ST L298 Service Manual

Page 1
®
.
OPERATING SUPPLY VOLTAGE UP TO 46 V
.
TOTAL DC CURREN T UP TO 4 A
.
LOW SATURATION VO LTAGE
.
OVERTEMPERATU RE P ROT ECTION
.
LOGICAL "0" INPUT VOLTAGE UP TO 1.5 V (HIGH NOISE IMMUNITY)
L298
DUAL FULL-BRIDGE DRIVER
DESCRIPTION
The L298 is an integrat ed m onolithic c irc uit in a 15 ­lead Multiwatt and PowerSO20 packages. It is a high volt age , hig h c urrent dual f ul l-b ri dge driver de­signed to acc ept standard T TL logic lev els and drive inductive loads such as relays, solenoids, DC and stepping mot ors. Two enab le inputs are provided to enable or di sable the d evice indepen dently of th e in­put signals. The emitters of the lower transistors of each bridge are connected together and the corre­sponding e xte rnal termi nal c an b e us ed f or the co n-
Multiwatt15
ORDERING NUMBERS :
L298HN (Multiwatt Horiz.)
L298P (PowerSO20)
nection of an external sensing r esistor. An ad ditional supply in put is p ro vi ded so that the logic wor k s at a lower voltage.
PowerSO20
L298N (Multiwatt Vert.)
Jenuary 2000
1/13
Page 2
L298
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
V
V
SS
V
I,Ven
I
O
V
sens
P T
op
T
stg
PIN CONNECTIONS (top view)
Power Supply 50 V
S
Logic Supply Voltage 7 V Input and Enable Voltage –0.3 to 7 V Peak Output Current (each Channel)
– Non Repetitive (t = 100µs) –Repetitive (80% on –20% off; t –DC Opera tio n
= 10ms)
on
3
2.5 2
Sensing Voltage –1 to 2.3 V Total Power Dissipation (T
tot
case
= 75°C)
25 W
Juncti on Op era ting Temper at ur e –25 to 130
, TjStorag e and Junctio n Temp er atu re –40 to 150
A A A
C
°
C
°
Multiwatt15
TAB CONNECTED TO PIN 8
GND
Sense A
N.C. Out 1 Out 2
V
S
Input 1
Enable A
Input 2
GND 10
1 2 3 4
PowerSO20
5 6 7 8 9
15 14 13 12 11 10
9 8 7 6 5 4 3 2 1
D95IN239
D95IN240A
20 19 18 17 16 15 14 13 12 11
CURRENT SENSING B OUTPUT 4 OUTPUT 3 INPUT 4 ENABLE B INPUT 3 LOGIC SUPPLY VOLTAGE V GND INPUT 2 ENABLE A INPUT 1 SUPPLY VOLTAGE V OUTPUT 2 OUTPUT 1 CURRENT SENSING A
GND Sense B N.C. Out 4 Out 3 Input 4 Enable B Input 3 VSS GND
S
SS
THERMAL DATA
Symbol Parameter PowerSO20 Multiwatt15 Unit
R
th j-case
R
th j-amb
(*) Mounted on aluminum s ubst rate
2/13
Thermal Resistance Junction-case Max. 3 Thermal Resistance Junction-ambient Max. 13 (*) 35
C/W
°
C/W
°
Page 3
PIN FUNCTIONS (refer t o the block diagram )
MW.15 PowerSO Name Function
1;15 2;19 Sense A; Sense B Between this pin and ground is connected the sense resistor to
control the current of the load.
2;3 4;5 Out 1; Out 2 Outputs of the Bridge A; the current that flows through the load
connected betw een these two pi ns is mon it or ed at pi n 1.
46 V
S
5;7 7;9 Input 1; Input 2 TTL Compatible Inputs of the Bridge A.
6;11 8;14 Enable A; Enable B TTL Compatible Enable Input: the L state disables the bridge A
8 1,10,11,20 GND Ground. 9 12 VSS Supply Voltage for the Logic Blocks. A100nF capacitor must be
10; 12 13;15 Input 3; Input 4 TTL Compatible Inputs of the Bridge B. 13; 14 16;17 Out 3; Out 4 Outputs of the Bridge B. The current that flows through the load
3;18 N.C. Not Connected
Supply Voltage for the Power Output Stages. A non-inductive 100nF capacitor must be connected between this pin and grou nd.
(enable A) and/or the bridge B (enable B).
connected between this pin and ground.
connected betw een these two pi ns is mon it or ed at pi n 15.
L298
ELECT RICAL CHARA CTE RISTICS (V
= 42V; VSS = 5V, Tj = 25°C; unless otherwise spec if ie d)
S
Symbol Parameter Test Conditions Min. Typ. Max. Unit
Supply Voltage (pin 4) Operative Condition VIH +2.5 46 V
V
S
V
Logic Supply Voltage (pin 9) 4.5 5 7 V
SS
I
Quiescent Supply Current (pin 4) Ven = H; IL = 0 Vi = L
S
V
= H
i
13 50
22 70
Ven = L Vi = X 4 mA
I
Quiescent Current from VSS (pin 9) Ven = H; IL = 0 Vi = L
SS
V
= H
i
24
7
36 12
Ven = L Vi = X 6 mA
V
Input Low Voltage
iL
–0.3 1.5 V
(pins 5, 7, 10, 12) Input High Vol ta ge
V
iH
2.3 VSS V
(pins 5, 7, 10, 12) Low Voltage Input Current
I
iL
Vi = L –10
(pins 5, 7, 10, 12) High Voltage Input Current
I
iH
Vi = H ≤ V
–0.6V
SS
30 100
(pins 5, 7, 10, 12)
V
= L Enable Low Voltage (pins 6, 11) –0.3 1.5 V
en
= H Enable High Voltage (pins 6, 11) 2.3 V
V
en
Ien = L Low Voltage Enable Current
Ven = L –10
SS
(pins 6, 11)
= H High Voltage Enable Current
I
en
= H ≤ VSS –0.6V
V
en
30 100
(pins 6, 11)
V
CEsat (H)
V
CEsat (L )
V
CEsat
V
sens
Source Saturation Voltage IL = 1A
= 2A
I
L
Sink Saturation Voltage IL = 1A (5)
= 2A (5)
I
L
Total Drop IL = 1A (5)
= 2A (5)
I
L
Sensing Voltage (pins 1, 15) –1 (1) 2 V
0.95 1.35 2
0.85 1.2
1.7
1.7
2.7
1.6
2.3
1.80 3.2
4.9
mA mA
mA mA
µ
µ
V
µ
µ
V V
V V
V V
A
A
A
A
3/13
Page 4
L298
ELECT RICAL CHARA CTE RISTICS (continued)
Symbol Parameter Test Conditions Min. Typ. Max. Unit
T
(Vi) Source Current Turn-off Delay 0.5 Vi to 0.9 IL (2); (4) 1.5
1
(Vi) Source Current Fall Time 0.9 IL to 0.1 IL (2); (4) 0.2
T
2
(Vi) Source Current Turn-on Delay 0.5 Vi to 0.1 IL (2); (4) 2
T
3
(Vi) Source Current Rise Time 0.1 IL to 0.9 IL (2); (4) 0.7
T
4
(Vi) Sink Current Turn-off Delay 0.5 Vi to 0.9 IL (3); (4) 0.7
T
5
(Vi) Sink Current Fall Time 0.9 IL to 0.1 IL (3); (4) 0.25
T
6
(Vi) Sink Current Turn-on Delay 0.5 Vi to 0.9 IL (3); (4) 1.6
T
7
(Vi) Sink Current Rise Time 0.1 IL to 0.9 IL (3); (4) 0.2
T
8
) Commutation Fre qu enc y IL = 2A 25 40 KHz
fc (V
i
T
(Ven) Source Current Turn-off Delay 0.5 Ven to 0.9 IL (2); (4) 3
1
(Ven) Source Current Fall Time 0.9 IL to 0.1 IL (2); (4) 1
T
2
(Ven) Source Current Turn-on Delay 0.5 Ven to 0.1 IL (2); (4) 0.3
T
3
(Ven) Source Current Rise Time 0.1 IL to 0.9 IL (2); (4) 0.4
T
4
(Ven) Sink Current Turn-off Delay 0.5 Ven to 0.9 IL (3); (4) 2.2
T
5
(Ven) Sink Current Fall Time 0.9 IL to 0.1 IL (3); (4) 0.35
T
6
(Ven) Sink Current Turn-on Delay 0.5 Ven to 0.9 IL (3); (4) 0.25
T
7
(Ven) Sink Current Rise Time 0.1 IL to 0.9 IL (3); (4) 0.1
T
8
s
µ
s
µ
s
µ
s
µ
s
µ
s
µ
s
µ
s
µ
s
µ
s
µ
s
µ
s
µ
s
µ
s
µ
s
µ
s
µ
1) 1)Sensing voltage c an be – 1 V for t ≤ 50 µsec; in stead y state V
2) See fig. 2.
3) See fig. 4.
4) The load must be a pure resistor.
Figure 1 : Typical Sat ur ation Voltage vs . O utput Current.
min ≥ – 0.5 V.
sens
Figure 2 : Switchin g Tim es T es t Cir c uit s .
4/13
Note :
For INPUT Switching, set EN = H For ENABLE Switching, set IN = H
Page 5
Figure 3 : Source Cur ren t Delay Times vs. Input or En abl e S wit c hi ng.
Figure 4 : Switchin g Tim es T es t Cir c uit s .
L298
Note :
For INPUT Switching, set EN = H For ENABLE Switching, set IN = L
5/13
Page 6
L298
Figure 5 : Sink Curre nt Delay Times vs. Input 0 V E nab le S witching.
Figure 6 : Bidirectional DC Motor C ont r ol.
Inputs Function
= H C = H ; D = L Forward
V
en
C = L ; D = H Reverse C = D Fast Motor Stop
Ven = L C = X ; D = X Free Running
L = Low H = High X = Don’t care
Motor Stop
6/13
Page 7
L298
Figure 7 : For higher cur ren t s, ou tp uts can be par alleled. Tak e c ar e to par al lel c hannel 1 with cha nnel 4
and channel 2 wit h cha nnel 3.
APPLICATION INFORMATION (Re fer to the block diagra m)
1.1. POW ER OUTPUT ST A GE The L298 in tegrates two pow er output stages (A ; B).
The power output stage is a bridge configuration and its outputs can drive an inductive load in com­mon or diffe renzial mo de, depend ing on the s tate of the inputs. The current that flows through the load comes out from the brid ge at the sen se out put : an external r esis tor ( R
; RSB.) allows t o dete ct the in-
SA
tensity of this cu rr en t.
1.2. INPUT STAGE Each bri dge is dri ven b y means of four gate s the in-
put of which ar e In1 ; In2 ; EnA a nd I n3 ; In4 ; E nB . The In inputs s et the bridge st ate when The En i nput is high ; a low state of t he En input inhibits the b ridge. All the inpu ts ar e TT L com pa t ible .
2. SUGGESTIONS A non inductive capacitor, usually of 100 nF, must
be foreseen between both Vs and Vss, to ground, as near as pos sibl e to G ND pin. When the lar ge c a­pacitor of the powe r su ppl y is too f ar from the I C, a second smaller one must be foreseen near the L298.
The sense resi sto r, not of a wire wo und type, must be grounded near t he ne gative pol e of V s that mu st be near the GN D pin of the I.C.
Each input must be connected to the source of the driving s ign als by me ans of a v er y shor t path.
Turn-On and Turn-Off : Before to Turn-ON the Sup­ply Voltage and b efore to Turn it OFF, the E nable in­put must be d riven to the Low state.
3. APPLICATIONS Fig 6 sho ws a bidirectional DC motor c ontr ol Sche-
matic Dia gram for wh ich o nly o ne bridg e is needed . The external bridge of diodes D1 to D4 is made by four fast recovery elements (trr ≤ 200 nsec) that must be chosen of a VF as low as possible at the worst cas e of t he lo ad c ur re nt .
The sen se output v oltage can be used to control the current am plitude by chopp ing the inputs, or to pro­vide ove rcurr ent p rotectio n by switc hing low the en­able input.
The brake function (Fast motor stop) requires that the Absolute Maximum Rating of 2 Amps must never be ov er co m e.
When the repetitive peak current needed from the load is higher than 2 Amp s , a p ar all eled configur a­tion can be chosen (See Fig.7).
An external bridge of diodes are required when in­ductive loads are dr iv en and whe n the inputs of the IC are chop ped ; Sho ttky diodes would be preferred.
7/13
Page 8
L298
This solut ion can drive unt il 3 Amps In DC operati on and until 3.5 Am p s of a r epetitive pea k cur r ent .
On Fig 8 it is shown the d riving of a two pha se bipolar stepper motor ; the needed signals to drive the in­puts of the L298 are generated, in this example, from the IC L297.
Fig 9 show s an ex am ple of P.C.B . designed for the applicati on of F ig 8.
Figure 8 : Two Phase Bipolar Stepp er Motor Circuit . This circ uit dr iv es bipolar steppe r m otor s wit h w inding current s up to 2 A . The diodes are fas t 2 A types .
Fig 10 shows a second two phase bipolar stepper motor control circuit where the current is controlled by the I.C. L65 06.
RS1 = RS2 = 0.5
D1 to D8 = 2 A Fast diodes
8/13
VF ≤ 1.2 V @ I = 2 A
{
trr ≤ 200 ns
Page 9
Figure 9 : Suggested Pr int ed Cir c uit B oar d La y out for the Circuit of fi g. 8 (1 : 1 scale).
L298
Figure 10 : Two Phase Bi polar Stepper Mo tor C ont r ol C ir cu it by Us ing t he Cur re nt Con t rol ler L65 06.
RR and R
depend from the load current
sense
9/13
Page 10
L298
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
A 5 0.197 B 2.65 0.104 C 1.6 0.063 D 1 0.039 E 0.49 0.55 0.019 0.022
F 0.66 0.75 0.026 0.030
G 1.02 1.27 1.52 0.040 0.050 0.060 G1 17.53 17.78 18.03 0.690 0.700 0.710 H1 19.6 0.772 H2 20.2 0.795
L 21.9 22.2 22.5 0.862 0.874 0.886 L1 21.7 22.1 22.5 0.854 0.870 0.886 L2 17.65 18.1 0.695 0.713 L3 17.25 17.5 17.75 0.679 0.689 0.699 L4 10.3 10.7 10.9 0.406 0.421 0.429 L7 2.65 2.9 0.104 0.114
M 4.25 4.55 4.85 0.167 0.179 0.191
M1 4.63 5.08 5.53 0.182 0.200 0.218
S 1.9 2.6 0.075 0.102
S1 1.9 2.6 0.075 0.102
Dia1 3.65 3 .85 0.144 0.152
mm inch
OUTLINE AND
MECHANICAL DATA
Multiwatt15 V
10/13
Page 11
L298
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
A 5 0.197 B 2.65 0.104
C 1.6 0.063
E 0.49 0.55 0.019 0.022 F 0.66 0.75 0.026 0.030
G 1.14 1.27 1.4 0.045 0.050 0.055 G1 17.57 17.78 17.91 0.692 0.700 0.705 H1 19.6 0.772 H2 20.2 0.795
L 20.57 0.810 L1 18.03 0.710 L2 2.54 0.100 L3 17.25 17.5 17.75 0.679 0.689 0.699 L4 10.3 10.7 10.9 0.406 0.421 0.429 L5 5.28 0.208 L6 2.38 0.094 L7 2.65 2.9 0.104 0.114
S 1.9 2.6 0.075 0.102 S1 1.9 2.6 0.075 0.102
Dia1 3.65 3.85 0.144 0.152
mm inch
OUTLINE AND
MECHANICAL DATA
Multiwatt15 H
11/13
Page 12
L298
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
mm inch
A 3.6 0.142 a1 0.1 0.3 0.004 0.012 a2 3.3 0.130 a3 0 0.1 0.000 0.004
b 0.4 0.53 0.016 0.021 c 0.23 0.32 0.009 0.013
D (1) 15.8 16 0.622 0.630
D1 9.4 9.8 0.370 0.386
E 13.9 14.5 0.547 0.570
e 1.27 0.050
e3 11.43 0.450
E1 (1) 10.9 11.1 0.429 0.437
E2 2.9 0.114 E3 5.8 6.2 0.228 0.244
G 0 0.1 0.000 0.004
H 15.5 15.9 0.610 0.626
h 1.1 0.043
L 0.8 1.1 0.031 0.043 N 10˚ (max.) S
8˚ (max.)
T10 0.394
(1) "D and F" do not include mold flash or protrusions.
- Mold flash or protrusions shall not exceed 0.15 mm (0.006").
- Critical dimensions: "E", "G" and "a3"
OUTLINE AND
MECHANICAL DATA
JEDEC MO-166
PowerSO20
E2
h x 45
DETAIL B
BOTTOM VIEW
R
lead
a3
Gage Plane
E
DETAIL B
0.35
S
D1
L
c
a1
DETAIL A
slug
- C -
SEATING PLANE
GC
(COPLANARITY)
E3
NN
a2
A
b
DETAIL A
e3
H
D
T
1
e
1120
E1
10
PSO20MEC
12/13
Page 13
L298
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the conse­quences of us e of such inform ation nor for any infringement of patent s or other right s of third parties whic h may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information pr eviously supplied. STMi­croelectronics products are not authorized for use as critical components in life support devices or systems without express wr itten approval of STMicr oelectronic s.
Australia - Brazil - Chin a - Finl and - France - Ger many - H ong Kong - In dia - Ital y - Japan - Mal aysia - Malta - M orocco -
The ST logo is a regis tered tradem ark of STMic roelec tronics
© 2000 STMicroelec tronics – Printed in Ital y – All Ri ghts Reserv ed
STMicroelectronic s GROUP OF COM PANIES
Singapore - Spain - Swede n - Swi tzerland - U nited K ingdom - U. S.A.
http://www.st.co m
13/13
Loading...