ST EMIF06-SD02F3 User Manual

6-line IPAD™, EMI filter and ESD protection for SD card
Features
ESD protection (IEC standard)
EMI Filtering
Level translator
Integrated power supply with:
– Thermal shutdown (TSD) – Under voltage lockout (UVLO) – Short-circuit current limitation (I – Power on/off feature with Enable pin.
Benefits
EMI Low-pass-filter and ESD protection (up to
15 kV on external pins)
Integrated pull up resistors to prevent bus
floating
50 MHz clock frequency compatible with
C
< 40 pF
line
Lead-free package in 400 µm pitch
Low power consumption
Very low PCB space consumption
High reliability offered by monolithic integration
Reduction of parasitic elements thanks to CSP
integration
Complies with the following standards
IEC 61000-4-2, Level 4 (external pins)
– 15 kV (air discharge) – 8 kV (contact discharge)
HBM IEC 61340-3-1 (all pins)
– 2 kV (air discharge) – 2 kV (contact discharge)
SC
)
EMIF06-SD02F3
Flip Chip
24 bumps

Figure 1. Pin configuration (bump side)

5
Applications
Removable memory cards in mobile phones,
communication systems, and portable applications
Memory cards compliant with: SD (standard
and high speed), MiniSD, µSD and MMC/Trans-flash standards
Description
The EMIF06-SD02F3 is a highly integrated device, based on IPAD technology, combining 5 functions. The Flip-Chip packaging means the package size is equal to the die size.
3
4
12
A
B
C
D
E
TM: IPAD is a trademark of STMicroelectronics.
February 2010 Doc ID 17109 Rev 4 1/21
www.st.com
21
Contents EMIF06-SD02F3

Contents

1 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Passive integration and low pass filter . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4 Data transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1 Test circuit from host to SD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Test circuit from SD to host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Measurement of t
4.4 Measurement of t
(SD to host) from rising edge CLK.h . . . . . . . . . . . 12
skew
(read mode) from rising edge CLK.h . . . . . . . . . . 12
skew.f
5 Low drop out voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1 Line regulation and transient line regulation . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Load regulation and transient load regulation . . . . . . . . . . . . . . . . . . . . . 17
5.3 Dropout definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2/21 Doc ID 17109 Rev 4
EMIF06-SD02F3 Functional description

1 Functional description

A SIDE (Host-CPU) pin list:
V
, Enable, Dat123.dir, CMD.dir, CMD.h, CLK.h, CLK -f, Dat0.dir, Dat0.h, Dat1.h, Dat2.h,
ccA
Dat3.h, V
B SIDE (SD-Card) pin list:
bat
WP, CD, V

Table 1. Pin definition

, CMD-B, CLK-B, Dat0-B, Dat1-B, Dat2-B, Dat3-B
ccB
Pin Name Bump Type Side Description
V
ccA
V
ccB
V
bat
GND C4 Ground - Ground
GND C3 Ground - Ground
Enable C2 Input A Internal power supply enable
CMD.dir A2 Input A Command direction
CMD.h D2 IO A A side command
CLK.h C1 Input A Clock input
CLK-f E2 Output A Clock feedback
Dat0.dir A3 Input A Data direction
Dat0.h D1 IO A Data host
Dat123.dir E3 Input A Data direction
Dat1.h E1 IO A Data host
Dat2.h A1 IO A Data host
Dat3.h B1 IO A Data host
WP E4 Input to CPU A Write protect
CD D3 Input to CPU A Card detect
CMD-B D4 IO B Command direction
CLK-B C5 Output B Clock output
Dat0-B D5 IO B Data SD
Dat1-B E5 IO B Data SD
Dat2-B A5 IO B Data SD
Dat3-B B5 IO B Data SD
B3 Power input A
B4 Power output B
A4 Power input A
Power supply (1.8v)
Power supply (internally generated, 2.9 V)
Battery power supply
Note: In Ta bl e 5 , 6, 7, and 10, collective names are used for groups of pins. The names used are:
*.dir = CMD.dir, Dat0.dir, Dat123.dir
*.h = CMD.h, CLK.h, Dat0.h, Dat1.h, Dat2.h, Dat3.h
*-B = CMD-B, CLK-B, Dat0-B, Dat1-B, Dat2-B, Dat3-B
V
= All A side input pins
iA
V
= All B side input pins.
iB
Doc ID 17109 Rev 4 3/21
Functional description EMIF06-SD02F3

Table 2. Function table

Command signals A side signals direction B side signal direction
Enable CMD. dir Dat0.dir Dat123.dir CMD.h CLK.h CLK-f Dat0.h
Dat1.h
Dat2.h
Dat3.h
CMD-B CLK-B Dat0-B
Dat1-B
Dat2-B
Dat3-B
H H X X IN IN OUT X X OUT OUT X X
H L X X OUT IN OUT X X IN OUT X X
H X H X X IN OUT IN X X OUT OUT X
H X L X X IN OUT OUT X X OUT IN X
HX X HXINOUTXINXOUTXOUT
H X X L X IN OUT X OUT X OUT X IN
L X X X X X Z X X L* Z L* L*
Note: 1 When A side signals direction is INPUT, SD-CARD is WRITTEN by CPU-Host (i.e B side
signals direction is OUTPUT) When A side signals direction is OUTPUT, SD-CARD is READ by CPU-Host (i.e B side signals direction is INPUT)
2 For B side signals when Enable = L:
* Defined by internal pull-down (cf Block Diagram for pins CMD.B and data bus Dat[0…3].B)

Figure 2. Configuration

Feedback Clk
CMD
CMD Dir
CPU
Dir0
Dir1-3
WP, CD
VccA 1.8 V
ESD 2 kV
Vbat
IPAD
Low drop out
voltage regulator
Clk Clk
CMD CMD
Data 0 - 3 Data 0 - 3
ESD (15 kV)
and EMI
VccB
Mini
SD
4/21 Doc ID 17109 Rev 4
EMIF06-SD02F3 Functional description

Figure 3. Block diagram

Enable
Enable
Enable
Enable
EnableEnable
CMD.dir
CMD.h
CLK.h
CLK-f
Dat0.dir
Dat0.h
Dat123.dir
Dat1.h
Dat2.h
2KV
2KV
2KV2KV
2KV
2 kV
500KW
500KW
500KW500KW
500KW
500 k Ω
2KV
2KV
2KV
2KV
2 kV
2KV
2KV
2KV
2KV
2 kV
2KV
2KV
2KV
2KV
2 kV
2KV
2KV
2KV
2KV
2 kV
2KV
2KV
2KV
2KV
2 kV
2KV
2KV
2KV
2KV
2 kV
2KV
2KV
2KV
2KV
2 kV
2KV
2KV
2KV
2KV
2 kV
2KV
2KV
2KV
2KV
2 kV
VCCA
VCCA
VCCAVCCA
VCCA
V
ccA
R
V
ccA
EN
V
VCCA
VCCAVCCA
VCCA
ccA
2KV
2KV
2KV2KV
2KV
2 kV
V
VCCB
VCCBVCCB
VCCB
ccB
R9
R10
R11
V
REF
VREF
VREF
VREF
VREF
REF
REF
REF
REF
REF
REF
V
VCCB
VCCB
VCCB
VCCBVCCBVCCB
VCCB
ccB
V
VCCB
VCCB
VCCB
VCCBVCCBVCCB
VCCB
ccB
V
VCCB
VCCB
VCCB
VCCBVCCBVCCB
VCCB
ccB
V
ccB
VCCB
VCCB
VCCB
VCCBVCCBVCCB
VCCB
15KW
15KW
15KW
15KW
15KW
15 k Ω
70KW
70KW
70KW
70KW
70KW
70KW
70KW
70KW
70KW
70KW
70 k Ω
70KW
70KW
70KW
70KW
70KW
70 kR12
A
A
A
A
A
A
OTP
OTP
OTP
OTP
OTP
OTP
UVLO
UVLO
UVLO
UVLO
UVLO
UVLO
Ω70 k
Ω
LDO
LDO
LDO
LDO
R,C
R,C
R,C
R,C
R,C
R,C
Filters
Filters
Filters
Filters
FiltersFilters
EMI
EMI
EMI
EMI
EMI
V
bat
VCCB
VCCB
VCCBVCCB
VCCB
V
ccB
15KV
15 kV
15KV
15KV
15KV
15KV
15KV
15 kV
15KV
15KV
15KV
15KV
15KV
15 kV
15KV
15KV
15KV
15KV
15KV
15 kV
15KV
15KV
15KV
15KV
15KV
15 kV
15KV
15KV
15KV
15KV
15KV
15KV15KV15KV15KV
15KV
2 kV
15KV
15KV
15KV
15KV
15 kV
15KV
V
ccB
CMD-B
CLK-B
Dat0-B
-
-
-
-
-
Dat1-B
Dat2-B
Dat3.h
WP
R14
V
VCCA
VCCA
VCCA
VCCAVCCA
VCCA
ccA
2KV
2KV
2KV
2KV
2kV
100KW
100KW
100KW
100KW
100KW
100k
Ω
15KV
15KV
15KV
15KV
15KV
15kV
EMIF06--
EMIF06--
EMIF06--
EMIF06
EMIF06
EMIF06
EMIF06 - SD02F3
Doc ID 17109 Rev 4 5/21
Level-Shifters
Level-ShiftersLevel-Shifters
Level-Shifters
Level-shifters-
SD02F3
SD02F3
SD02F3
SD02F3
SD02F3
SD02F3
GND
470KW
470KW
470KW470KW
470KW
470kR7 Ω
V
VCCA
VCCA
VCCA
VCCAVCCAVCCA
VCCA
ccA
100KW
100KW
100KW
100KW
100KW
100 kR13 Ω
15KV
15KV
15KV
15KV
15KV
15 kV
15KV
15KV
15KV15KV
15KV
15 kV
Dat3CD-B
Characteristics EMIF06-SD02F3

2 Characteristics

Table 3. Absolute maximum ratings

Symbol Parameter Value Unit
A SIDE (Host-CPU) All pins: HBM IEC61340-3-1
, Enable, Dat123.dir, CMD.dir, CMD.h, CLK.h,
V
ccA
CLK -f, Dat0.dir, Dat0.h, Dat1.h, Dat2.h, Dat3.h, V
bat
Air discharge
Contact discharge
2 2
ESD
B SIDE (SD-Card) External pins : IEC 61000-4-2, level 4
, CMD-B, CLK-B, Dat0-B, Dat1-B, Dat2-B,
V
ccB
Dat3-B, WP, CD
Maximum junction temperature 150 °C
Thermal resistance from junction to ambient
(1)
Board: epoxy FR4, copper thickness = 40 µm, 4 layers
Maximum power dissipation: P
= (T
dmax
Storage temperature range -55 to +150 °C
stg
V
, V
bat
- T
jmax
, Enable -0.3 to 5.5
ccB
aopmax
)/ R
th (j-a)
R
th (j-a)
T
P
jmax
dmax
T
CMD-B, CLK-B, Dat0-B, Dat1-B, Dat2-B, Dat3-B -0.3 to V
Voltage
V
ccA
Dat123.dir, CMD.dir, CMD.h, CLK.h, CLK -f, Dat0.dir, Dat0.h, Dat1.h, Dat2.h, Dat3.h, WP, CD
1. V
is an internally generated power supply, no external voltage should be applied on this pin other than a current clamp.
ccB
The thermal resistance depends on printed circuit board layout. To dissipate the heat efficiently away from Flip Chip bumps, it is better to make copper planes the largest possible as well as considering thermal vias usage.
Air discharge
Contact discharge
15
8
64 °C/W
1W
+ 0.3
ccB
-0.3 to 3.3
-0.3 to V
ccA
+0.3
kV
V
6/21 Doc ID 17109 Rev 4
EMIF06-SD02F3 Characteristics
Table 4. Recommended operating conditions
Symbol Parameter Conditions Min. Typ. Max. Unit
V
ccA
V
bat
I
out
C
bat
(1)
C
out
(2)
ESR
T
aop
T
jop
P
dop
Enable Enable input voltage 0 V
External pins (without WP and CD)
Power supply 1.62 1.8 1.92 V
Battery power supply 3.1 5 V
V
output current 0.10 100 200 mA
ccB
External battery capacitance
External output capacitance
Equivalent series resistance for C
out
Ambient operating temperature
Juntion operating temperature
Maximum power dissipation
Ceramic capacitor 2.20 µF
= -40 °C to +85 °C, V
T
a
Multi-layer ceramic capacitor type like: C20RX7R1C225K
= 0 V to 3.3 V
bias
1.4
(-35%)
2.20
3.0
(+35%)
F = 1 Hz to 10 MHz Multi-layer ceramic capacitor type like:
03200mΩ
C20RX7R1C225K
-30 25 85 °C
-30 25 125 °C
= (T
- T
P
dop
jop
aop
)/R
th (j-a)
625 mW
ccA
CMD-B, CLK-B, Dat0­B, Dat1-B,
0V
ccB
Dat2-B, Dat3-B
µF
V
V
WP, CD, Dat123.dir, Internal pins (except Enable, with WP and CD)
CMD.dir, CMD.h,
CLK.h,
CLK-f, Dat0.dir,
Dat0.h, Dat1.h,
Dat2.h, Dat3.h
1. C
= 2.2 µF is minimum allowable capacitance value to guarantee LDO stability
out
2. Values for ESR include the V minimized in PCB design.
ccB
resistance path and C
- C
out
out
0V
- GND resistance path. These resistance paths need to be
ccA
V
Doc ID 17109 Rev 4 7/21
Passive integration and low pass filter EMIF06-SD02F3

Table 5. LDO - Current levels in recommended operating conditions

Symbol Parameter Test conditions
I
Q_OFF
I
Q_ON
Quiescent current consumption I
_OFF
ccA
Quiescent current consumption I
_OFF
bat
Quiescent current consumption (Ground pin current) I
bat
+ I
ccA
(1)
VEN = 0.4 V, V
= 3.4 V, V
bat
= 1.92 V
ccA
*.dir, *.h, *-B = GND, WP = CD = V All other pins floating
VEN = 0.4 V, V
= 5 V, V
bat
= 1.92 V
ccA
*.dir, *.h, *-B = GND All other pins floating
I
Level shifter disactivated
ccA
bat
= V
= 3.4 V
= 1.8 V
CLK.h
*.dir = 0 V, V VEN = V All other pins floating
out
I
out
I
out
I
out
Min. Typ. Max. Unit
ccA
= 100 µA 160 220 µA
= 50 mA 320 375 µA
= 100 mA 470 550 µA
= 200 mA 750 900 µA
1. See Note: on page 3 for definition of collective names of pins, for example *.dir

Table 6. Level shifter - Current levels in recommended operating conditions

Symbol Parameter Test conditions
I
_ON
ccA
I
_ON
ccB
Quiescent current on V
Quiescent current on V
ccA
ccB
VEN = V *.dir = V
VEN = V
ccA ccA
ccA
*.dir = 0 V, V
= 1.92 V, V
bat
, ViA = *.h = V
= 1.92 V, V
ccB
bat
= 3.05 V, ViB = V
(1)
= 3.4 V
ccA
= 3.4 V
Min. Typ. Max. Unit
ccB
1. See Note: on page 3 for definition of collective names of pins, for example *.dir
A
A
31A
15 30 µA

3 Passive integration and low pass filter

Figure 4. Circuit diagram of EMIF06-SD02F3 (without LDO)

R10
level Shifter
ESD 2 kV
EN
R
WP CD
VccA
R13
Host side
CLK.h CMD.h Data0.h Data1.h Data2.h Data3.h
R14
Enable
ESD 15 kV
Note: VBR in 14 V technology for pins: CMD-B, CLK-B, Dat0-B, Dat1-B, Dat2-B, Dat3-B, WP, CD
in 8 V technology for pins: Vcc-B, CLK.h, CLK-f, CMD.h, Dat0.h, Dat1.h, Dat2.h, Dat3.h
V
BR
R12
R9
R11
R1
R2
R3
R4
R5
R6
R7
GND
GND
GND
GND
Card side
CLK B CMD B Data0 B Data1 B Data2 B Data3 B
ESD 15 kV
15 kV
15 kV15 kV15 kV
VccB
8/21 Doc ID 17109 Rev 4
EMIF06-SD02F3 Passive integration and low pass filter

Table 7. Components

Symbol Parameter Test conditions
= 3.4 V, *.dir = V
C
in-A
C
in-B
C
EMIF
R1, R2, R3, R4,
R5, R6
R
line
Input capacitance for A side
Input capacitance for B side
Capacitance seen on B side from EMIF filter
EMIF resistors
(2)
Line resistance at 20 mA 40 50 60 Ω
R10, R11, R12 EMIF resistors
R9 EMIF resistor
R7 EMIF resistor
R13 EMIF resistor
R14 EMIF resistor
R
EN
Resistor
(4)
(3)
(4)
(4)
(4)
(4)
(4)
V
bat
F = 1 MHz, Vdc = 0 V, ±30 mV, VAC = 30mV
= 3.4 V, *.dir = GND, V
V
bat
F = 1 MHz, Vdc = 0 V, ±30 mV, VAC = 30mV
Tj = 25 °C 40 Ω
Tj = 25 °C 49 70 91 kΩ
Tj = 25 °C 10.5 15 19.5 kΩ
Tj = 25 °C 329 470 611 kΩ
Tj = 25 °C 70 100 130 kΩ
Tj = 25 °C 70 100 130 kΩ
Tj = 25 °C 500 kΩ
1. See Note: on page 3 for definition of collective names of pins, for example *.dir
2. These values are guaranteed by design and statistical process control.
3. 20% tolerance in resistance value
4. 30% tolerance in resistance value
Figure 5. Frequency response with level
shifters internally bypassed
(1)
Figure 6. Crosstalk response with level
EN
= V
ccA
EN
(1)
Min. Typ. Max. Unit
535pF
= V
ccA
25 35 pF
15 pF
shifters internally bypassed
(1)
dB
0.00
- 5.00
- 10.00
- 15.00
- 20.00
- 25.00
F (Hz)
- 30.00
100.0k 1.0M 10.0M 100.0M 1.0G
a1- a5 c1 - c5 d1- d5 e1- e5
f/Hz
1. Measurement in 50 Ω environment
b1- b5
dB
0.00
- 20.00
- 40.00
- 60.00
- 80.00
- 100.00
F (Hz)
- 120.00
100.0k 1.0M 10.0M 100.0M 1.0G
a1- b5 c1 - d5 d1- e5
Doc ID 17109 Rev 4 9/21
Data transmission EMIF06-SD02F3

4 Data transmission

All values in the tables below are guaranteed across the operating temperature and voltage range unless otherwise specified.

Table 8. DC voltage levels on host side

Symbol Parameter
V
IHA
V
ILA
V
OHA
V
OLA

Table 9. DC voltage levels on SD side

High level input voltage 0.65 x V
Low level input voltage 0 0 0.35 x V
High level output voltage
Low level output voltage Iol = 7 mA 0 0.45 V
Symbol Parameter
V
V
V
OHB
V
OLB
1. V

Table 10. DC current levels

High level input voltage 0.7 x V
IHB
Low level input voltage 0 0.3 x V
ILB
High level output voltage Ioh = -8 mA V
Low voltage output voltage Iol = 8 mA 0 0.7 V
is defined in power supply block.
ccB
Symbol Parameter Test conditions
I
I
LSD
I
SCH
I
SCSD
1. See Note: on page 3 for definition of collective names of pins, for example *.dir
Leakage current on
LH
host pin
Leakage current on SD pin
Short circuit current on host side
Short circuit current on SD side
VEN = *.dir = V ViA = V
V
bat
V
CMD
V
Dat3
SD input = H, host = 0 V SD input = 0 V, host = V *.dir = 0 V, V
Host input = H, SD = 0 V Host input= L, SD = V *.dir = V
Tes t
conditions
I
= -6 mA V
oh
Tes t
conditions
ccA
or GND, V
ccA
= 3.4 V, V
= V
Dat0
CLK.h
= V
= *.dir = GND
= 3.4 V, Tj = 25 °C
bat
= 1.8 V, V
ccA
ccA
= 1.92 V,
= 3.4 V
bat
= V
ccA
= V
Dat1
ccA
ccB
= 3.4 V
bat
Min. Typ. Max. Unit
ccA
- 0.45 V
Min. Typ. Max. Unit
(1)
ccB
(1)
- 0.7 2.9 V
ccB
(1)
,
= V
Dat2
ccB
= 1.8 V
, Tj = 25 °C
V
ccA
ccA
V
ccB
ccB
Min. Typ. Max. Unit
25 mA
60 mA
V
V
V
(1)
V
A
A
10/21 Doc ID 17109 Rev 4
EMIF06-SD02F3 Data transmission
Figure 7. Symbol definitions of t
INPUT
t
plh
70%
OUTPUT

Table 11. AC characteristics

20%
50%
t
r
50%50%
plh
, t
, tr and tf for AC characteristics in Tab l e 11
phl
VorV
ccA ccB
t
phl
70%
0V
VorV
ccA ccB
50%
20%
t
f
0V
Symbol Parameter Test conditions Min Typ Max Unit
t
t
t
t
Propagation delay hl from host to SD
phl
Propagation delay lh from host to SD 3.5 7
plh
Propagation delay hl from SD to host
phl
Propagation delay lh from SD to host 3 7
plh
Section 4.1
Section 4.2
3.5 7
37
Rise time from host to SD Section 4.1 1.5 3
t
r
Rise time from SD to host Section 4.2 0.5 3
Fall time from host to SD Section 4.1 1.9 3
t
f
Fall time from SD to host Section 4.2 0.5 3
t
skew
t
skew.ftskew
t
p_clkf
t
r_clkf
t
f_clkf
Delay differences from host to SD Section 4.1 Section 4.3 -1.5 0 1.5 ns
delay from SD to host Section 4.2 Section 4.4 -1.5 0 1.5 ns
Propagation delay for CLK feedback 6.5 14 ns
Rise time for CLK feedback Section 4.2 0.5 3 ns
Fall time for CLK feedback Section 4.2 0.5 3 ns
ns
ns
ns
ns

4.1 Test circuit from host to SD

Test circuit from host to SD is shown in Figure 8. Timings are measured for the whole line cell (shifter + EMI + ESD) on an external load C
= 15 pF (board capacitance 5 pF + SD card capacitance 10 pF).
sd

4.2 Test circuit from SD to host

Test circuit from SD to host is shown in Figure 9. Timings are measured for the whole line cell (shifter + EMI + ESD) on an external load C
Figure 8. Test circuit from host to SD Figure 9. Test circuit from SD to host
HOST
SD
Csd=15 pF
= 5 pF (board capacitance + host capacitance).
host
C
host
HOST
= 5 pF
SD
Doc ID 17109 Rev 4 11/21
Data transmission EMIF06-SD02F3
4.3 Measurement of t
Figure 10. Example of measurement of t
skew
CPU
CPU
t
skew
50%
50%
50%
(SD to host) from rising edge CLK.h
(SD to host) from rising edge CLK.h
skew
CLK-B
CLK.h
CLK.f
DAT.dir
= « 1 »
= « 1 »
DAT.h
= Tp(CLK.h
Tp(Datx.h
50%
Tp(CLK.h
CLK
Datx
CLK
EMIF06-SD02F3
EMIF06-SD02F3
-
B)
-
B)
-
B)
CLK-B
Dat-B
- Tp(Datx.h
15pF
15pF15pF
15pF
15pF15pF
MiniSD card
MiniSD card
Datx
V
ccA
0V
V
ccB
0V
V
ccA
0V
V
ccB
0V
-
B)
Dat.h
Dat
x-
CLK.h
CLK
B
-
B
4.4 Measurement of t
Figure 11. Example of measurement of t
Tp (
t
=
skew.f
CLK.h
50%
skew.f
5pF
5pF
CPU
50%
50%
(read mode) from rising edge CLK.h
(read mode) from rising edge CLK.h
skew.f
Datx.h.h)
CLK.
CLK-B
15pF
Dat-B
MiniSD card
V
ccA
CLK.
h
0V
V
ccB
CLK
0V V
ccB
Datx-B
0V
V
ccA
Datx
)
f
0V
V
ccA
CLK.
0V
f
CLK.h
CLK.f
DAT.dir
DAT.h
50%
delay
= « 0 »
EMIF06-SD02F3
)
CLK.
f
–[Tp(CLK.h CLK -B) + Tp(Datx-B Datx.h)]
Tp(CLK.h
50%
CLK--BB)
Tp(Datx-B
Tp (
CLK.h
Datx.h = Dat0.h, Dat1.h, Dat2.h, Dat3.h, CMD.h
Datx-B = Dat0-B, Dat1-B, Dat2-B, Dat3-B, CMD.B
12/21 Doc ID 17109 Rev 4
EMIF06-SD02F3 Low drop out voltage regulator

5 Low drop out voltage regulator

Figure 12. Low drop out voltage regulator schematic

VBAT
V
BAT
BAT
BAT
bat
CBAT
C
bat
Power
Power
Management
Management
ASIC
ASIC
VCCA
V
ccA
CVCCA
C
VccA
Base Band
Base Band
ASIC
ASIC
GND
Gnd
EN
EN
EN
VEN
V
EN
2kV
2kV
R
EN
2 kV
500 kΩ Req= 135 Ω
EMIF06-SD02F3 (LDO part only)
EMIF06-SD02F3 (LDO part only)
VCCA
VCCA
V
ccA
UVLO
UVLO
UVLO
TSD
TSD
TSD
V
VCCA VBAT
VCCA VBAT
ccAVbat
Level
LS
LS
Shifter
LOGIC
LOGIC
LOGIC
vref
vref
V
VBAT
VBAT
V
bat
ref
+
+
+
A
A
A
-
-
-
R,C
R,C
R,C
GND
GND
Gnd
2kV
2kV
2 kV
VCCB
VCCB
V
ccB
15kV
15kV
15 kV
VCCB
V
COUT
C
out
ccB
Mini-SD
Mini-SD
Card
Card
Doc ID 17109 Rev 4 13/21
Low drop out voltage regulator EMIF06-SD02F3
Table 12. Static parameters, VEN = V
*.dir = 0, CLK.h = V
unless otherwise specified, level shifter disactivated,
ccA
, all other pins floating
ccA
Symbol Parameter Test conditions Min. Typ. Max. Unit
= 3.4 V
V
V
Regulated output
out
voltage (V
ccB
LiR Line regulation
LdR Load regulation
V
I
TSD
Dropout voltage
DO
Short circuit current
SC
limitation
Thermal shutdown temperature
bat
I
= 100 mA
out
= 25 °C
T
j
= 3.4 V
V
bat
= 100 mA
I
)
out
= -30 to 125 °C
T
j
= 3.1 to 5 V
V
bat
= 0.1 to 200 mA
I
out
Tj = -30 to 125 °C
V
= 3.4 to 5 V (Section 5.1)
bat
I
= 100 mA
out
= 25 °C
T
j
V
= 3.4 V
bat
I
= 1 to 200 mA (Section 5.2)
out
= 25 °C
T
j
I
= 50 mA 25 37 mV
(nom) - 100 mV
V
out
(Section 5.3)
= -30 to 85 °C
T
j
= 5 V
V
bat
= 0 V
V
out
= 25 °C
T
j
out
I
= 100 mA 50 75 mV
out
= 200 mA 100 150 mV
I
out
Shutdown (Temp ↑)
V
= 3.4 V
bat
Reset (Temp ↓)
2.81
(-3%)
2.81
(-3%)
2.75
(-5%)
2.90
2.99
(+3%)
2.99
(+3%)
3.05
(+5%)
320mV
50 100 mV
500 mA
150 °C
130 °C
Hysteresis 20 °C
V
V
V
UVLO Under voltage lockout T
= -30 to 125 °C
j
14/21 Doc ID 17109 Rev 4
Shutdown (V
↓)
bat
Reset
↑)
(V
bat
2.3 2.5 2.7 V
2.35 2.55 2.75 V
Hysteresis 50 mV
EMIF06-SD02F3 Low drop out voltage regulator
Table 13. Dynamic parameters (VEN = V
unless otherwise specified)
ccA
Symbol Parameter Test conditions Min. Typ. Max. Unit
V
LiTr Line transient peak voltage
LdTr Load transient peak voltage
PSRR Power supply rejection ratio
start
stop
Settling time
Discharge time
T
T
= 3.4 V ↑↓ 4 V, ttr = 30 µs, I
bat
= 25 °C (Section 5.1)
T
j
= 2.2 µF, ESR = 5 mΩ
C
out
I
= 1 mA ↑↓ 200 mA, ttr = 10 µs, V
out
= 25 °C (Section 5.2)
T
j
C
= 2.2 µF, ESR = 5 mΩ
out
V
= 3.4 V
bat
I
= 100 mA
out
= 25 °C
T
j
= 2.2 µF, ESR = 5 mΩ
C
out
V
95% Nom, V
out
= -30 °C to 125 °C
T
j
= 2.2 µF, Enable L → H
C
out
V
10% Nom, V
out
= 5 V, I
bat
= 3.4 V, I
bat
Tj = 25 °C
= 2.2 µF, Enable H → L
C
out
= 200 mA
out
F = 1 kHz
F = 10 kHz
= 200 mA
out
= 1 mA
out
= 3.4 V
bat
4.2 mV
9mV
45 db
35 db
30 200 µs
600 µs
Doc ID 17109 Rev 4 15/21
Low drop out voltage regulator EMIF06-SD02F3

5.1 Line regulation and transient line regulation

The line regulation (LiR) is a static variable that indicates the change in the output voltage of the voltage controller ΔV voltage. By contrast the line transient response (LiTr) represents dynamic peak value to be observed during the change in input voltage.
Thermal effects due to changes in the junction temperature are circumvented with pulsed voltage during the test and are to be taken into account separately.
(at constant load) when there is a change ΔV
out
at the input
bat
Figure 13 shows the boundary conditions for t
rise
, t
fall
, and ΔV
to be taken as the basis of
bat
the measurement of the line transient response without additional decoupling of the supply voltage by a buffer capacity C only in the case of decoupling of the supply voltage with such a capacity C which the values for t
rise
and t
. The values defined in the specification apply, however,
bat
are influenced to some extent.
fall
, as a result of
bat

Figure 13. Line regulation and transient line regulation

Vbat
VbatH
VbatL
Vout
Vbat
Static and dynamic line regulation
t
= t
rise
tr
Vrise
Line Regulation: LiR=f(VbatH,VbatL) Line Transient: LiTr = MAX(
Transient line regulation measurement
4V
Vrise, Vfall) –LiR(VbatH,VbatL)
Typcial values at 25° C
X: 0.2 ms/div Y: 100 mV/div
LiR
t
= t
fall
Vfall
Time
tr
Time
3.4 V
Vout
Line regulation (LiR) and Line transient (LiTr)
versus temperature (typical values
5
4
3
2
1
0
-10 25 85
X: 0.2 ms/div Y: 4 mV/div
16/21 Doc ID 17109 Rev 4
LiR (mV) LiTr (mV)
Temperature (°c)
EMIF06-SD02F3 Low drop out voltage regulator

5.2 Load regulation and transient load regulation

The load regulation (LdR) is a static variable that indicates the change in output voltage of the voltage controllor ΔV current ΔI
. By contrast the load transient response (LdTr) represents the dynamic peak
out
value to be observed during load variation.
Thermal effects due to changes in the junction temperature are circumvented by testing with pulsed load and are to be taken into account separately.
(at constant input voltage) in the event of a change in the load
out
The figure shows the boundary conditions for t
rise
, t
, and ΔI
fall
the measurement of the load transient response.

Figure 14. Load regulation and transient load regulation

Iout
IoutH
IoutL
Vout
Load Regulation: LdR=f(IoutH,IoutL) Load Transient: LdTr = MAX(
Iout
Static and dynamic load regulation
t
fall
= t
tr
Vrise
LdR
Vrise, Vfall) –LdR(IoutH,IoutL)
t
rise
Transient load regulation measurement
(typical values at 25° C)
to be taken as the basis for
out
= t
tr
Vfall
X: 50µs/div Y: 50mA/div
Time
Time
Vccb
Load regulation (LdR) and Load transient (LdTr)
60
50
40
30
20
10
0
versus temperature (typical values
-10 25 85
Doc ID 17109 Rev 4 17/21
X: 50µs/div Y: 10mV/div
LdR (mV) LdTr (mV)
Temperature (°c)
Ordering information scheme EMIF06-SD02F3

5.3 Dropout definition

The dropout voltage (VDO) is measured by decreasing the input voltage till the output voltage will drop by 100 mV compared to the output voltage measured at the specified minimum supply voltage (3.1 V).
Worst case for dropout is maximum die temperature and maximum current load. This is done statically.

Figure 15. Dropout definition

V(Vbat)
V(Vout)
3.100e+00
2.888e+00
VDO
2.772e+00
2.888e+00
-2.122e-01

6 Ordering information scheme

Figure 16. Ordering information scheme

EMI filter
Number of lines
Information
x = resistance value (ohm) z = capacitance value / 10 (pF) or 2 letters = application 2 digits = version
2.873e+00
100 mV
3.100e+00 Base
EMIF yy - xx zz F3
Package
F = Flip Chip 3 = Lead-free, pitch = 400 µm
18/21 Doc ID 17109 Rev 4
EMIF06-SD02F3 Package information

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK
®
packages, depending on their level of environmental compliance. ECOPACK®
®
is an ST trademark.

Figure 17. Flip Chip dimensions

400 µm ± 40
475 µm
400 µm ± 40
2.55 mm ± 30 µm
475 µm
255 µm± 40
2.55 mm ± 30 µm

Figure 18. Footprint recommendations Figure 19. Marking

605 µm ± 55
Copper pad Diameter: 220µm recommended 260µm maximum
Solder mask opening: 300µm minimum
Solder stencil opening : 220µm recommended
Dot, ST logo
ECOPACK status xx = marking z = manufacturing location yww = datecode
(y = year
ww = week)
xyxwz
w
Doc ID 17109 Rev 4 19/21
Ordering information EMIF06-SD02F3

Figure 20. Flip Chip tape and reel specifications

Dot identifying Pin A1 location
2.0 ± 0.05
0.20 ± 0.02
2.74
8.0 ± 0.3
0.69 ± 0.05
All dimensions in mm

8 Ordering information

ST
ST
yww
yww
4.0 ± 0.1
E
E
xxz
xxz
ST
ST
yww
yww
xxz
xxz
2.74
User direction of unreeling
E
E
4.0 ± 0.1
Ø 1.55 ± 0.1
E
E
ST
ST
xxz
xxz
yww
yww
1.75 ± 0.1
3.5 ± 0.1

Table 14. Ordering information

Order code Marking Package Weight Base qty Delivery mode
EMIF06-SD02F3 HF Flip Chip 7.45 mg 5000 Tape and reel (7”)
Note: More information is available in the application note :
AN2348 :"Flip Chip : Package description and recommendations for use" AN1751 : EMI Filters: Recommendations and measurements

9 Revision history

Table 15. Document revision history

Date Revision Changes
05-Feb-2007 1 First issue
26-Feb-2007 2 Last corrections.
19-Sep-2007 3 Updated graphic in Section 5.1.
10-Feb-2010 4 Updated pocket depth in Figure 20.
20/21 Doc ID 17109 Rev 4
EMIF06-SD02F3
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 17109 Rev 4 21/21
Loading...