVLO threshold to allow a faster restart.
Not internally connected. Provision for clearance on the PCB to meet safety requirements.
Ground. Current return for both the signal part of the IC and the gate drive. All of the ground connections of the bias components should be tied to a track going to this pin and kept separate from any pulsed current return.
Gate driver output. The totem pole output stage is able to drive power MOSFET’s and IGBT’s with a peak current capability of 800 mA source/sink.
N.C.
GND
GD
Vcc
FMOD
CS VREF
DIS
2 3 4 5 6 7 8
15 14 13 12 11 10
9
VFF SS OSC MODE/SC ZCD
CO M P
8/51
L6566B Pin settings
Table 1. Pin functions (continued)
Pin Function
Supply voltage of both the signal part of the IC and the gate driver. The internal high voltage generator charges an electrolytic capacitor connected between this pin and GND (pin 3) as long as the voltage on the pin is below the turn-on threshold
5Vcc
6FMOD
7CS
8DIS
of the IC, after that it is disabled and the chip is turned on. The IC is disabled as the voltage on the pin falls below the UVLO threshold. This threshold is reduced at light load to counteract the natural reduction of the self-supply voltage. Sometimes a small bypass capacitor (0.1 µF typ.) to GND might be useful to get a clean bias voltage for the signal part of the IC.
Frequency modulation input. When FF mode operation is selected, a capacitor connected from this pin to GND (pin 3) is alternately charged and discharged by internal current sources. As a result, the voltage on the pin is a symmetrical triangular waveform with the frequency related to the capacitance value. By connecting a resistor from this pin to pin 13 (OSC) it is possible to modulate the current sourced by the OSC pin and then the oscillator frequency. This modulation is to reduce the peak value of EMI emissions by means of a spread-spectrum action. If the function is not used, the pin will be left open.
Input to the PWM comparator. The current flowing in the MOSFET is sensed through a resistor, the resulting voltage is applied to this pin and compared with an internal reference to determine MOSFET’s turn-off. The pin is equipped with 150 ns min. blanking time after the gate-drive output goes high for improved noise immunity. A second comparison level located at 1.5 V latches the device off and reduces its consumption in case of transformer saturation or secondary diode short circuit. The information is latched until the voltage on the Vcc pin (5) goes below the UVLO threshold, hence resulting in intermittent operation. A logic circuit improves sensitivity to temporary disturbances.
IC’s latched disable input. Internally the pin connects a comparator that, when the voltage on the pin exceeds 4.5 V, latches off the IC and brings its consumption to a lower value. The latch is cleared as the voltage on the Vcc pin (5) goes below the UVLO threshold, but the HV generator keeps the Vcc voltage high (see pin 1 description). It is then necessary to recycle the input power to restart the IC. For a quick restart pull pin 16 (AC_OK) below the disable threshold (see pin 16 description). Bypass the pin with a capacitor to GND (pin 3) to reduce noise pick­up. Ground the pin if the function is not used.
9COMP
10 VREF
Control input for loop regulation. The pin will be driven by the phototransistor (emitter-grounded) of an optocoupler to modulate its voltage by modulating the current sunk. A capacitor placed between the pin and GND (3), as close to the IC as possible to reduce noise pick-up, sets a pole in the output-to-control transfer function. The dynamics of the pin is in the 2.5 to 5 V range. A voltage below an internally defined threshold activates burst-mode operation. The voltage at the pin is bottom-clamped at about 2 V. If the clamp is externally overridden and the voltage is pulled below 1.4 V the IC will shut down.
An internal generator furnishes an accurate voltage reference (5 V ± 2 %) that can be used to supply few mA to an external circuit. A small film capacitor (0.1 µF typ.), connected between this pin and GND (3), is recommended to ensure the stability of the generator and to prevent noise from affecting the reference. This reference is internally monitored by a separate auxiliary reference and any failure or drift will cause the IC to latch off.
9/51
Pin settings L6566B
Table 1. Pin functions (continued)
Pin Function
Transformer demagnetization sensing input for quasi-resonant operation and OVP input. The pin is externally connected to the transformer’s auxiliary winding through a resistor divider. A negative-going edge triggers MOSFET’s turn-on if QR mode is
11 ZCD
12 MODE/SC
13 OSC
14 SS
15 VFF
16 AC_OK
selected. A voltage exceeding 5 V shuts the IC down and brings its consumption to a lower
value (OVP). Latch-off or auto-restart mode is selectable externally. This function is strobed and digitally filtered to increase noise immunity.
Operating mode selection. If the pin is connected to the VREF pin (7) quasi-resonant operation is selected, the oscillator (pin 13, OSC) determines the maximum allowed operating frequency.
Fixed-frequency operation is selected if the pin is not tied to VREF, in which case the oscillator determines the actual operating frequency, the maximum allowed duty cycle is set at 70 % min. and the pin delivers a voltage ramp synchronized to the oscillator when the gate-drive output is high; the voltage delivered is zero while the gate-drive output is low. The pin is to be connected to pin CS (7) via a resistor for slope compensation.
Oscillator pin. The pin is an accurate 1 V voltage source, and a resistor connected from the pin to GND (pin 3) defines a current. This current is internally used to set the oscillator frequency that defines the maximum allowed switching frequency of the L6566B, if working in QR mode, or the operating switching frequency if working in FF mode.
Soft-start current source. At start-up a capacitor Css between this pin and GND (pin 3) is charged with an internal current generator. During the ramp, the internal reference clamp on the current sense pin (7, CS) rises linearly starting from zero to its final value, thus causing the duty cycle to increase progressively starting from zero as well. During soft-start the adaptive UVLO function and all functions monitoring pin COMP are disabled. The soft-start capacitor is discharged whenever the supply voltage of the IC falls below the UVLO threshold. The same capacitor is used to delay IC’s shutdown (latch-off or auto-restart mode selectable) after detecting an overload condition (OLP).
Line voltage feedforward input. The information on the converter’s input voltage is fed into the pin through a resistor divider and is used to change the setpoint of the pulse-by-pulse current limitation (the higher the voltage, the lower the setpoint). The linear dynamics of the pin ranges from 0 to 3 V. A voltage higher than 3 V makes the IC stop switching. If feedforward is not desired, tie the pin to GND (pin 3) directly if a latch-mode OVP is not required (see pin 11, ZCD) or through a 10 k min. resistor if a latch-mode OVP is required. Bypass the pin with a capacitor to GND (pin 3) to reduce noise pick-up.
Brownout protection input. A voltage below 0.45 V shuts down (not latched) the IC, lowers its consumption and clears the latch set by latched protections (DIS > 4.5 V , SS > 6.4 V , VFF > 6.4 V). IC’s operation is re-enabled as the voltage exceeds
0.45 V. The comparator is provided with current hysteresis: an internal 15 µA current generator is ON as long as the voltage on the pin is below 0.45 V and is OFF if this value is exceeded. Bypass the pin with a capacitor to GND (pin 3) to reduce noise pick-up. Tie to Vcc with a 220 to 680 k resistor if the fun ction is not used.
10/51
L6566B Electrical data
3 Electrical data
3.1 Maximum rating
Table 2. Absolute maximum ratings
Symbol Pin Parameter Value Unit
V
HVS
I
HVS
V
CC
V
FMOD
V
max
V
max
I
ZCD
V
MODE/SC
V
OSC
P
TOT
T
STG
T
J
1 Voltage range (referred to ground) -0.3 to 700 V
1 Output current Self-limited
5 IC supply voltage (Icc = 20 mA) Self-limited
6 Voltage range -0.3 to 2 V
7, 8, 10, 14 Analog inputs and outputs -0.3 to 7 V
9, 15, 16 Maximum pin voltage (Ipin 1 mA) Self-limited
11 Zero current detector max. current ±5 mA
12 Voltage range -0.3 to 5.3 V
13 Voltage range -0.3 to 3.3 V
3.2 Thermal data
Table 3. Thermal data
Symbol Parameter Value Unit
Power dissipation @TA = 50 °C 0.75 W
Storage temperature -55 to 150 °C
Junction operating temperature range -40 to 150 °C
R
thJA
Thermal resistance junction to ambient 120 °C/W
11/51
Electrical characteristics L6566B
4 Electrical characteristics
(TJ = -25 to 125°C, VCC = 12, CO = 1 nF; MODE/SC = V
, RT = 20 k from OSC to GND,
REF
unless otherwise specified).
Table 4. Electrical characteristics
Symbol Parameter Test condition Min Typ Max Unit
Supply voltage
V
Vcc Operating range after turn-on
Vcc
Vcc
Turn-on threshold
On
Turn-off threshold
Off
Hys Hysteresis V
V
Zener voltage Icc = 20 mA, IC disabled 23 25 27 V
Z
COMP
V
COMP
(1)
(1)
(1)
COMP
V
V
= V
COMP
COMP
> V
COMPL
COMPO
> V
= V
COMPL
COMPL
COMPO
> V
Supply current
I
start-up
I
q
Start-up current Before turn-on, Vcc = 13 V 200 250 µA
Quiescent current After turn-on, V
ZCD
= V
= 1 V 2.6 2.8 mA
CS
Icc Operating supply current MODE/SC open 4 4.6 mA
(2)
I
qdis
Quiescent current
IC disabled
IC latched off 440 500
10.6 23
823
13 14 15 V
9.4 10 10.6
7.2 7.6 8.0
4V
330 2500
V
V
µA
High-voltage start-up generator
V
HV
V
HVstart
I
charge
I
HV, ON
I
HV, OFF
Breakdown voltage I
Start voltage I
Vcc charge current VHV > V
ON-state current
OFF-state leakage current VHV = 400 V 40 µA
< 100 µA 700 V
HV
< 100 µA 65 80 100 V
Vcc
Hvstart
V
> V
HV
Hvstart
> V
V
HV
Hvstart
Vcc falling 4.4 5 5.6
(1)
V
CCrestart
Vcc restart voltage
IC latched off 12.5 13.5 14.5
(1)
Disabled by
< V
V
COMP
12/51
, Vcc > 3 V 0.55 0.85 1 mA
, Vcc > 3 V 1.6
mA
, Vcc = 0 0.8
V
9.4 10 10.6
COMPOFF
L6566B Electrical characteristics
Table 4. Electrical characteristics (continued)
Symbol Parameter Test condition Min Typ Max Unit
Reference voltage
V
V
REF
REF
Output voltage
To t al va r i at io n
(1)
TJ = 25 °C; I
I
= 1 to 5 mA,
REF
REF
Vcc = 10.6 to 23 V
= 1 mA 4.95 5 5.05 V
4.9 5.1 V
I
REF
Short circuit current V
Sink capability in UVLO Vcc = 6 V; Isink = 0.5 mA 0.2 0.5 V
V
OV
Overvoltage threshold 5.3 5.7 V
Internal oscillator
V
D
f
sw
OSC
max
Oscillation frequency
Voltage reference
Maximum duty cycle
Brownout protection
Vth Threshold voltage
I
Hys
V
AC_OK_CL
Current hysteresis Vcc > 5 V, V
Clamp level
Line voltage feedforward
= 0 10 30 mA
REF
Operating range 10 300
TJ = 25 °C, V MODE/SC = open
Vcc =12 to 23 V, V MODE/SC = open
(3)
MODE/SC = open,
= 5 V
V
COMP
Voltage falling (turn-off) 0.432 0.450 0.468 V
Voltage rising (turn-on) 0.452 0.485 0.518 V
(1)
I
AC_OK
= 0,
ZCD
ZCD
= 0,
95 100 105
93 100 107
0.97 1 1.03 V
70 75 %
= 0.3 V 12 15 18 µA
VFF
= 100 µA 33.153.3 V
kHz
I
VFF
V
VFF
V
OFF
V
VFFlatch
Input bias current
Linear operation range 0 to 3 V
IC disable voltage 3 3.15 3.3 V
Latch-off/clamp level V
Kc Control voltage gain
K
FF
Feedforward gain
(3)
(3)
V
V
V
V
VFF
ZCD
ZCD
VFF
VFF
= 0 to 3 V, V
> V
ZCDth
> V
ZCDth
= 1 V, V
= 1 V, V
COMP
COMP
ZCD
< V
ZCDth
-1 µA
-0.7 -1 mA
6.4 V
= 4 V 0.4 V/V
= 4 V 0.04 V/V
13/51
Electrical characteristics L6566B
Table 4. Electrical characteristics (continued)
Symbol Parameter Test condition Min Typ Max Unit
Current sense comparator
td
V
V
I
CS
t
LEB
(H-L)
CSx
CSdis
Input bias current VCS = 0 -1 µA
Leading edge blanking 150 250 300 ns
Delay to output 100 ns
Overcurrent setpoint
Hiccup-mode OCP level
V
COMP
COMP
V
COMP
(1)
= V
= V
= V
COMPHI
COMPHI
COMPHI
, V
= 0 V 0.92 1 1.08
VFF
, V
= 1.5 V 0.45 0.5 0.55
VFF
, V
= 3.0 V 0 0.1
VFF
1.4 1.5 1.6 V
PWM control
V
COMPHI
V
COMPLO
V
COMPSH
I
COMP
R
COMP
V
COMPBM
Upper clamp voltage I
Lower clamp voltage I
Linear dynamics upper limit
Max. source current V
Dynamic resistance V
Burst-mode threshold
= 0 5.7 V
COMP
SOURCE
(1)
(1)
(1)
= -1 mA 2.0 V
V
= 0 V 4.8 5 5.2 V
VFF
= 3.3 V 320 400 480 µA
COMP
= 2.6 to 4.8 V 25 k
COMP
2.52 2.65 2.78
MODE/SC = open 2.7 2.85 3
Hys Burst-mode hysteresis 20 mV
I
CLAMPL
V
COMPOFF
V
COMPO
V
COMPL
Lower clamp capability V
= 2 V -3.5 -1.5 mA
COMP
Disable threshold Voltage falling 1.4 V
(3)
Level for lower UVLO off threshold (voltage falling)
Level for higher UVLO off threshold (voltage rising)
2.61 2.75 2.89
(3)
MODE/SC = open 3.02 3.15 3.28
(3)
(3)
MODE/SC = open 3.41 3.55 3.69
2.93.053.2
VV
V
V
V
14/51
L6566B Electrical characteristics
Table 4. Electrical characteristics (continued)
Symbol Parameter Test condition Min Typ Max Unit
Zero current detector/ overvoltage protection
V
ZCDH
V
ZCDL
V
ZCDA
V
ZCDT
I
ZCD
I
ZCDsrc
I
ZCDsnk
T
BLANK1
V
ZCDth
T
BLANK2
Upper clamp voltage I
Lower clamp voltage I
Arming voltage
Triggering voltage
Internal pull-up
Source current capability V
Sink current capability V
= 3 mA 5.4 5.7 6 V
ZCD
= - 3 mA -0.4 V
ZCD
(1)
positive-going edge 85 100 115 mV
(1)
negative-going edge 30 50 70 mV
V
COMP
V
ZCD
ZCD
ZCD
< V
COMPSH
< 2 V, V
= V
ZCDL
= V
ZCDH
COMP
= V
COMPHI
-130 -100 -70
-3 mA
3mA
-1
Turn-on inhibit time After gate-drive going low 2.5 µs
OVP threshold 4.85 5 5.15 V
OVP strobe delay After gate-drive going low 2 µs
Latched shutdown function
I
V
OTP
OTP
Input bias current V
Disable threshold
DIS
(1)
= 0 to V
OTP
-1 µA
4.32 4.5 4.68 V
Thermal shutdown
Vth Shutdown threshold 160 °C
Hys Hysteresis 50 °C
µA
External oscillator (frequency modulation)
f
FMOD
Oscillation frequency C
= 0.1 µF 600 750 900 Hz
MOD
--- Usable frequency range 0.05 15 kHz
V
V
I
FMOD
pk
vy
Peak voltage
Valley voltage 0.5 V
Charge/discharge current 150 µA
(3)
1.5 V
Mode selection / slope compensation
MODE
SC
SC
Threshold for QR operation 3 V
th
Ramp peak
pk
(MODE/SC = open)
Ramp starting value
vy
(MODE/SC = open)
Ramp voltage (MODE/SC = open)
Source capability (MODE/SC = open)
R pin high, V
R
GD pin high
GD pin low 0 V
V
= 3 k to GND, GD
S-COMP
S-COMP
S-COMP = VS-COMPpk
= 5 V
COMP
= 3 kΩ to GND,
1.7 V
0.3 V
0.8 mA
15/51
Electrical characteristics L6566B
(
−−=
Table 4. Electrical characteristics (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
Soft-start
T
= 25 °C, VSS < 2 V,
I
SS1
I
SS2
I
SSdis
V
SSclamp
V
SSDIS
V
SSLAT
Gate driver
Charge current
Discharge current VSS > 2 V 3.5 5 6.5 µA
High saturation voltage V
Disable level
Latch-off level V
J
= 4 V
V
COMP
TJ = 25 °C, VSS > 2 V, V
=V
(1)
COMP
COMP
V
COMP
COMPHi
= 4 V 2 V
= V
COMP
= V
COMPHi
COMPHi
14 20 26
3.5 5 6.5
4.85 5 5.15 V
6.4 V
µA
V
GDH
V
GDL
I
sourcepk
I
sinkpk
t
t
V
GDclamp
Output high voltage I
Output low voltage I
Output source peak current -0.6 A
Output sink peak current 0.8 A
Fall time 40 ns
f
Rise time 50 ns
r
Output clamp voltage I
UVLO saturation Vcc = 0 to V
1. Parameters tracking one another.
2. See Table 6 on page 41 and Table 7 on page 42
3. The voltage feedforward block output is given by:
GDsource
GDsink
GDsource
= 5 mA, Vcc = 12 V 9.8 11 V
= 100 mA 0.75 V
= 5 mA; Vcc = 20 V 10 11.3 15 V
ccon, Isink = 1 mA 0.9 1.1 V
)
VK5.2VKc V
VFFFFCOMPcs
16/51
Loading...
+ 35 hidden pages