ST L6460 User Manual

SPI configurable stepper and DC multi motor driver
Features
Operating supply voltage from 13 V to 38 V
4 full bridge driver configurable in multi-motor
Bridge 1 and 2 (R
configured to work as: – Dual full bridge driver – Super DC driver – 2 half bridge driver – 1 super half bridge –2 power switches – 1 super power switch
Bridge 3 and 4 (R
configured to work as: – Same as bridges 1 and 2, listed above – Stepper motor driver: up to 1/16
microstepping – 2 buck regulators (bridge 3) – 1 super buck regulator – Battery charger (bridge 4)
Power supply management
– One switching buck regulator – One switching regulator controller – One linear regulator – One battery charger
Fully protected through
– Thermal warning and shutdown – Overcurrent protection – Undervoltage lock-out
SPI interface
Programmable watchdog function
Integrated power sequencing and supervisory
functions with fault signaling through serial interface and external reset pin
Very low power dissipation in shut-down mode
(~35 mW)
= 0.60 Ω) can be
DSon
= 0.85 Ω) can be
DSon
L6460
TQFP64 exposed pad
Auxiliary features
– Multi-channels 9 bit ADC
– 2 operational amplifiers
– Digital comparator – 2 low voltage power switches – 3 general purpose PWM generators –14 GPIOs
Description
The L6460 is optimized to control and drive multi­motor system providing a unique level of integration in term of control, power and auxiliary features. Thanks to the high configurability L6460 can be customized to drive different motor architectures and to optimize the number of embedded features, such as the voltage regulators, the high precision A/D converter, the operational amplifier and the voltage comparators. The possibility to drive simultaneously stepper and DC motor makes L6460 the ideal solution for all the application featuring multi motors.

Table 1. Device summary

Order code Package Packing
L6460
TQFP64
L6460TR Tape and reel
Tr ay
July 2010 Doc ID 17713 Rev 1 1/139
www.st.com
139
Contents L6460
Contents
1 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 L6460’s main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1 Absolute maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Operating ratings specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4 Internal supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1 V
SupplyInt
regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Charge pump regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 V3v3 regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5 Supervisory system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1 Power on reset (POR) circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 nRESET generation circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Thermal shut down generation circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6 Watchdog circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7 Internal clock oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8 Start-up configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.1 Operation modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.2 Basic device mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.3 Slave device mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.4 Master device mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.5 Single device mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.6 Sub-configurations for slave, master or single device modes . . . . . . . . . 41
2/139 Doc ID 17713 Rev 1
L6460 Contents
8.6.1 Bridge mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.6.2 Primary regulator mode (KP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.6.3 Regulators mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.6.4 Simple regulator mode (KT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.6.5 Bridge + V
mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
EXT
8.6.6 Secondary regulators mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9 Power sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
10 Power saving modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
10.1 Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
10.2 Hibernate mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10.3 Low power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10.4 nAWAKE pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
11 Linear main regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
12 Main switching regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
12.1 Pulse skipping operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
13 Switching regulator controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
13.1 Pulse skipping operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
13.2 Output equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
13.3 Switching regulator controller application considerations . . . . . . . . . . . . . 54
14 Power bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
14.1 Possible configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
14.1.1 Full bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
14.1.2 Parallel configuration (super bridge) . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
14.1.3 Half bridge configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
14.1.4 Switch configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
14.1.5 Bipolar stepper configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
14.1.6 Synchronous buck regulator configuration (Bridge 3) . . . . . . . . . . . . . . 73
14.1.7 Regulation loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
14.1.8 Battery charger or switching regulator (Bridge 4) . . . . . . . . . . . . . . . . . 76
15 AD converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Doc ID 17713 Rev 1 3/139
Contents L6460
15.1 Voltage divider specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
16 Current DAC circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
17 Operational amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
18 Low voltage power switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
19 General purpose PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
19.1 General purpose PWM generators 1 and 2 (AuxPwm1 and AuxPwm2) . 90
19.2 Programmable PWM generator (GpPwm) . . . . . . . . . . . . . . . . . . . . . . . . 90
20 Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
21 Digital comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
22 GPIO pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
22.1 GPIO[0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
22.2 GPIO[1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
22.3 GPIO[2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
22.4 GPIO[3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
22.5 GPIO[4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
22.6 GPIO[5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
22.7 GPIO[6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
22.8 GPIO[7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
22.9 GPIO[8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
22.10 GPIO[9] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
22.11 GPIO[10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
22.12 GPIO[11] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
22.13 GPIO[12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
22.14 GPIO[13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
22.15 GPIO[14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
23 Serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
23.1 Read transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
23.2 Write transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4/139 Doc ID 17713 Rev 1
L6460 Contents
24 Registers list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
25 Schematic examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
26 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
27 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Doc ID 17713 Rev 1 5/139
List of tables L6460
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Pins configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 3. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 4. IC operating ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 5. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 6. Stretch time selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 7. Watchdog timeout specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 8. Possible start-up pins state symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 9. Start-up correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 10. Main switching regulator PWM specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 11. Main switching regulator current limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 12. Switching regulator controller PWM specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 13. Switching regulator controller application: feedback reference. . . . . . . . . . . . . . . . . . . . . . 54
Table 14. PWM selection truth table for bridge 1 or 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 15. PWM selection truth table for bridge 3 or 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 16. Bridge selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 17. Bridge 3 and 4 configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 18. Full bridge truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 19. Half bridge truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 20. Switch truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 21. Sequencer driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 22. Stepper driving mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 23. Stepper sequencer direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 24. DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 25. Internal sequencer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 26. Stepper off time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 27. Stepper fast decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 28. PWM specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 29. Battery charger regulator controller PWM specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 30. ADC truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 31. Channel addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 32. ADC sample times when working as a 8-bit ADC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 33. ADC sample time when working as a 9-bit ADC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 34. Voltage divider specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 35. Current DAC truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 36. Interrupt controller event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 37. Comparison type truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 38. DataX selection truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 39. GPIO functions description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 40. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 41. GPIO[0] truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 42. GPIO[1] truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 43. GPIO[2] truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 44. GPIO[3] truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 45. GPIO[4] truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 46. GPIO[5] truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 47. GPIO[6] truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 48. GPIO[7] truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 49. GPIO[8] truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6/139 Doc ID 17713 Rev 1
L6460 List of tables
Table 50. GPIO[9] truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 51. GPIO[10] truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 52. GPIO[11] truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 53. GPIO[12] truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 54. GPIO[13] truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 55. GPIO[14] truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 56. Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 57. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Doc ID 17713 Rev 1 7/139
List of figures L6460
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 2. Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 3. V
SupplyInt
Figure 4. Charge pump block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 5. nReset generation circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 6. Watchdog circuit block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 7. Standby mode function description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 8. nAWAKE function block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 9. Linear main regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 10. Linear main regulator with external bipolar for high current . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 11. Main switching regulator functional blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 12. Switching regulator controller functional blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 13. Switching regulator controller output driving: equivalent circuit . . . . . . . . . . . . . . . . . . . . . 54
Figure 14. H Bridge block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 15. Bridge 1 and 2 PWM selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 16. Super bridge configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 17. Half bridge configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 18. Bipolar stepper configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 19. Regulator block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 20. Internal comparator functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 21. Battery charger control loop block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 22. Li-ion battery charge profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 23. Simple buck regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 24. A2D block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 25. Current DAC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 26. Configurable 3.3 V operational amplifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 27. Low power switch block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 28. Interrupt controller diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 29. Digital comparator block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 30. GPIO[0] block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 31. GPIO[1] block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Figure 32. GPIO[2] block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 33. GPIO[3] block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 34. GPIO[4] block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure 35. GPIO[5] block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure 36. GPIO[6] block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 37. GPIO[7] block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 38. GPIO[8] block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Figure 39. GPIO[9] block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 40. GPIO[10] block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 41. GPIO[11] block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 42. GPIO[12] block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8/139 Doc ID 17713 Rev 1
L6460 List of figures
Figure 43. GPIO[13] block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Figure 44. GPIO[14] block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Figure 45. SPI read transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Figure 46. SPI write transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Figure 47. SPI input timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Figure 48. SPI output timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Figure 49. Application with 2 DC motors, 1 stepper motor and 3 power supplies . . . . . . . . . . . . . . . 135
Figure 50. Application with 2 DC motors, a battery charger and 5 power supplies . . . . . . . . . . . . . . 136
Figure 51. TQFP64 mechanical data an package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Doc ID 17713 Rev 1 9/139
General description L6460

1 General description

1.1 Overview

L6460 offers the possibility to control and power multi motor systems, through the management of simultaneous driving of stepper and DC motor. A number of features can be configured through the digital interface (SPI), including 3 voltage regulators, 1 high precision A/D converter, 2 operational amplifiers and 14 configurable GPIOs.
The high flexibility allows the possibility to configure two, one full or half bridge to work as power stage featuring additional voltage buck regulators.

Figure 1. Block diagram

N2%3%4
N33
3#,+
-)3/
-/3)
N!7!+%
66
6'0)/?30)
4HERMAL
-ANAGER
3UPERVISORY
2ESET
-ANAGER
7$
2EGISTERS
30)
)NTERNAL
2EGULATOR
'0)/
/P!MP
'0)/
'0)/
X
S
3TEPPER-OTOR
-ANAGER
$#$#
-AIN 3WITCHING 2EGULATOR
'0)/
'0)/
'0)/
#URRENT
$!#
)NT6OLTAGE2EFERENCE
63UPPLY
'0)/
'0)/
'0)/
'0)/S
#ONTROL
,OGIC
60UMP60UMP
-AIN
,INEAR
2EGULATOR
'0)/
'0)/
'0)/
'0)/
07-
'ENERATORS
63UPPLY 63UPPLY
!$#-58
3WITCH
"ATTERY
#HARGER
-ANAGER
3WITCHING 2EGULATOR #ONTROLLER
'0)/
X
'0)/
63UPPLY)NT
$IGITAL
#OMP
#0(
#HARGE
(3 $#X?-).53
,3 $#X?-).53
(3 $#X?0,53
,3 $#X?0,53
2EGOLATION
,OOP
$#
PUMP
#0,
60UMP
60UMP
60UMP
60UMP
60UMP
63UPPLY
63UPPLY
63UPPLY
63UPPLY
63UPPLY
60UMP
$#?-).53
$#?0,53
'.$
60UMP
$#?-).53
$#?0,53
'.$
60UMP
$#?-).53
$#?0,53
$#?3%.3%
60UMP
$#?-).53
$#?0,53
$#?3%.3%
%?0!$
)2%&?&"
62%&?&"
637MAIN?&"
637MAIN?37
Note: See following Chapter 2 for a detailed description of possible configurations.
6,).MAIN?/54
6,).MAIN?&"
637$26?3.3
637$26?&"
637$26?37
637$26?'!4%
10/139 Doc ID 17713 Rev 1
L6460 General description

1.2 Pin connection

Figure 2. Pin connection

VSupply
DC1_PLUS
64 63 62 61 60 59 58 57
DC1_PLUS
V
SWDRV_SNS
VSWDRV_FB
DC1_MINUS
DC1_MINUS
DC2_MINUS
DC2_MINUS
DC2_PLUS
1
GND_PAD
2
3
4
GPIO4
5
GPIO3
6
7
8
GND1
GND2 DC4_SENSE
9 40
10
11
GPIO2
12
GPIO1
13
GPIO0
14
nSS
15
16
17 18 19 20 21 22 23 24
Supply
MISO
V
DC2_PLUS
CPL
CPH
MOSI
VPump
VLINmain_FB
VSWDRV_GATE
GPIO8
LINmain_OUT
VSWDRV_SW
GPIO6
56 55 54 53 52 51 50 49
25 26 27 28 29 30 31 32
Supply
V
SWmain_SW
V
VGPIO_SPI
GPIO7
SWmain_FB
V
VSupplyInt
REF_FB
V
V3V3
IREF_FB
nRESET
SCLK
VSupply
Supply
V
DC3_PLUS
N.C.
48
47
46
45
44
43
42
41
39
38
37
36
35
34
33
N.C.
DC4_PLUS
DC3_SENSE
GPIO5
GPIO9
GPIO10
GPIO11
N.C.
DC3_MINUS
DC3_SENSE
DC4_MINUS
N.C.
GPIO14
GPIO13
GPIO12
nAWAKE
DC4_SENSE
Doc ID 17713 Rev 1 11/139
General description L6460

1.3 Pin list

Table 2. Pins configuration

Pin # Pin name Description Type
1 DC1_PLUS Bridge 1 phase “plus” output Output
2V
3V
SWDRV_SNS
SWDRV_FB
4 GPIO4 General purpose I/O Analog In/Out - CMOS bi-dir
5 GPIO3 General purpose I/O Analog In/Out - CMOS bi-dir
6 DC1_MINUS Bridge 1 phase “minus” output Output
7 DC1_MINUS Bridge 1 phase “minus” output Output
8 GND1 Ground pin for bridge1
9 GND2 Ground pin for bridge2
10 DC2_MINUS Bridge 2 phase “minus” output Output
11 DC2_MINUS Bridge 2 phase “minus” output Output
12 GPIO2 General purpose I/O Analog In/Out - CMOS bi-dir
13 GPIO1 General purpose I/O Analog In/Out - CMOS bi-dir
Switching regulator controller sense Analog input
Switching regulator controller feedback Analog input
(1)(2)(3)
(1)(2)(3)
Power/digital
Power/digital
14 GPIO0 General purpose I/O Analog Input - CMOS input
15 nSS SPI chip select pin CMOS input
16 DC2_PLUS Bridge 2 phase “plus” output Output
17 DC2_PLUS Bridge 2 phase “plus” output Output
18 V
Supply
Main voltage supply Power input
19 MISO SPI serial data output CMOS output
20 MOSI SPI serial data input CMOS input
21 V
22 V
LINmain_FB
LINmain_OUT
Linear main regulator feedback Analog input
Linear main regulator output Power output
23 GPIO 8 General purpose I/O Analog In/Out - CMOS bi-dir
24 V
SWmain_SW
25 V
26 V
SWmain_FB
27 V
28 I
Supply
REF_FB
REF_FB
Main switching regulator switching output Power output
Main voltage supply Power Input
Main switching regulator feedback pin Analog input
Regulator voltage feedback Analog input
Regulator current feedback Analog input
29 SCLK SPI input clock pin CMOS input
30 V
31 DC4_PLUS Bridge 4 phase “plus” output Output
Supply
Main voltage supply Power input
32 N.C. Not connected
33 DC4_SENSE Bridge 4 sense output
(4)
34 nAWAKE Device wake up CMOS input
12/139 Doc ID 17713 Rev 1
Output
L6460 General description
Table 2. Pins configuration (continued)
Pin # Pin name Description Type
35 GPIO12 General purpose I/O Analog In/Out - CMOS bi-dir
36 GPIO13 General purpose I/O Analog In/Out - CMOS bi-dir
37 GPIO14 General purpose I/O Analog In/Out - CMOS bi-dir
38 N.C. Not connected
39 DC4_MINUS Bridge 4 phase “minus” output Output
40 DC4_SENSE Bridge 4 sense output
41 DC3_SENSE Bridge 3 sense output
(4)
(4)
42 DC3_MINUS Bridge 3 phase “minus” output Output
43 N.C. Not connected
44 GPIO11 General purpose I/O Analog In/Out - CMOS bi-dir
45 GPIO10 General purpose I/O Analog In/Out - CMOS bi-dir
46 GPIO9 General purpose I/O Analog In/Out - CMOS bi-dir
47 GPIO5 General purpose I/O Analog In/Out - CMOS bi-dir
(4)
48 DC3_SENSE Bridge 3 sense output
Output
49 N.C. Not connected
Output
Output
50 DC3_PLUS Bridge 3 phase “plus” output Output
51 V
Supply
Main voltage supply Power input
52 nRESET Open drain system reset pin CMOS Input/output
53 V
54 V
SupplyInt
3v3
Internal 3.3 volt regulator Power Input/output
Internal voltage supply Power Input
55 GPIO7 General purpose I/O Analog In/Out - CMOS bi-dir
56 V
GPIO_SPI
Low voltage pins power supply Power input
57 GPIO6 General purpose I/O Analog In/Out - CMOS bi-dir
58 V
59 V
SWDRV_SW
SWDRV_GATE
60 V
Pump
Switching regulator controller source input Power input
Switching driver gate drive pin Analog output
Charge pump voltage Power Input/output
61 CPH Charge pump high switch pin Power Input/output
62 CPL Charge pump low switch pin Power Input/output
63 V
Supply
Main voltage supply Power input
64 DC1_plus Bridge 1 phase “plus” output Output
E_Pad GND_PAD
1. These pins must be connected all together to a unique PCB ground.
2. Bridges1 and 2 have 2 ground pads: one is bonded to the relative ground pin (GND1 or GND2) and the other is connected to exposed pad (E_Pad) ground ring. This makes the bond wires testing possible by forcing a current between E-Pad and GND1 or GND2 pins and using the other pin as sense pin to measure the resistance of E-Pad bonding. (N.B: grounds of two bridges are internally connected together).
3. The analog ground is connected to exposed pad E-Pad.
4. The pin must be tied to ground if bridge is not used as a stepper motor.
(1)(2)(3)
Doc ID 17713 Rev 1 13/139
L6460’s main features L6460

2 L6460’s main features

L6460 includes the following circuits:
Four widely configurable full bridges:
Bridges 1 and 2:
Diagonal R – Max operative current = 2.5 A.
Bridges 3 and 4:
Diagonal R – Max operative current = 1.5 A.
Possible configurations for each bridge are the following:
Bridge 1:
DC motor driver. – Super DC (bridge 1 and 2 paralleled form superbridge1). – 2 independent half bridges. – 1 super half bridge (bridge 1 side A and bridge 1 side B paralleled form
superhalfbridge1). – 2 independent switches (high or low side). – 1 super switch (high or low side).
Bridge 2 has the same configurations of bridge 1. – Bridge 3 has the same configurations of bridge 1 (bridge 3 and 4 paralleled form
superbridge2) plus the following: – ½ stepper motor driver. – 2 buck regulators (V – 1 Super buck regulator (V
Bridge 4 has the same configurations of bridge 1 plus the following:
½ stepper motor driver. – 1 super buck regulator (V – Battery charger.
One buck type switching regulator (V
Output regulated voltage range: 1-5 Volts. – Output load current: 3.0 A. – Internal output power DMOS. – Internal soft start sequence. – Internal PWM generation. – Switching frequency: ~250 kHz. Pulse skipping strategy control.
One switching regulator controller (V
Output regulated voltage range: 1-30 Volts. – Selectable current limitation. – Internal PWM generation. – Pulse skipping strategy control.
One linear regulator (V
14/139 Doc ID 17713 Rev 1
: 0.6 Ω typ.
DSon
: 0.85 Ω typ.
DSon
LINmain
AUX1_SW
AUX1//2_SW
AUX3_SW
, V
AUX2_SW
SWmain
SWDRV
).
).
).
) with:
) with:
) that can be used to generate low current/low ripple
L6460 L6460’s main features
voltages. This regulator can be used to drive an external bipolar pass transistor to generate high current/low ripple output voltages.
One bidirectional serial interface with address detection so that different ICs can share
the same data bus.
Integrated power sequencing and supervisory functions with fault signaling through
serial interface and external reset pin.
Fourteen general purpose I/Os that can be used to drive/read internal/external
analog/logic signals.
One 8-bit/9-bit A/D converter (100 kS/s @ 9-bit, 200 kS/s @8-bit). It can be used to
measure most of the internal signals, of the input pins and a voltage proportional to IC temperature.
Current sink DAC: – Three output current ranges: up to 0.64/6.4/64 mA. – 64 (6-bit programmable) available current levels for each range. – 5 V output tolerant.
Two operational amplifiers:
3.3 V supply, rail to rail input compatibility, internally compensated. – They can have all pins externally accessible or can be internally configured as a
buffer o make internal reference voltages available outside of the chip.
Unity gain bandwidth > 1 MHz. – They can also be set as comparators with 3.3 V input compatibility and low offset.
Two 3.3 V pass switches with 1 Ω R
Programmable watchdog function.
Thermal shutdown protection with thermal warning capability.
Very low power dissipation in “low power mode” (~35 mW)
and short circuit protected.
DSon
L6460 is intended to maximize the use of its components, so when an internal circuit is not used it could be employed for other applications. Bridge 3, for example, can be used as a full bridge or to implement two switching regulators with synchronous rectification: to obtain this flexibility L6460 includes 2 separate regulation loops for these regulators; when the bridge is used as a motor driver, the 2 regulation loops can be redirected on general purpose I/Os to leave the possibility to assembly a switching regulator by only adding an external FET.
Doc ID 17713 Rev 1 15/139
Electrical specifications L6460

3 Electrical specifications

3.1 Absolute maximum rating

The following specifications define the maximum range of voltages or currents for L6460.
Stresses above these absolute maximum specifications may cause permanent damage to the device. Exposure to absolute maximum ratings for extended periods may affect device reliability.

Table 3. Absolute maximum ratings

Parameter Description
V
V
Supply
V
GPIO_SPI
V
3V3pin
V
SW
V
SW_pulse
V
Pump
T
J
1. This value is useful to define the voltage rating for external capacitor to be connected from V V
. V
Supply
to provide voltage to external loads.
2. TSD is the thermal shut down temperature of the device.
is internally generated and can never be supplied by external voltage source nor is intended
Pump
voltage 40 V
Supply
V
GPIO_SPI
V
3V3
voltage 3.9 V
voltage -0.3 3.9 V
Switching regulators output pin voltage range
Switching regulators min pulsed voltage
Charge pump voltage
Junction temperature

3.2 Operating ratings specifications

Table 4. IC operating ratings

Parameter Description
V
V
Supply
I
Supply
I
Shut_down
V
GPIO_SPI
I
VGPIO_SPI
V
3v3
V
LINmain_OUT
V
LINmain_FB
V
SWmain_SW
V
SWDRV_SWVSWDRV_SW
voltage range 13
Supply
V
operative current
Supply
V
shut down state current 1.5 mA
Supply
V
GPIO_SPI
V
GPIO_SPI
voltage range 2.4 3.6 V
operative current
3.3V input pin voltage range 3.6 V
Output pin voltage range
Feedback pin voltage range 0 3.6 V
Output pin voltage range
pin voltage range
(2)
Test
condition
tpulse < 500ns
(1)
Min Max Unit
-1 V
Supply
-3 V
15 V
Storage -40 190 °C
Operating -40 TSD °C
to
Pump
Tes t
condition
(2)
(3)
(4)
(4)
(4)
-1 V
Min Max Unit
(1)
38 V
15 mA
0.4 mA
0V
Supply
-1 V
supply
Supply
V
V
V
V
16/139 Doc ID 17713 Rev 1
L6460 Electrical specifications
Table 4. IC operating ratings
Parameter Description
Tes t
condition
Min Max Unit
V
SWDRV_GATE
V
SWDRV_SNS
T
J
1. For V
2. Operating supply current is measured with system regulators operating but not loaded.
3. Operating V
4. The external components connected to the pin must be chosen to avoid that the voltage exceeds this
supply
For V
supply
amplifiers and pass switches) enabled but not loaded.
operative range.
Gate drive pin voltage 0 V
V
Sense pin voltage
Supply
-3V
V
Junction temperature Operating -40 125 °C
lower than 21 V an external resistor between V lower than 15 V external diodes for charge pump are required.
current is measured with all circuits supplied by V
GPIO_SPI
supply
and V
supply Int
GPIO_SPI
pins are required.
(GPIO’s, operational
Pump
Supply

3.3 Electrical characteristics

Table 5. Electrical characteristics

Parameter Description Test condition Min Typ Max Unit
V
SupplyInt
Charge pump V
V
I
S_Int
V
F
Pump
S_Int
Pump
regulator
Pump
V
SupplyInt
V
SupplyInt
output voltage
operative current
Charge pump voltage V
V
clock frequency F
Pump
(1)
(2)
Supply
= 16MHz typ
OSC
=32V
18 19.5 21 V
11 mA
Supply
V
Supply
+12.5
F
OSC
/6
V
Supply
+ 14.5
V
+ 10.5
4
V
V
V
kHz
V3V3 regulator
Power on reset
V
V
nRESET circuit
V
3V3
Supply_POR_validVSupply
Supply_POR_fallVSupply
t
Supply_POR_filtVSupply
V
3V3_POR_fallV3v3
V
3V3_POR_riseV3v3
V
3V3_POR_hysV3v3
t
3V3_POR_filt
V
nRST_L
V
output voltage V
3v3
POR falling threshold V
POR rising threshold V
POR hysteresis 0.5 V
V
POR filter time 1.5 µs
3v3
nRESET low level output voltage
=32V 3.15 3.3 3.45 V
Supply
voltage for POR valid I
POR falling threshold V
= 1mA 4 V
nRESET
falling 6 8 V
Supply
POR filter Time 3 µs
falling 1.9 2.2 V
3V3
rising 2.7 V
3V3
I=10mA 0.4 V
Doc ID 17713 Rev 1 17/139
Electrical specifications L6460
Table 5. Electrical characteristics (continued)
Parameter Description Test condition Min Typ Max Unit
t
nRST_fall
t
nRST_del
V
Supply_UV_f
V
Supply_UV_r
V
Supply_UV_hysVSupply
t
Supply_UV
V
S_Int_UV_f
V
S_Int_UV_r
V
S_Int_UV_hysVSupplyInt
t
S_Int_UV
V
Pump_UV_f
V
Pump_UV_r
V
Pump_UV_hysVPump
t
Pump_UV
V
GPIO_SPI_UV_fVGPIO_SPI
V
GPIO_SPI_UV_rVGPIO_SPI
V
GPIO_SPI_hysVGPIO_SPI
t
GPIO_SPI_UV
nRESET fall time
nRESET delay time
V
Supply
V
Supply
V
Supply
V
SupplyInt
V
SupplyInt
V
SupplyInt
V
Pump
V
Pump
V
Pump
V
GPIO_SPI
TSD circuit
I=1mA C=50pF
(4)
(3)
15 ns
150 ns
falling threshold 10.2 11 11.8 V
rising threshold 10.5 11.5 12.5 V
hysteresis 0.3 0.5 0.7 V
UV filter time 3.5 µs
falling threshold 9.7 10.7 11.7 V
rising threshold 10.6 11.4 12.2 V
hysteresis 0.4 0.7 1 V
UV filter time 3.5 µs
V
V
falling threshold
rising threshold
V
Supply
+7
V
Supply
+ 7.5
Supply
+ 7.5
V
Supply
+ 8
Supply
+ 8
V
Supply
+ 8.5
hysteresis 0.3 0.5 0.7 V
UV filter time 3.5 µs
falling threshold 1.8 2 V
rising threshold 2.2 2.4 V
hysteresis 200 250 300 mV
UV filter time 3.5 µs
V
V
T
TSD
T
WARM
T
DIFF
t
TSD_FILT
t
WARM_F ILT
Thermal shut down temperature
Warming temperature 140 °C
Thermal shut down to warming difference
Thermal shut down filter time 8 µs
Warming filter time 8 µs
Watchdog
WD_T
clk
Watchdog clock period
Internal clock
F
osc
Oscillator frequency V
3V3
nAWAKE function
V
IL
nAWAKE low logic level voltage
18/139 Doc ID 17713 Rev 1
170 °C
30 °C
*
T
osc
2
22
s
= 3.3 V 14.1 16 17.6 MHz
0.8 V
L6460 Electrical specifications
Table 5. Electrical characteristics (continued)
Parameter Description Test condition Min Typ Max Unit
V
IH
V
HYS
I
OUT
I
INP
t
AWAKEFILT
nAWAKE high logic level voltage
nAWAKE input hysteresis 0.25 V
nAWAKE pin output current nAWAKE=0V
nAWAKE pin input current nAWAKE=0.8V
Filter time 1.2 μs
Main linear regulator
V
drop
I
PD
V
LINmain_Ref
I
LINmain_Ref
I
outLINMax
I
short
ΔV
out/Vo
/ΔV
ΔV
out
V
loop_acc
V
LIN_UV_f
V
LIN_UV_r
V
LIN_UV_hys
t
prim_uv
Supply
Drop out voltage
Internal switch pull down current
Feedback reference voltage 0.776 0.8 0.824 V
Feedback pin input current -2 2 µA
Maximum output current V
Output short circuit current
Load regulation 0 ≤ I
Line regulation I
Loop voltage accuracy ±2.5 %
Undervoltage falling threshold
Undervoltage rising threshold
Undervoltage hysteresis 6 %
Under voltage deglitch filter 5 µs
Main switching regulator
(5)
(5)
=
V
drop
V
supply-VLINmain_OUT
Linear Main Regulator disabled; V
LINmain_OUT
V
LINmain_OUT
V
LINmain_FB
load
(7)
(7)
I
load
=10mA
LINmain_OUT
= V
supply
=0V,
=0V
outLINMax
(6)
(6)
1.6 V
-0.72 -2 mA
0.2 0.4 mA
2V
=1V
3mA
-2V 10 mA
12 24 32 mA
0.8 %
0.2 %
84.5 87 89.5 %
90.5 93 95.5 %
SelFBref = ‘00’ 0.776 0.8 0.824 V
(8)
0.97 1 1.03 V
V
FBREF
Main switching regulator feedback reference voltage
SelFBref = ‘01’
SelFBref = ‘10’ 2.425 2.5 2.575 V
SelFBref = ‘11’ 2.91 3 3.09 V
I
Q
I
Q_LP
I
SWmain_FB
V
SWmain_OUT
I
load
R
DSonHS
Output leakage current T
Output leakage current in “low power mode”
V
SWmain_FB
pin current T
Output voltage range
Maximum output load current V
Internal high side R
DSon
= 125°C -40 +40 µA
junction
V
= 36V
Supply
= 125°C
T
junction
= 125°C -10 +10 µA
junction
(9)
= 36V 0.002 3 A
Supply
I
=1A
load
= 125°C
T
junction
-15 +15 µA
0.8 5 V
0.33 0.95 Ω
Doc ID 17713 Rev 1 19/139
Electrical specifications L6460
Table 5. Electrical characteristics (continued)
Parameter Description Test condition Min Typ Max Unit
V
loop
V
SW_UV_f
V
SW_UV_r
V
SW_UV_hys
t
prim_uv
I
limit
t
deglitch
t
I_lim
t
I_limUV
t
r
t
f
F
SW_PWM
Loop voltage accuracy ±3%
Under voltage falling threshold
Under voltage rising threshold
Under voltage hysteresis 6 %
Under voltage deglitch filter 5 µs
Current limit protection
Current limit deglitch time 50 ns
Current limit response time
Current limit response time in UV condition
Switching output rise time
Switching output fall time
Operating frequency
Switching regulator controller
(10)
(10)
SelIlimit =”0” SelIlimit =”1”
Normal operating mode (no
(11)
UV)
UV condition
V
= 36V,
Supply
= 422 Ω
R
LOAD
V
= 36V,
Supply
= 10 Ω
R
LOAD
(12)
200 400 ns
(13)
(13)
84.5 87 89.5 %
90.5 93 95.5 %
3.3
2.3
5
3.5
A A
450 650 ns
530ns
530ns
Fosc/6
4
kHz
V
GS_ext
I
SOURCE
I
SINK
t
SINK
R
SUSTAIN
I
Q
I
Q_LP
V
FBREF
I
SWDRV_FB
V
loop
Gate to source voltage for external FET
Source current
Sink current V
V
Pump=VSupply
V
SWCTR_GATE
SWCTR_GATE
+12V
=0V
= V
Supply
V
Pump
25 50 mA
20 mA
Sink discharge pulse time 600 ns
Gate-source sustain resistance
Output leakage current
Output leakage current in “Low Power Mode”
Switching regulator feedback
(V
SWCTR_GATE
V
SWCTR_SRC
= 36V,
V
Supply
T
junction
V
= 36V,
Supply
T
junction
SelFBref = ‘00’
) = 0.2V
= 125°C
= 125°C
-
(8)
650 Ω
-40 +40 µA
-5 +5 µA
0.776 0.8 0.824 V
SelFBref = ‘01’ 0.97 1 1.03 V
controller feedback reference voltage
SelFBref = ‘10’ 2.425 2.5 2.575 V
SelFBref = ‘11’ 2.91 3 3.09 V
V
SWDRV_FB
pin current
Supply
T
junction
= 125°C
-10 +10 µA
V
= 36V,
Loop voltage accuracy ±3%
V
20/139 Doc ID 17713 Rev 1
L6460 Electrical specifications
Table 5. Electrical characteristics (continued)
Parameter Description Test condition Min Typ Max Unit
V
SWD_UV_f
V
SWD_UV_r
V
SWD_UV_hys
t
prim_uv
V
ovc
t
deglitch
t
I_lim
t
I_limUV
Under voltage falling threshold
Under voltage rising threshold
Under voltage hysteresis 6 %
Under voltage deglitch filter 5 µs
Over current threshold voltage 250 300 350 mV
Current limit deglitch time 50 ns
Current limit response time
Current Limit response time in UV condition.
(14)
(14)
Normal operating mode (no
(11)
UV)
UV condition
(12)
84.5 87 89.5 %
90.5 93 95.5 %
500 900 ns
380 550 ns
F
SWD_PWM
Power bridges
R
DSon1_2
R
DSon3_4
I
MAX1_2
I
MAX3_4
I
dss
I
Q_LP
I
OC_LS1_2
I
OC_HS1_2
Operating frequency F
Bridge 1 and 2 diagonal R
Bridge 3 and 4 diagonal R
DSon
DSon
I = 1.4A, V
= 125°C
T
junction
I = 1A, V
= 125°C
T
junction
Supply
Supply
= 36V,
= 36V,
Bridge 1 and 2 operative rms current
Bridge 3 and 4 operative rms current
Output leakage current. T
Output leakage current in “low power mode”
Low side current protection for bridges 1 and 2
High side current protection for bridges 1 and 2
(15)
(15)
= 125°C -50 +50 µA
junction
V
= 36V,
Supply
T
= 125°C
junction
MtrXSideYILimSel[1:0]=00 MtrXSideYILimSel[1:0]=01 MtrXSideYILimSel[1:0]=10 MtrXSideYILimSel[1:0]=11
(16)
MtrXSideYILimSel[1:0]=00 MtrXSideYILimSel[1:0]=01 MtrXSideYILimSel[1:0]=10 MtrXSideYILimSel[1:0]=11
6)
-10 +10 µA
0.6
1.4
2.4
2.4
0.7
1.5
2.5
(1
2.5
/64 kHz
osc
0.6 1.1
0.85 1.65
2.5 A
1.5 A
1 2 3 3
1 2 3 3
1.6
2.6
3.6
3.6
1.7
2.7
3.7
3.7
Ω
Ω
A
A
I
OC_LS3_4
I
OC_HS3_4
t
filter
Low side current protection for bridges 3 and 4
High side current protection for bridges 3 and 4
(15)
(15)
Current limit filter time
MtrXSideYILimSel[1:0]=11
(17)(18)
MtrXSideYILimSel[1:0]=11
7)(18)
1.55 2.5 A
(1
1.6 2.5 A
25μs
Doc ID 17713 Rev 1 21/139
Electrical specifications L6460
Table 5. Electrical characteristics (continued)
Parameter Description Test condition Min Typ Max Unit
t
delay
t
OC_off
t
r1_2
t
r3_4
t
f1_2
t
f3_4
t
deadRise
t
deadFall
F
PWM
Current limit delay time
Over current Off time
Output rise time bridges 1 and 2
Output rise time bridges 3 and 4
Output fall time bridges 1 and 2
Output fall time bridges 3 and 4
MtrXIlimitOffTimeY[1:0]=00 MtrXIlimitOffTimeY[1:0]=01 MtrXIlimitOffTimeY[1:0]=10 MtrXIlimitOffTimeY[1:0]=11
(19)
V
= 36V, resistive load
Supply
between outputs: R= 25 Ω
V between outputs: R= 36 Ω
V
(20)
= 36V, resistive load
Supply
(20)
= 36V, resistive load
Supply
between outputs: R= 25 Ω
V
(20)
= 36V, resistive load
Supply
between outputs: R= 36 Ω
(20)
100 180 250 ns
50 100 200 ns
100 180 250 ns
50 125 250 ns
5 μs
60 120 240 480
µs µs µs µs
Anti crossover rising dead time 100 300 450 ns
Anti crossover falling dead time
Operating frequency
100 300 450 ns
/51
F
osc
2
kHz
t
resp
Delay from PWM to output transition
Bipolar stepper circuitry
V
STEPREF
V
offset
Reference voltage
Sense comparator offset -12 12 mV
SelStepRef =0 SelStepRef =1
StepBlkTime = ‘00’
StepBlkTime = ‘01’ 1 1.45 1.9 µs
t
blk
Blanking time
StepBlkTime = ‘10’ 1.5 2.25 3 µs
StepBlkTime = ‘11’ 3 4.25 5.5 µs
Synchronous buck regulator (bridge 3)
V
AUX_SW
I
Q
I
QLP
Output pin voltage range (DC3x)
Output leakage current T
Output leakage current in “Low Power Mode”
(26)
junction
V
Supply
T
junction
22/139 Doc ID 17713 Rev 1
500 ns
(8)
0.48
0.72
0.65 0.95 1.25 µs
-1 V
0.50
0.75
0.52
0.78
Supply
= 125°C -50 +50 µA
= 36V
= 125°C
-10 +10 µA
V
V
L6460 Electrical specifications
Table 5. Electrical characteristics (continued)
Parameter Description Test condition Min Typ Max Unit
SelFBRef = ‘00’ 0.776 0.8 0.824 V
(21)
(22)
0.97 1 1.03 V
2.425 2.5 2.575 V
-15 15 µA
(23)
0.8 30 V
=1A 0.6 0.8 Ω
load
84.5 87 89.5 %
90.5 93 95.5 %
480 700 ns
V
FBREF
I
GPIO_FB
V
out
I
load
R
DSonHS
V
loop
V
REG_UV_f
V
REG_UV_r
V
REG_UV_hys
t
aux_UV
I
limit
t
deglitch
t
I_lim
Synchronous buck regulator feedback reference voltage
SelFBRef = ‘01’
SelFBRef = ‘10’
SelFBRef = ‘11’ 2.91 3 3.09 V
T
= 125°C
GPIO feedback pin current
Output voltage range V
Output load current V
Internal high/low side R
DSon
junction
0VFeedback 3V
= 36V
Supply
= 36V 0.002 1.5 A
Supply
T
= 125°C; I
junction
Loop voltage accuracy ±3%
Under voltage falling threshold
Under voltage rising threshold
(24)
(24)
Under voltage hysteresis 6 %
Under voltage deglitch filter 5 µs
Current limit protection 1.6 2.5 A
Current limit deglitch time 50 ns
Current limit response time
Normal operating mode (no UV)
(11)
t
I_limUV
t
r
t
f
t
dead
F
REGPWM
Battery charger (Bridge 4)
V
AUX3_SW
I
Q
V
FBRef
Current limit response time in UV condition.
Switching output rise time
Switching output fall time
UV condition
V
Supply
R
LOAD
V
Supply
R
LOAD
(12)
= 36V,
= 422 Ω
= 36V,
= 10 Ω
(25)
(23)
350 500 ns
530ns
10 50 ns
Crossover dead time 100 ns
Operating frequency F
Output pin voltage range (DC4x)
Output leakage current T
(26)
-1 V
= 125°C -100 +100 µA
junction
/64 kHz
osc
Supply
SelFBRef = ‘00’ 1.37 1.412 1.455 V
Battery charger control loop feedback reference voltage
SelFBRef = ‘01’
(8)
SelFBRef = ‘10’ 2.079 2.143 2.207 V
1.746 1.8 1.854 V
SelFBRef = ‘11’ 2.425 2.5 2.575 V
V
Doc ID 17713 Rev 1 23/139
Electrical specifications L6460
Table 5. Electrical characteristics (continued)
Parameter Description Test condition Min Typ Max Unit
SelCurrRef = ‘00’
(8)
0.873 0.9 0.927 V
V
CurrRef
V
out
I
load
R
DSon
V
loop
V
BC_UV_f
V
BC_UV_r
V
BC_UV_hys
t
aux_UV
I
limit
t
deglitch
t
I_lim
t
I_limUV
t
r
t
f
t
dead
F
BCPWM
Battery charger control loop feedback reference current
Output voltage range V
Output load current V
Internal high/low side R
Loop voltage accuracy ±3%
Under voltage falling threshold
Under voltage rising threshold
Under voltage hysteresis 6 %
Under voltage deglitch filter 5 µs
Current limit protection 3.2 5 A
Current limit deglitch time 50 ns
Current limit response time
Current limit response time in UV condition.
Switching output rise time
Switching output fall time
Crossover dead time 100 ns
Operating frequency F
ADC with A2DType=0
(29)
DSon
SelCurrRef = ‘01’ 1.394 1.437 1.48 V
SelCurrRef = ‘10’ 1.746 1.8 1.854 V
SelCurrRef = ‘11’ 2.182 2.25 2.318 V
(27)
= 36V
Supply
= 36V 0.002 3 A
Supply
T
= 125°C;
junction
= 1.5A
I
LOAD
(28)
(28)
Normal operating mode (no UV)
UV condition
V R
V R
Supply
LOAD
Supply
LOAD
(11)
(12)
= 36V,
= 422 Ω
= 36V,
= 10 Ω
(25)
(25)
1.412 30 V
0.3 0.4 Ω
84.5 87 89.5 %
90.5 93 95.5 %
480 700 ns
350 500 ns
530ns
10 50 ns
/64 kHz
osc
IMR Measurement range A2dType = 0 0 V
INL Integral non-linearity A2dType = 0
DNL Differential non-linearity A2dType = 0
OE Offset error A2dType = 0
OE
Drift
Offset error drift
A2dType = 0 over time and temperature
GE Gain error A2dType = 0
GE
t
Drift
conv
Gain error drift
Minimum conversion time 55 µs
Resolution
A2dType = 0 over time and temperature
(35)
24/139 Doc ID 17713 Rev 1
V
(30)(31)
(32)(31)
(33)
3v3
±2 LSB
±2 LSB
±4 LSB
±3 LSB
(34)
±4 LSB
±4 LSB
8bits
L6460 Electrical specifications
Table 5. Electrical characteristics (continued)
Parameter Description Test condition Min Typ Max Unit
C
in
Input sampling capacitance
ADC with A2DType=1
(37)
(36)
4pF
IMR Measurement range A2dType = 1 0 V
INL Integral non-linearity A2dType = 1
DNL Differential Non-Linearity A2dType = 1
OE Offset error A2dType = 1
OE
Drift
Offset error drift
A2dType = 1 over time and temperature
GE Gain error A2dType = 1
GE
t
Drift
conv
Gain error drift
Minimum conversion time 10 µs
A2dType = 1 over time and temperature
(30)(31)
(32)(31)
(33)
(34)
Resolution 9 bits
C
in
Input sampling capacitance
(36)
Current DAC
V
R
I
OUT_OFF
I
FULL_ERR
INL
10_11
DNL
10_11
Pin voltage operative range (GPIO8)
Output off leakage current DacValue[5:0] = 000000 -1 +1 µA
Full scale current error
Integral non-linearity for 10 and 11 ranges
Differential non-linearity for 10 and 11 ranges
(38)
DacRange[1:0] =xx DacValue[5:0] = 111111
0.7 5.5 V
-15 +15
3v3
V
±1 LSB
±1 LSB
±4 LSB
±3 LSB
±4 LSB
±4 LSB
4pF
% of
I
FULL
typ
±2 LSB
±2 LSB
INL
DNL
R
CurrDac_res
R
CurrDac_ratio
t
set
Operational amplifier
V
GPIO_SPI
V
ICM
V
OUT_MAX
01
01
Integral non-linearity for 01 range
Differential non-linearity for 01 range
Gpio[8] divider total resistance 45
Gpio[8] divider ratio 3/5
Settling time
(40)
Operational amplifier supply voltage range
Input common mode voltage range
Output voltage I
(39)
3.15 3.3 3.45 V
0
=± 1mA 0.1 3.2 V
LOAD
Doc ID 17713 Rev 1 25/139
±1 LSB
±1 LSB
kΩ
s
V
GPIO_
SPI
V
Electrical specifications L6460
Table 5. Electrical characteristics (continued)
Parameter Description Test condition Min Typ Max Unit
VOp1PlusRef
VOp2PlusRef
Operational amplifier 1 and 2 reference voltage
Avd Open loop gain
OpxRef[1:0]=00 OpxRef[1:0]=01 OpxRef[1:0]=10 OpxRef[1:0]=11
=1.65V
V
ICM
I
= 0mA
LOAD
0.97
1.6
1.94
2.425
90 dB
1
1.65 2
2.5
1.03
2.06
2.575
CMRR Common mode rejection ratio 80 110 dB
I
= ±6mA
(40) (41)
LOAD
V
=1.65V
ICM
C
=100pF V
load
=330 Ω to V
R
load
=1.65V 10 mA
out
I
= 0
load
C
=100pF
LOAD
=1.65V
ICM
GPIO_SPI
2MHz
1.3 1.75 V/µs
90 dB
PSRR Power supply rejection ratio
I
in _offs
I
in _bias
V
in _offs
Input offset current -150 150 nA
Input bias current -500 500 nA
Input offset voltage -5 5 mV
GBWP Gain bandwidth product
I
out
I
short_max
Output current V
Short circuit current 12 20 mA
SR Slew rate
Operational amplifier used as comparator
1.7 V
V
Low power switch
V
OUT_MAX
t
OFF
t
FAL L
t
ON
t
RISE
V
PSW
OUT_MAX
R
DSon
I
LIMIT
t
deglitch
Output voltage I
=± 10mA 0.3 2.9 V
load
VCM = 1.65V
Turn off propagation delay
Fall time
Turn on propagation delay
Rise time
Δ Vi = -/+ 20mV C
=100pF
LOAD
= 1.65V
V
CM
Δ Vi = -/+ 20mV
=100pF
C
LOAD
= 1.65V
V
CM
Δ Vi = -/+ 20mV
=100pF
C
LOAD
= 1.65V
V
CM
Δ Vi = -/+ 20mV
=100pF
C
LOAD
(42)(43)
(42)(43)
(42)(43)
(42)(43)
0.6 1 µs
0.15 0.4 µs
0.25 0.5 µs
0.2 0.4 µs
Input voltage range 2.4 3.6 V
V
Output voltage
Switch R
DSon
resistance I
=100mA 0.6 1 Ω
load
GPIO_
SPI
V
Current limit 150 250 350 mA
Current limit deglitch time 50 ns
26/139 Doc ID 17713 Rev 1
L6460 Electrical specifications
Table 5. Electrical characteristics (continued)
Parameter Description Test condition Min Typ Max Unit
t
I_lim
C
LOAD
t
t
OFF
ON
Current limit response time 650 ns
Max load capacitance 2.5 µF
V
Turn on propagation delay
Turn off propagation delay
GPIO_SPI
C
LOAD
V
GPIO_SPI
I
LOAD
C
LOAD
Interrupt controller
t
PULSE
t
INTFILT
Pulse duration 16*T
Filter time 200 ns
GPIO[0], GPIO[1], GPIO[2], GPIO[3], GPIO[4], GPIO[6]
V
IH
V
IL
V
HYS
V
OL
I
LEAKAGE
t
DELAY
High level input voltage 1.6 V
Low level input voltage 0.8 V
Input voltage hysteresis 0.15 0.22 V
Low level output voltage I
= 15mA 0.5 V
OUT
Leakage current 0 ≤ V
Delay from serial write to pin Low
C
LOAD
=100pF
=1mA
=100pF
V
out
=50 pF
=3.3V I
(44)
=3.3V
(44)
3v3
(45)
LOAD
=1mA
450 650 ns
250 450 ns
osc
µs
-1 1 µA
500 ns
GPIO[5], GPIO[7], GPIO[9], GPIO[10], GPIO[11], GPIO[12], GPIO[13], GPIO[14]
V
IH
V
IL
V
HYS
V
OL
V
OH
I
LEAKAGE
t
DELAY
High level input voltage 1.6 V
Low level input voltage 0.8 V
Input voltage hysteresis 0.15 0.22 V
Low level output voltage I
High level output voltage I
Leakage current 0 ≤V
Delay from serial write to pin low
= 15mA 0.5 V
OUT
= 5mA 2.75 V
OUT
V
out
3v3
C
LOAD
=50 pF
(45)
GPIO[8]
V
IH
V
IL
V
HYS
V
OL
I
LEAK_0
I
LEAK_1
High level input voltage 1.6 V
Low level input voltage 0.8 V
Input voltage hysteresis 0.13 0.22 V
Low level output voltage I
Leakage current
Leakage current
= 15mA, 0.4 V
OUT
EnGpio8DigIn=0, 0 Vout 5V
EnGpio8DigIn=1, 0 Vout 5V
-1 1 µA
500 ns
-1 1 µA
-1 5 µA
Doc ID 17713 Rev 1 27/139
Electrical specifications L6460
Table 5. Electrical characteristics (continued)
Parameter Description Test condition Min Typ Max Unit
ADChannelX[4:0]
I
AD
t
DELAY
SPI interface
V
IH
V
IL
V
HYS
V
OH
V
OL
t
SCLK
t
SCLK_rise
t
SCLK_fall
t
SCLK_high
t
SCLK_low
t
nSS_setup
t
nSS_hold
t
nSS_min
t
MOSI_setup
t
MOSI_hold
t
MISO_rise
t
MISO_fall
t
MISO_valid
t
MISO_disable
C
LOAD
1. This value is useful to define the voltage rating for external capacitor to be connected from V
2. This typical value is only intended to give an estimation of the current consumption when L6460 is configured in simple regulators mode (see following Chapter 8.6.4) at the end of the start up sequence and with no load on regulators. This typical value allows a raw choose of the external resistor but the definitive choose must be done according to the recommendations on Chapter 4.1).
3. Measured between 10% and 90% of output voltage transition.
4. Measured from a fault detection to 50% of output voltage transition.
5. Current is defined to be positive when flowing into the pin.
6. Load regulation is calculated at a fixed junction temperature using short load pulses covering all the load current range. This is to avoid change on output voltage due to heating effect.
7. Undervoltage rising and falling thresholds are intended as a percentage of feedback pin voltage (V
8. Default state.
9. The regulated voltage can be calculated using the formula: V
A/D path absorbed current
=10001 and
-1 1 µA
bit EnDacScale=0
Delay from serial write to pin low
(40)
High level input voltage
Low level input voltage
Input voltage hysteresis
High level output voltage I
Low level output voltage I
C
(46)
(46)
(46)
OUT
OUT
LOAD
=50 pF
= -10mA,
= 10mA,
(45)
500 ns
1.6 V
0.8 V
0.15 0.22 V
(47)
(47)
2.75 V
0.4 V
SCLK period 62.5 ns
SCLK rise time 2 ns
SCLK fall time 2 ns
SCLK high time 20 ns
SCLK low time 20 ns
nSS setup time 10 ns
nSS hold time 10 ns
nSS high minimum time 30 ns
MOSI setup time 10 ns
MOSI hold time 10 ns
MISO rise time C
MISO fall time C
LOAD
LOAD
=50pF
=50pF
(48)
(48)
9ns
9ns
MISO valid from clock low 0 15 ns
MISO disable time 0 15 ns
MOSI maximum load 200 pF
SWmain_OUT = VFBREF
Supply
*(Ra+Rb)/Rb.
to V
LINmain_FB
SupplyInt
.
).
28/139 Doc ID 17713 Rev 1
L6460 Electrical specifications
10. Undervoltage rising and falling thresholds are intended as a percentage of feedback pin voltage (V
SW_main_FB
11. This condition is intended to simulate an extra current on output.
12. This condition is intended to simulate a short circuit on output.
13. Rise and fall time are measured between 10% and 90% V
14. Undervoltage rising and falling thresholds are intended as a percentage of feedback pin voltage (V
SWmain
output voltage.
SWDRV_FB
15. The current protection values must be intended as a protection for the chip and not as a continuous current limitation. The protection is performed by switching off the output bridge when current reaches values higher than the I protection could be guaranteed for values in the middle range between I
MAX
and I
OC
max. No
OC
16. In this cell X stands for 1 or 2, Y stands for A or B
17. In this cell X stands for 3 or 4, Y stands for A or B
18. The current protection thresholds for Bridge 3 and 4 are not selectable so only the max current value (MtrXSideYILimSel[1:0]= 11) is available.
19. Overcurrent Off time can be configured using SPI.
20. Rise and fall time are measured between 10% and 90% of DC output voltage. With device in full bridge configuration (resistive load between outputs).
21. Default state for Aux1
22. Default state for Aux2
23. The regulated voltage can be calculated using the formula: V
AUX_SW
= V
FBREF
*(Ra+Rb)/Rb.
24. Undervoltage rising and falling thresholds are intended as a percentage of feedback pin voltage (GPIO1 and/or GPIO2)
25. Rise and fall time is measured between 10% and 90% of output voltage.
26. The external components connected to the pin must be chosen to avoid that the voltage exceeds this operative range.
27. The regulated voltage can be calculated using the formula: V
AUX3_SW
= V
28. Undervoltage rising and falling thresholds are intended as a percentage of feedback pin voltage (V
7.5
29. The definition of LSB for this table is LSB=IMRmax/(2
30. Integral Non Linearity error (INL) is defined as the maximum distance between any point of the ADC characteristic and the “best straight line” approximating the ADC transfer curve.
-1).
FBREF
*(Ra+Rb)/Rb.
REF_FB
).
31. The ADC ensures monotonic characteristic and no missing codes.
32. Differential nonlinearity error (DNL) is defined as the difference between an actual step width and the ideal width value of 1 LSB.
33. Offset error (OE) is the deviation of the first code transition (000...000 to 000...001) from the ideal (i.e. GND + 0.5 LSB).
34. Gain error (GE) is the deviation of the last code transition (111...110 to 111...111) from the ideal (V3v3 - 0.5 LSB), after adjusting for offset error.
35. Please note that the result of the conversion will always be a 9-bit word: to speed up the conversion, the resolution is reduced when the ADC is used in the 8- bit resolution mode.
36. Actual input capacitance depends on the pin that must be converted.
9
37. The definition of LSB for this table is LSB=IMRmax/(2
38. All parameters are guaranteed in the range between V
-1).
OL
and V
R Max
.
39. Measured from DacValue[5:0] change in SPI interface.
40. V
GPIO_SPI
= 3.3 V unless otherwise specified
41. In this section reports the operational amplifier parameters that change when used as comparator.
42. ΔVi is the differential voltage applied to input pins across the common voltage V
CM
.
43. Measured between 50% of input and output signal.
44. Time measured from change in SPI interface to 50% of external pin transition.
45. Measured between nSS rising edge and 50% of V
46. Specification applies to nSS, SCLK and MOSI pins.
47. Current is considered to be positive when flowing towards the IC
48. These times are measured at the pin output between specified V
out
.
and VOL.
OH
).
).
Doc ID 17713 Rev 1 29/139
Internal supplies L6460

4 Internal supplies

L6460 includes three internal regulators used to provide a regulated voltage to internal circuits.
The internal regulators are the following:
- V
- Charge pump regulator.
- V
4.1 V
V regulator is not intended to provide external current so it must not be used to supply external loads. An external capacitor must always be connected to this pin (preferably towards V
Figure 3. V
SupplyInt
3v3
SupplyInt
SupplyInt
Supply
regulator.
regulator.
regulator
is the output of an internal regulator used to supply some internal circuits. This
pin), recommended value is in the range 80 ÷ 120 nF.
SupplyInt
pin
Vsupply
VsupplyInt
L6460
internal circuits
IS_Int_TYP
L6460
The V
SupplyInt
resistor R
pin may also be externally connected to V
: this allows R
EXT
, particularly when V
EXT
operative supply range, to dissipate power that otherwise would be dissipated inside the chip. The choice of the optimal resistor depends on the application since it is strictly depending on both V
and the current used inside the chip (that is changing with the
Supply
chosen configuration).
R
could be chosen by applying this formula: R
EXT
I
max is depending from the chosen configuration and represents the total current needed
S_Int
by the circuits connected to this pin.
For example, with V
30/139 Doc ID 17713 Rev 1
= 32 V and I
Supply
S_Int
GND
pin by means of an external
Supply
is at the max values of the
Supply
EXT
= (V
Supply
min - V
S_Int
max)/(I
S_Int
= 12 mA a typical resistor value is 1 kΩ.
max).
Loading...
+ 109 hidden pages