ST L6564H User Manual

This is information on a product in full production.
June 2012 Doc ID 022960 Rev 2 1/35
35
L6564H
High voltage startup transition-mode PFC
Datasheet production data
Features
Onboard 700 V startup source
(1/V
2
correction)
Accurate adjustable output overvoltage
protection
Protection against feedback loop
disconnection (latched shutdown)
Inductor saturation protection
AC brownout detection
Low ( 100 µA) startup current
6 mA max. operating bias current
1% (@ T
J
= 25 °C) internal reference voltage
-600/+800 mA totem pole gate driver with
active pull-down during UVLO
SO-14 package
Application
PFC pre-regulators for:
High-end AC-DC adapter/charger
IEC61000-3-2 or JEITA-MITI compliant
SMPS, in excess of 400 W
SMPS for LED luminaires

Figure 1. Block diagram

SO-14
AM11475v1
VFF
S
R
Q1
STARTER
LEB
Q1
VOLTAGE
REGULATOR
UVLO
-+
-
+
2.5 V
-
+
MULTIPLIER
Intern al Supply Bus
Voltage
referen ces
+
-
0.23 V
-
+
Vcc
GD
CS
GND
MULT
INV
PFC_OK
ZCD
Disable
OVP
UVLO
Disable
Q S
R
DISABLE
L_OVP
UVLO
Error A mplif ier
COMP
Ideal rectif ier
1/V
2
2.5 V
2.4 V
OVP
+
-
L_OVP
12
Starter
OFF
11
8
-
+
0.7V
1.4V
Detector
Zero Current
ON/OFF Control
14
3
13
6
1
2
DETECTOR
MAINS DROP
4
5
+
-
1.7 V
Disable
I
charge
HVS
0.27 V
1.66 V
-
+
0.8 V
0.88 V
ON/OFF Control
www.st.com
Contents L6564H
2/35 Doc ID 022960 Rev 2
Contents
1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5 Typical electrical performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.1 Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2 Feedback failure protection (FFP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.3 Voltage feedforward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.4 THD optimizer circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.5 Inductor saturation detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.6 Power management/housekeeping functions . . . . . . . . . . . . . . . . . . . . . . 24
7 High voltage startup generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8 Application examples and ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
10 Ordering codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
L6564H List of tables
Doc ID 022960 Rev 2 3/35
List of tables
Table 1. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 2. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 3. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 4. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 5. Summary of L6564H idle states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 6. SO-14 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 7. Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 8. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
List of figures L6564H
4/35 Doc ID 022960 Rev 2
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 2. Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 3. Typical system block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 4. IC consumption vs. V
CC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 5. IC consumption vs. T
J
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 6. V
CC
Zener voltage vs. T
J
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 7. Startup and UVLO vs. T
J
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 8. Feedback reference vs. T
J
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 9. E/A output clamp levels vs. T
J
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 10. UVLO saturation vs. T
J
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 11. OVP levels vs. T
J
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 12. Inductor saturation threshold vs. T
J
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 13. Vcs clamp vs. T
J
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 14. ZCD sink/source capability vs. T
J
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 15. ZCD clamp level vs. T
J
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 16. R discharge vs. T
J
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 17. Line drop detection threshold vs. T
J
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 18. VMULTpk - VVFF dropout vs. T
J
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 19. PFC_OK threshold vs. T
J
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 20. PFC_OK FFD threshold vs. T
J
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 21. Multiplier characteristics @VFF=1 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 22. Multiplier characteristics @VFF=3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 23. Multiplier gain vs. T
J
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 24. Gate drive clamp vs. T
J
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 25. Gate drive output saturation vs. T
J
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 26. Delay to output vs. T
J
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 27. Startup timer period vs. T
J
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 28. HV start voltage vs. T
J
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 29. V
CC
restart voltage vs. T
J
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 30. HV breakdown voltage vs. T
J
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 31. Output voltage setting, OVP and FFP functions: internal block diagram . . . . . . . . . . . . . . 18
Figure 32. Voltage feedforward: squarer/divider (1/V2) block diagram and transfer characteristics . . 19
Figure 33. RFF·CFF as a function of 3rd harmonic distortion introduced in the input current . . . . . . . 21
Figure 34. THD optimizer circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 35. THD optimization: standard TM PFC controller (left side) and L6564H (right side) . . . . . . 23
Figure 36. Effect of boost inductor saturation on the MOSFET current and detection method . . . . . . 24
Figure 37. Interface circuits that let the DC-DC converter’s controller IC disable the L6564H . . . . . . 25
Figure 38. High voltage startup generator: internal schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 39. Timing diagram: normal power-up and power-down sequences . . . . . . . . . . . . . . . . . . . . 26
Figure 40. High voltage startup behavior during latch-off protection . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 41. High voltage startup managing the DC-DC output short-circuit . . . . . . . . . . . . . . . . . . . . . 28
Figure 42. Demonstration board EVL6564H - 100 W, wide-range mains: electrical schematic. . . . . . 29
Figure 43. EVL6564H demonstration board: compliance to EN61000-3-2 standard . . . . . . . . . . . . . . 30
Figure 44. EVL6564H demonstration board: compliance to JEITA-MITI standard . . . . . . . . . . . . . . . 30
Figure 45. EVL6564H demonstration board: input current waveform @230 V -50 Hz - 100 W load . . 30
Figure 46. EVL6564H demonstration board: input current waveform @100 V - 50 Hz - 100 W load . 30
Figure 47. SO-14 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
L6564H Description
Doc ID 022960 Rev 2 5/35

1 Description

The L6564H is a current-mode PFC controller operating in transition mode (TM) which
embeds the same features existing in the L6564 with the addition of a high voltage startup
source. These functions make the IC especially suitable for applications that must be
compliant with energy saving regulations and where the PFC preregulator works as the
master stage.
The highly linear multiplier, along with a special correction circuit that reduces crossover
distortion of the mains current, allows wide-range-mains operation with an extremely low
THD even over a large load range.
The output voltage is controlled by means of a voltage-mode error amplifier and an accurate
(1% @T
J
= 25 °C) internal voltage reference. The loop stability is optimized by the voltage
feedforward function (1/V
2
correction), which, in this IC, uses a proprietary technique that
also considerably improves line transient response in the case of both mains drops and
surges (“bi-directional”).
In addition to overvoltage protection able to control the output voltage during transient
conditions, the IC also provides protection against feedback loop failures or erroneous
settings. Other onboard protection functions allow brownout conditions and boost inductor
saturation to be safely handled.
The totem pole output stage, capable of a 600 mA source and 800 mA sink current, is
suitable for a high power MOSFET or IGBT drive. This, combined with the other features
and the possibility to operate with ST's proprietary fixed-off-time control, makes the device
an excellent solution for SMPS up to 400 W that requires compliance with EN61000-3-2 and
JEITA-MITI standards.
Maximum ratings L6564H
6/35 Doc ID 022960 Rev 2

2 Maximum ratings

2.1 Absolute maximum ratings

2.2 Thermal data

Table 1. Absolute maximum ratings

Symbol Pin Parameter Value Unit
V
HVS
8 Voltage range (referred to ground) -0.3 to 700 V
I
HVS
8 Output current Self-limited I
HVS
V
CC
14 IC supply voltage (Icc 20 mA) Self-limited V
--- 1, 3, 6 Max. pin voltage (Ipin
1 mA) Self-limited V
--- 2, 4, 5 Analog inputs and outputs -0.3 to 8 V
I
ZCD
11 Zero current detector max. current
-10 (source)
10 (sink)
mA
VFF pin 5 Maximum withstanding voltage range
test condition: CDF-AEC-Q100-002
“human body model”
acceptance criteria: “normal performance”
+/- 1750 V
Other pins
1 to 4
6, 8, 11 to 14
+/- 2000 V

Table 2. Thermal data

Symbol Parameter Value Unit
R
thJA
Max. thermal resistance, junction-to-ambient 120 °C/W
Ptot Power dissipation @T
A
= 50 °C 0.75 W
T
J
Junction temperature operating range -40 to 150 °C
T
stg
Storage temperature -55 to 150 °C
L6564H Pin connection
Doc ID 022960 Rev 2 7/35

3 Pin connection

Figure 2. Pin connection

AM11476v1
HVS
CS
COMP
MULT
VFF
GD
GND
ZCD
PFC_OK
INV
Vcc
N.C.
2
3
4
1
5
6
78
10
11
12
13
14
N.C.
N.C.
9

Table 3. Pin description

Name Function
1INV
Inverting input of the error amplifier. The information on the output voltage of the PFC pre-
regulator is fed into the pin through a resistor divider. The pin normally features high
impedance.
2COMP
Output of the error amplifier. A compensation network is placed between this pin and INV (pin
1) to achieve stability of the voltage control loop and ensure high power factor and low THD. To
avoid an uncontrolled rise of the output voltage at zero load, when the voltage on the pin falls
below 2.4 V the gate driver output is inhibited (burst-mode operation).
3MULT
Main input to the multiplier. This pin is connected to the rectified mains voltage via a resistor
divider and provides the sinusoidal reference to the current loop. The voltage on this pin is used
also to derive the information on the RMS mains voltage.
4CS
Input to the PWM comparator. The current flowing in the MOSFET is sensed through a resistor,
the resulting voltage is applied to this pin and compared with an internal reference to determine
MOSFET turn-off. A second comparison level at 1.7 V detects abnormal currents (e.g. due to
boost inductor saturation) and, on this occurrence, activates a safety procedure that temporarily
stops the converter and limits the stress of the power components.
5VFF
Second input to the multiplier for 1/V
2
function. A capacitor and a parallel resistor must be
connected from the pin to GND. They complete the internal peak-holding circuit that derives the
information on the RMS mains voltage. The voltage at this pin, a DC level equal to the peak
voltage on the MULT pin (3), compensates the control loop gain dependence on the mains
voltage. Never connect the pin directly to GND but with a resistor ranging from 100 K
(minimum) to 2 M (maximum).
Pin connection L6564H
8/35 Doc ID 022960 Rev 2

Figure 3. Typical system block diagram

6PFC_OK
PFC pre-regulator output voltage monitoring/disable function. This pin senses the output
voltage of the PFC pre-regulator through a resistor divider and is used for protection purposes.
If the voltage on the pin exceeds 2.5 V, the IC stops switching and restarts as the voltage on the
pin falls below 2.4 V. However, if at the same time the voltage of the INV pin falls below 1.66 V,
a feedback failure is assumed. In this case the device is latched off. Normal operation can be
resumed only by cycling V
CC
. bringing its value lower than 6 V before moving up to the turn-on
threshold. If the voltage on this pin is brought below 0.23 V, the IC is shut down. To restart the
IC the voltage on the pin must go above 0.27 V. This can be used as a remote on/off control
input.
7 N.C. Not internally connected. Provision for clearance on the PCB to meet safety requirements.
8HVS
High voltage startup. The pin, able to withstand 700 V, is to be tied directly to the rectified mains
voltage. A 1 mA internal current source charges the capacitor connected between the V
CC
pin
(14) and the GND pin (12) until the voltage on the V
CC
pin reaches the startup threshold, it is
then shut down. Normally, the generator is re-enabled when the V
CC
voltage falls below 6 V to
ensure a low power throughput during short-circuit. Otherwise, when a latched protection is
tripped the generator is re-enabled as V
CC
reaches the UVLO threshold to keep the latch
supplied.
9 N.C. Not internally connected. Provision for clearance on the PCB to meet safety requirements.
10 N.C. Not internally connected. Provision for clearance on the PCB to meet safety requirements.
11 ZCD
Boost inductor demagnetization sensing input for transition-mode operation. A negative-going
edge triggers MOSFET turn-on.
12 GND Ground. Current return for both the signal part of the IC and the gate driver.
13 GD
Gate driver output. The totem pole output stage is able to drive Power MOSFETs and IGBTs
with a peak current of 600 mA source and 800 mA sink. The high level voltage of this pin is
clamped at about 12 V to avoid excessive gate voltages.
14 V
CC
Supply voltage of both the signal part of the IC and the gate driver. Sometimes a small bypass
capacitor (0.1 µF typ.) to GND might be useful to get a clean bias voltage for the signal part of
the IC.
Table 3. Pin description (continued)
Name Function
AM11477v1
V
inac
V
outd c
PWM is turned off in case of PFC's
anomalous operation for safety
PFC can be handled off/on according
to the load c ondition to ease compliance
with energy saving regulations.
L6564H
PWM or
Resonant
CONTROLLER
PFC PRE-REGULATOR DC-DC CONVERTER
L6564H Electrical characteristics
Doc ID 022960 Rev 2 9/35

4 Electrical characteristics

(T
J
= -25 to 125 °C, V
CC
= 12 V, C
O
= 1 nF between pin GD and GND, C
FF
= 1 µF and R
FF
=
1 M between pin VFF and GND; unless otherwise specified.)

Table 4. Electrical characteristics

Symbol Parameter Test condition Min. Typ. Max. Unit
Supply voltage
V
CC
Operating range After turn-on 10.3 22.5 V
V
CCOn
Turn-on threshold
(1)
11 12 13 V
V
CCOff
Turn-off threshold
(1)
8.7 9.5 10.3 V
V
CCrestart
V
CC
for resuming from latch OVP latched 5 6 7 V
Hys Hysteresis 2.3 2.7 V
V
Z
Zener voltage Icc = 20 mA 22.5 25 28 V
Supply current
I
start-up
Startup current Before turn-on, V
CC
= 10 V 90 150 µA
I
q
Quiescent current After turn-on, V
MULT
= 1 V 4 5 mA
I
CC
Operating supply current @ 70 kHz 5 6.0 mA
I
qdis
Idle state quiescent current
V
PFC_OK
> V
PFC_OK_S
AND
V
INV
<V
FFD
180 280 µA
V
PFC_OK
<V
PFC_OK_D
1.5 2.2 mA
I
q
Quiescent current
V
PFC_OK
>V
PFC_OK_S
OR
V
COMP
< 2.3 V
2.2 3 mA
High voltage startup generator
V
HV
Breakdown voltage I
HV
< 100 µA 700 V
V
HVstart
Start voltage IV
CC
< 100 µA 65 80 100 V
I
charge
V
CC
charge current V
HV
> V
Hvstart
, V
CC
> 3 V 0.55 0.85 1 mA
I
HV, ON
ON-state current V
HV
> V
Hvstart
, V
CC
> 3 V 1.6 mA
V
HV
> V
Hvstart
, V
CC
= 0 0.8
I
HV, OFF
OFF-state leakage current V
HV
= 400 V 40 µA
V
CCrestart
V
CC
restart voltage
V
CC
falling 5 6 7
V
(1)
IC latched off 8.7 9.5 10.3
Multiplier input
I
MULT
Input bias current V
MULT
= 0 to 3 V -0.2 -1 µA
V
MULT
Linear operation range 0 to 3 V
V
CLAMP
Internal clamp level I
MULT
= 1 mA 9 9.5 V
Electrical characteristics L6564H
10/35 Doc ID 022960 Rev 2
Output max. slope
V
MULT
= 0 to 0.4 V, V
VFF
= 1 V
V
COMP
= upper clamp
1.33 1.66 V/V
K
M
Gain
(2)
V
MULT
= 1 V, V
COMP
= 4 V 0.375 0.45 0.525 V
Error amplifier
V
INV
Voltage feedback input
threshold
T
J
= 25 °C 2.475 2.5 2.525
V
10.3 V < V
CC
< 22.5 V
(2)
2.455 2.545
Line regulation V
CC
= 10.3 V to 22.5 V 2 5 mV
I
INV
Input bias current V
INV
= 0 to 4 V -0.2 -1 µA
V
INVCLAMP
Internal clamp level I
INV
= 1 mA 8 9 V
Gv Voltage gain Open loop 60 80 dB
GB Gain-bandwidth product 1 MHz
I
COMP
Source current V
COMP
= 4 V, V
INV
= 2.4 V 2 4 mA
Sink current V
COMP
= 4 V, V
INV
= 2.6 V 2.5 4.5 mA
V
COMP
Upper clamp voltage I
SOURCE
= 0.5 mA 5.7 6.2 6.7 V
Burst-mode voltage
(1)
2.3 2.4 2.5
Lower clamp voltage I
SINK
= 0.5 mA
(1)
2.1 2.25 2.4
Current sense comparator
I
CS
Input bias current V
CS
= 0 1 µA
t
LEB
Leading edge blanking 100 150 250 ns
td
(H-L)
Delay to output 100 200 300 ns
V
CSclamp
Current sense reference clamp
V
COMP
= upper clamp,
V
MULT
=1 V, V
VFF
= 1 V
1.0 1.08 1.16 V
Vcs
ofst
Current sense offset
V
MULT
= 0, V
VFF
= 3 V 40 70
mV
V
MULT
= 3 V, V
VFF
= 3 V 20
Boost inductor saturation detector
V
CS_th
Threshold on current sense
(1)
1.6 1.7 1.8 V
I
INV
E/A input pull-up current
After V
CS
> V
CS_th
, before
restarting
51013µA
PFC_OK functions
I
PFC_OK
Input bias current V
PFC_OK
= 0 to 2.6 V -0.1 -1 µA
V
PFC_OK_C
Clamp voltage I
PFC_OK
= 1 mA 9 9.5 V
V
PFC_OK_S
OVP threshold
(1)
voltage rising 2.435 2.5 2.565 V
V
PFC_OK_R
Restart threshold after OVP
(1)
voltage falling 2.34 2.4 2.46 V
Table 4. Electrical characteristics (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
V
CS
V
MULT
------------- ---------
L6564H Electrical characteristics
Doc ID 022960 Rev 2 11/35
V
PFC_OK_D
Disable threshold
(1)
voltage falling 0.12 0.35 V
V
PFC_OK_D
Disable threshold
(1)
voltage falling T
J
= 25 °C 0.17 0.23 0.29 V
V
PFC_OK_E
Enable threshold
(1)
voltage rising 0.15 0.38 V
V
PFC_OK_E
Enable threshold
(1)
voltage rising T
J
= 25 °C 0.21 0.27 0.32 V
V
FFD
V
INV
feedback failure detection
threshold (V
INV
falling)
V
PFC_OK
> V
PFC_OK_S
1.61 1.66 1.71 V
Zero current detector
V
ZCDH
Upper clamp voltage I
ZCD
= 2.5 mA 5.0 5.7 V
V
ZCDL
Lower clamp voltage I
ZCD
= - 2.5 mA -0.3 0 0.3 V
V
ZCDA
Arming voltage
(positive-going edge)
1.1 1.4 1.9 V
V
ZCDT
Triggering voltage
(negative-going edge)
0.5 0.7 0.9 V
I
ZCDb
Input bias current V
ZCD
= 1 to 4.5 V 1 µA
I
ZCDsrc
Source current capability -2.5 -4 mA
I
ZCDsnk
Sink current capability 2.5 5 mA
Startup timer
t
START_DEL
Startup delay First cycle after wake-up 25 50 75 µs
t
START
Timer period 75 150 300 µs
Restart after V
CS
> V
CS_th
150 300 600
Voltage feedforward
V
VFF
Linear operation range 1 3 V
V Dropout V
MULTpk
-V
VFF
V
CC
< V
CCOn
800 mV
V
CC
> or = to V
CCOn
20
V
VFF
Line drop detection threshold Below peak value 40 70 100 mV
V
VFF
Line drop detection threshold
Below peak value
T
J
= 25 °C
50 70 90 mV
R
DISCH
Internal discharge resistor
T
J
= 25 °C 7.5 10 12.5 k
520
V
DIS
Disable threshold
(1)
voltage falling 0.745 0.8 0.855 V
V
EN
Enable threshold
(1)
voltage rising 0.845 0.88 0.915 V
Gate driver
V
OL
Output low voltage I
sink
= 100 mA 0.6 1.2 V
V
OH
Output high voltage I
source
= 5 mA 9.8 10.3 V
I
srcpk
Peak source current -0.6 A
I
snkpk
Peak sink current 0.8 A
Table 4. Electrical characteristics (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
Loading...
+ 24 hidden pages