ST L6564T User Manual

ST L6564T User Manual

L6564T

10-pin transition-mode PFC controller

Features

Guaranteed for extreme temperature range (outdoor)

Fast “bi-directional” input voltage feedforward (1/V2 correction)

Accurate adjustable output overvoltage protection

Protection against feedback loop disconnection (latched shutdown)

Inductor saturation protection

AC brownout detection

Low (100 µA) startup current

6 mA max. operating bias current

1% (@ TJ = 25 °C) internal reference voltage

-600/+800 mA totem pole gate driver with active pull-down during UVLO

SSOP10 package

SSOP10

Applications

PFC pre-regulators for:

High-end AC-DC adapter/charger

Desktop PC, server, web server

IEC61000-3-2 or JEITA-MITI compliant SMPS

SMPS for LED luminaires

Figure 1. Block diagram

 

 

 

 

 

=&'

 

 

 

 

 

 

 

 

 

9FF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=HUR &XUUHQW

 

9ROWDJH

 

92/7$*(

 

 

 

 

 

 

 

 

 

UHIHUHQFHV

 

89/2

 

 

 

 

9

 

 

'LVDEOH

'HWHFWRU

 

5(*8/$725

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

 

 

9

,QWHUQDO 6XSSO\ %XV

 

 

 

 

 

 

3)&B2.

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

 

 

9

 

 

 

 

 

89/2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

293

/B293

 

 

 

 

 

 

 

 

 

 

 

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*'

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

 

 

 

 

 

5

 

 

 

'5,9(5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

&/$03

 

 

 

 

 

 

 

 

 

 

 

67$57(5

6WDUWHU

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2))

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

&203

 

 

 

 

 

 

 

 

 

 

 

',6$%/(

 

 

 

 

 

 

 

 

 

 

 

 

 

'LVDEOH

 

4

6

/B293

,19

 

 

 

 

 

 

4

/(%

 

 

293

 

 

 

 

 

 

 

 

 

 

 

21 2)) &RQWURO

 

 

5

89/2

 

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(UURU$PSOLILHU

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

08/7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*1'

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

 

 

 

 

 

 

 

 

 

 

 

 

08/7,3/,(5

 

 

 

 

 

 

 

 

,GHDO UHFWLILHU

 

 

 

 

 

 

 

 

 

 

&6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21 2)) &RQWURO

 

9

 

 

 

 

 

 

 

 

'LVDEOH

 

 

 

 

 

 

9

 

 

 

 

0$,16 '523

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

'(7(&725

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9))

 

 

 

 

 

 

 

 

 

 

!-V

January 2012

Doc ID 022671 Rev 1

1/33

www.st.com

Contents

L6564T

 

 

Contents

1

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 5

2

Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

 

2.1

Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

 

2.2

Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

3

Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

4

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

5

Typical electrical performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

6

Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

 

6.1

Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

 

6.2

Feedback failure protection (FFP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

 

6.3

Voltage feedforward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

 

6.4

THD optimizer circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

22

 

6.5

Inductor saturation detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

 

6.6

Power management/housekeeping functions . . . . . . . . . . . . . . . . . . . . . .

25

7

Application examples and ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27

8

Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

9

Ordering codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

10

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

32

2/33

Doc ID 022671 Rev 1

L6564T

List of tables

 

 

List of tables

Table 1. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table 2. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table 3. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 4. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Table 5. Summary of L6564 idle states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 6. SSO10 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Table 7. Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Table 8. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Doc ID 022671 Rev 1

3/33

List of figures

L6564T

 

 

List of figures

Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 2. Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 3. IC consumption vs. VCC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 4. IC consumption vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 5. Vcc Zener voltage vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 6. Startup and UVLO vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 7. Feedback reference vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 8. E/A output clamp levels vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 9. UVLO saturation vs. TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 10. OVP levels vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 11. Inductor saturation threshold vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 12. Vcs clamp vs. TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 13. ZCD sink/source capability vs. TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 14. ZCD clamp level vs. TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 15. R discharge vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 16. Line drop detection threshold vs. TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 17. VMULTpk - VVFF dropout vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 18. PFC_OK threshold vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 19. PFC_OK FFD threshold vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 20. Multiplier characteristics @ VFF = 1 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 21. Multiplier characteristics @ VFF = 3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 22. Multiplier gain vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 23. Gate drive clamp vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 24. Gate drive output saturation vs. TJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 25. Delay to output vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 26. Startup timer period vs. TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 27. Output voltage setting, OVP and FFP functions: internal block diagram . . . . . . . . . . . . . . 18 Figure 28. Voltage feedforward: squarer/divider (1/V2) block diagram and transfer characteristic . . 20 Figure 29. RFF·CFF as a function of 3rd harmonic distortion introduced in the input current . . . . . . . 21 Figure 30. THD optimizer circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 31. THD optimization: standard TM PFC controller (left side) and L6564T (right side) . . . . . . 23 Figure 32. Effect of boost inductor saturation on the MOSFET current and detection method . . . . . . 24 Figure 33. Interface circuits that let DC-DC converter's controller IC disable the L6564T. . . . . . . . . . 25 Figure 34. Demonstration board EVL6564-100W, wide-range mains: electrical schematic . . . . . . . . 27 Figure 35. L6564 100 W TM PFC: compliance with EN61000-3-2 standard . . . . . . . . . . . . . . . . . . . . 28 Figure 36. L6564 100 W TM PFC: compliance with JEITA-MITI standard . . . . . . . . . . . . . . . . . . . . . 28 Figure 37. L6564 100 W TM PFC: input current waveform @230-50 Hz - 100 W load. . . . . . . . . . . . 28 Figure 38. L6564 100W TM PFC: input current waveform @100 V-50 Hz - 100 W load . . . . . . . . . . 28 Figure 39. SSO10 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4/33

Doc ID 022671 Rev 1

L6564T

Description

 

 

1 Description

The L6564T is a current-mode PFC controller operating in transition mode (TM) and represents the compact version of the L6563S as it embeds the same driver, reference and control stages in a very compact 10-pin SO package.

The highly linear multiplier, along with a special correction circuit that reduces crossover distortion of the mains current, allows wide-range-mains operation with an extremely low THD even over a large load range.

The output voltage is controlled by means of a voltage-mode error amplifier and an accurate (1% @TJ = 25 °C) internal voltage reference. The loop stability is optimized by the voltage feedforward function (1/V2 correction), which in this IC uses a proprietary technique that also considerably improves line transient response in case of both mains drops and surges (“bidirectional”).

In addition to overvoltage protection able to control the output voltage during transient conditions, the IC also provides protection against feedback loop failures or erroneous settings. Other on-board protection functions allow brownout conditions and boost inductor saturation to be safely handled.

The totem-pole output stage, capable of a 600 mA source and 800 mA sink current, is suitable for a high power MOSFET or IGBT drive. This, combined with the other features and the possibility to operate with ST's proprietary fixed-off-time control, makes the device an excellent solution for SMPS up to 400 W that requires compliance with EN61000-3-2 and JEITA-MITI standards.

Doc ID 022671 Rev 1

5/33

Maximum ratings

L6564T

 

 

2 Maximum ratings

2.1Absolute maximum ratings

Table 1.

Absolute maximum ratings

 

 

Symbol

Pin

Parameter

Value

Unit

 

 

 

 

 

Vcc

10

IC supply voltage (Icc 20 mA)

Self-limited

V

 

 

 

 

 

---

1, 3, 6

Max. pin voltage (Ipin 1 mA)

Self-limited

V

---

2, 4, 5

Analog inputs and outputs

-0.3 to 8

V

 

 

 

 

 

IZCD

7

Zero current detector max. current

-10 (source)

mA

10 (sink)

 

 

 

 

 

 

 

 

 

VFF pin

5

Maximum withstanding voltage range

+/- 1750

V

 

 

test condition: CDF-AEC-Q100-002

 

 

 

1 to 4

 

 

Other pins

“human body model”

+/- 2000

V

6 to 10

 

Acceptance criteria: “normal performance”

 

 

 

 

 

 

 

 

 

 

 

2.2Thermal data

Table 2.

Thermal data

 

 

Symbol

Parameter

Value

Unit

 

 

 

 

RthJA

Max. thermal resistance, junction-to-ambient

120

°C/W

Ptot

Power dissipation @TA = 50 °C

0.75

W

TJ

Junction temperature operating range

-40 to 150

°C

Tstg

Storage temperature

-55 to 150

°C

6/33

Doc ID 022671 Rev 1

L6564T

 

 

 

 

 

 

 

 

Pin connection

 

 

 

 

 

 

 

 

 

 

 

3

 

 

Pin connection

 

 

 

 

 

 

 

 

Figure 2. Pin connection

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,19

 

 

 

 

9FF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

&203

 

 

*'

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

08/7

 

 

*1'

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

&6

 

 

=&'

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9))

 

 

3)&B2.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

!-V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.

 

Pin description

 

 

 

 

 

 

 

 

 

 

 

 

Name

 

 

 

Function

 

 

 

 

 

 

 

 

 

 

Inverting input of the error amplifier. The information on the output voltage of the PFC pre-

1

 

INV

regulator is fed into the pin through a resistor divider.

 

 

 

 

 

The pin normally features high impedance.

 

 

 

 

 

 

 

 

 

 

Output of the error amplifier. A compensation network is placed between this pin and INV (pin

2

COMP

1) to achieve stability of the voltage control loop and ensure high power factor and low THD.

To avoid uncontrolled rise of the output voltage at zero load, when the voltage on the pin falls

 

 

 

 

 

 

 

 

below 2.4 V the gate driver output is inhibited (burst-mode operation).

 

 

 

 

 

 

 

 

 

Main input to the multiplier. This pin is connected to the rectified mains voltage via a resistor

3

MULT

divider and provides the sinusoidal reference to the current loop. The voltage on this pin is used

 

 

 

 

also to derive the information on the RMS mains voltage.

 

 

 

 

 

 

 

 

 

 

Input to the PWM comparator. The current flowing in the MOSFET is sensed through a resistor,

 

 

 

 

the resulting voltage is applied to this pin and compared with an internal reference to determine

4

 

CS

MOSFET’s turn-off.

 

 

 

 

 

 

A second comparison level at 1.7 V detects abnormal currents (e.g. due to boost inductor

 

 

 

 

 

 

 

 

saturation) and, on this occurrence, activates a safety procedure that temporarily stops the

 

 

 

 

converter and limits the stress of the power components.

 

 

 

 

 

 

 

 

 

 

Second input to the multiplier for 1/V2 function. A capacitor and a parallel resistor must be

 

 

 

 

connected from the pin to GND. They complete the internal peak-holding circuit that derives the

 

 

 

 

information on the RMS mains voltage. The voltage at this pin, a DC level equal to the peak

 

 

 

 

voltage on pin MULT (3), compensates the control loop gain dependence on the mains voltage.

5

 

VFF

Never connect the pin directly to GND but with a resistor ranging from 100 K ohm (minimum) to

 

 

 

 

2 M ohm (maximum). This pin is internally connected to a comparator in order to provide the

 

 

 

 

brownout (AC mains undervoltage) protection. A voltage below 0.8 V shuts down (not latched)

 

 

 

 

the IC and brings its consumption to a considerably lower level. The IC restarts as the voltage

 

 

 

 

at the pin goes above 0.88 V.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Doc ID 022671 Rev 1

7/33

Pin connection

L6564T

 

 

 

 

Table 3.

Pin description (continued)

 

 

 

Name

Function

 

 

 

 

 

 

 

PFC pre-regulator output voltage monitoring/disable function. This pin senses the output

 

 

 

voltage of the PFC pre-regulator through a resistor divider and is used for protection purposes.

 

 

 

If the voltage on the pin exceeds 2.5 V the IC stops switching and restarts as the voltage on the

 

 

 

pin falls below 2.4 V. However, if at the same time the voltage of the INV pin falls below 1.66 V,

6

PFC_OK

a feedback failure is assumed. In this case the device is latched off. Normal operation can be

 

 

 

resumed only by cycling Vcc. bringing its value lower than 6 V before moving up to the turn-on

 

 

 

threshold.

 

 

 

If the voltage on this pin is brought below 0.23 V the IC is shut down. To restart the IC the

 

 

 

voltage on the pin must go above 0.27 V. This can be used as a remote on/off control input.

 

 

 

 

7

 

ZCD

Boost inductor’s demagnetization sensing input for transition-mode operation. A negative-going

 

edge triggers MOSFET’s turn-on.

 

 

 

 

 

 

 

8

 

GND

Ground. Current return for both the signal part of the IC and the gate driver.

 

 

 

 

 

 

 

Gate driver output. The totem pole output stage is able to drive power MOSFET’s and IGBT’s

9

 

GD

with a peak current of 600 mA source and 800 mA sink. The high-level voltage of this pin is

 

 

 

clamped at about 12 V to avoid excessive gate voltages.

 

 

 

 

 

 

 

Supply voltage of both the signal part of the IC and the gate driver. Sometimes a small bypass

10

 

Vcc

capacitor (0.1 µF typ.) to GND might be useful to get a clean bias voltage for the signal part of

 

 

 

the IC.

 

 

 

 

8/33

Doc ID 022671 Rev 1

L6564T

Electrical characteristics

 

 

4 Electrical characteristics

TJ = -40 to 125 °C, VCC = 12 V, CO = 1 nF between pin GD and GND, CFF = 1 µF and RFF = 1 MΩ between pin VFF and GND; unless otherwise specified.

Table 4.

Electrical characteristics

 

 

 

 

 

Symbol

Parameter

Test condition

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

Supply voltage

 

 

 

 

 

 

 

 

 

 

 

 

Vcc

Operating range

After turn-on

10.3

 

22.5

V

 

 

 

 

 

 

 

VccOn

Turn-on threshold

(1)

11

12

13.2

V

 

VccOff

Turn-off threshold

(1)

8.7

9.5

10.5

V

 

Vccrestart

Vcc for resuming from latch

OVP latched

5

6

7

V

Hys

Hysteresis

 

2.3

 

2.7

V

 

 

 

 

 

 

 

VZ

Zener voltage

Icc = 20 mA

22.5

25

28

V

Supply current

 

 

 

 

 

 

 

 

 

 

 

 

Istart-up

Startup current

Before turn-on, Vcc=10 V

 

90

180

µA

Iq

Quiescent current

After turn-on, VMULT = 1 V

 

4

5.5

mA

ICC

Operating supply current

@ 70 kHz

 

5

6.0

mA

 

 

VPFC_OK> VPFC_OK_S AND VINV <

 

180

320

µA

Iqdis

Idle state quiescent current

VFFD

 

 

 

 

 

 

VPFC_OK<VPFC_OK_D

 

1.5

2.5

µA

Iq

Quiescent current

VPFC_OK>VPFC_OK_S OR

 

2.2

3.2

µA

VCOMP<2.3V

 

 

 

 

 

 

 

 

Multiplier input

 

 

 

 

 

 

 

 

 

 

 

 

IMULT

Input bias current

VMULT = 0 to 3 V

 

-0.2

-1

µA

VMULT

Linear operation range

 

0 to 3

 

 

V

VCLAMP

Internal clamp level

IMULT = 1 mA

9

9.5

 

V

Vcs

Output max. slope

VMULT = 0 to 0.4 V, VVFF = 1 V

1.33

1.66

 

V/V

∆VMULT

 

VCOMP = upper clamp

 

 

 

 

KM

Gain (2)

VMULT = 1 V, VCOMP= 4 V

0.375

0.45

0.525

V

Error amplifier

 

 

 

 

 

 

 

 

 

 

 

 

VINV

Voltage feedback input threshold

TJ = 25 °C

2.475

2.5

2.525

V

10.3 V < Vcc < 22.5 V (3)

2.45

 

2.55

 

 

 

 

 

Line regulation

Vcc = 10.3 V to 22.5 V

 

2

5

mV

 

 

 

 

 

 

 

IINV

Input bias current

VINV = 0 to 4 V

 

-0.2

-1

µA

VINVCLAMP

Internal clamp level

IINV = 1 mA

8

9

 

V

Gv

Voltage gain

Open loop

60

80

 

dB

 

 

 

 

 

 

 

Doc ID 022671 Rev 1

9/33

Electrical characteristics

 

 

 

 

L6564T

 

 

 

 

 

 

 

 

 

Table 4.

Electrical characteristics

(continued)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

 

Test condition

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

 

 

 

GB

Gain-bandwidth product

 

 

 

1

 

MHz

 

 

 

 

 

 

 

 

 

 

ICOMP

Source current

 

VCOMP = 4 V, VINV = 2.4 V

1.5

4

 

mA

 

Sink current

 

VCOMP = 4 V, VINV = 2.6 V

2

4.5

 

mA

 

 

 

 

 

 

Upper clamp voltage

 

ISOURCE = 0.5 mA

5.7

6.2

6.7

 

 

VCOMP

Burst-mode voltage

 

(3)

2.3

2.4

2.5

V

 

 

 

 

 

Lower clamp voltage

 

ISINK = 0.5 mA (3)

2.1

2.25

2.4

 

Boost inductor saturation detector

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCS_th

Threshold on current sense

 

(3)

1.6

1.7

1.8

V

 

 

 

 

IINV

E/A input pull-up current

 

After VCS > VCS_th, before restarting

5

10

13

µA

Startup timer

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tSTART_DEL

Startup delay

 

First cycle after wake-up

20

50

100

µs

 

tSTART

Timer period

 

 

75

150

350

µs

 

 

 

 

 

 

 

Restart after VCS > VCS_th

150

300

700

 

 

 

 

 

Current sense comparator

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ICS

Input bias current

 

VCS = 0

 

 

1

µA

 

tLEB

Leading edge blanking

 

 

70

150

300

ns

 

td(H-L)

Delay to output

 

 

70

200

350

ns

 

VCSclamp

Current sense reference clamp

 

VCOMP = upper clamp,

0.97

1.08

1.2

V

 

 

VMULT =1 V, VVFF = 1 V

 

 

 

 

 

 

 

 

 

Vcsofst

Current sense offset

 

VMULT = 0 V, VVFF = 3 V

 

40

70

mV

 

 

VMULT = 3 V, VVFF = 3 V

 

20

 

 

 

 

 

 

 

 

PFC_OK functions

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IPFC_OK

Input bias current

 

VPFC_OK = 0 to 2.6 V

 

-0.1

-1

µA

VPFC_OK_C

Clamp voltage

 

IPFC_OK = 1 mA

8.5

9.5

 

V

VPFC_OK_S

OVP threshold

 

(1) Voltage rising

2.435

2.5

2.565

V

VPFC_OK_R

Restart threshold after OVP

 

(1) Voltage falling

2.34

2.4

2.46

V

VPFC_OK_D

Disable threshold

 

(1) Voltage falling

0.08

 

0.40

V

VPFC_OK_D

Disable threshold

 

(1) Voltage falling Tj = 25 °C

0.17

0.23

0.29

V

VPFC_OK_E

Enable threshold

 

(1) Voltage rising

0.10

 

0.43

V

VPFC_OK_E

Enable threshold

 

(1) Voltage rising Tj = 25 °C

0.21

0.27

0.32

V

 

VFFD

Feedback failure detection

 

VPFC_OK = VPFC_OK_S

1.61

1.66

1.71

V

 

threshold (VINV falling)

 

 

 

 

 

 

 

 

 

10/33

Doc ID 022671 Rev 1

Loading...
+ 23 hidden pages