Features
BTA20
20 A Snubberless™ Triacs
Datasheet production data
■ I
■ V
■ I
= 20 A
T(RMS)
DRM
GT (Q1)
, V
= 600 and 700 V
RRM
(max) = 35 and 50 mA
Description
The BTA20 Triacs use high performance glass
passivated chip technology. The Snubberless
concept offers suppression of the RC network and
is suitable for applications such as phase control
and static switching on inductive or resistive load.
Thanks to their clip assembly technique, the
BTA20 Triacs provide a superior performance in
surge current handling capabilities.
By using an internal ceramic pad, the BTA series
provides voltage insulated tab (rated at
2500 V rms) complying with UL standards (File
ref.: E81734).
TM: Snubberless is a trademark of STMicroelectronics.
July 2012 Doc ID 2932 Rev 3 1/8
This is information on a product in full production.
www.st.com
8
Characteristics BTA20
1 Characteristics
Table 1. Absolute maximum ratings
Symbol Parameter Value Unit
I
T(RMS)
I
TSM
dI/dt
V
DSM
V
RSM
I
GM
V
P
G(AV)
T
Table 2. Electrical characteristics (Tj = 25 °C, unless otherwise specified)
On-state rms current (full sine wave) Tc = 70 °C 20 A
Non repetitive surge peak on-state
current (full cycle, Tj initial = 25°C)
²
tI²t Value for fusing tp = 10 ms 200 A²s
I
Critical rate of rise of on-state current
= 2 x IGT, tr 100 ns
I
G
,
Non repetitive peak off-state voltage tp = 10 ms Tj = 25 °C
F = 50 Hz t = 10 ms 210
F = 60 Hz t = 8.3 ms 200
Repetitive
F = 50 Hz
T
= 125 °C
j
50
Non repetitive 100
V
DSM/VRSM
100
Peak gate current tp = 20 µs Tj = 125 °C 4 A
Peak positive gate voltage tp = 20 µs 16 V
GM
Average gate power dissipation Tj = 125 °C 1 W
Storage junction temperature range - 40 to + 150
stg
Operating junction temperature range - 40 to + 125
T
j
BTA20
Symbol Test conditions Quadrant
BW CW
+
A
A/µs
V
°C
Unit
(1)
IGT
VD = 12 V, RL = 33
V
GT
V
GD
I
H
I
dV/dt
(dV/dt)c
1. Minimum IGT is guaranteed at 5% of IGT max.
2. For both polarities of A2 referenced to A1.
VD = V
DRM, RL
(2)
IT = 500 mA, gate open Max. 75 50 mA
IG = 1.2 I
L
(2)
VD = 67% V
(2)
(dI/dt)c = 20 A/ms Tj = 125 °C
= 3.3 kTj = 125 °C ALL Min. 0.2 V
GT
gate open Tj = 125 °C
DRM,
2/8 Doc ID 2932 Rev 3
ALL
Min. 2 1
Max. 50 35
ALL Max. 1.5 V
I - III
50 -
Ty p.
I - II - III Max. - 80
Ty p. 7 5 0 5 0 0
Min. 500 250
Typ. 36 22
Min. 18 11
mA
mAII 90 -
V/µs
V/µs
BTA20 Characteristics
0 5 10 15 20
0
10
5
15
20
25
30
P(W)
I (A)
T(RMS)
180°
α
α
α = 180°
α = 120°
α = 90°
α = 30°
α = 60°
0 20 40 60 80 100 120
P(W)
125
85
75
65
95
115
105
T (°C)
case
R = 1.5°C/W
th
R = 1°C/W
th
R = 0.5°C/W
th
R = 0°C/W
th
T (°C)
amb
0
10
5
15
20
25
30
(Tamb andTcase) for different thermal
resistances heatsink + contact
0 10 20 30 40 50 60 70 80 90 100 110 120 130
0
5
10
15
25
20
I (A)
T(RMS)
T (°C)
C
α = 180°
t (s)
p
1.E-3 1.E-2 1.E-1 1.E+0 1.E+1 1.E+2 5.E+2
0.01
0.1
1
K=[Z /R
th th
]
Z
th(j-c)
Z
th(j-a)
Table 3. Static characteristics
Symbol Parameter Value Unit
(1)
V
TM
I
DRM
I
RRM
ITM = 28 A, tp = 380 µs
V
= V
DRM
RRM
1. For both polarities of A2 referenced to A1.
Table 4. Thermal resistances
= 125 °C
T
j
Tj = 125 °C
Tj = 125 °C
Max. 1.70 V
10 µA
Max.
3mA
Symbol Parameter Value Unit
R
Junction to case for AC 2.1
th(j-c)
Junction to case for DC 2.8
th(j-c)
R
th(j-a)
Junction to ambient 60
Figure 1. Maximum power dissipation versus
on-state rms current (full cycle)
Figure 2. Correlation between maximum rms
power dissipation and maximum
°C/WR
allowable temperatures
Figure 3. On-state rms current versus case
temperature (full cycle)
Figure 4. Relative variation of thermal
impedance versus pulse duration
Doc ID 2932 Rev 3 3/8