Automotive small signal Schottky diodes
Features
■ Low conduction and reverse losses
■ Negligible switching losses
■ Low forward and reverse recovery times
■ Extremely fast switching
■ Surface mount device
■ Low capacitance diode
■ ECOPACK
■ AEC-Q101 qualified
Description
The BAT54 series uses 40 V Schottky barrier
diodes packaged in SOT-23, SOT-323. These
devices are suitable for automotive application.
®
2 compliant component
SOT-23
SOT-323
BAT54-Y
BAT54FILMY
(Single)
BAT54SFILMY
(Series)
BAT54WFILMY
(Single)
BAT54CWFILMY
(Common cathode)
BAT54AWFILMY
(Common anode)
Configurations in top view
Table 1. Device summary
Symbol Value
I
F
V
RRM
(typ) 7 pF
C
(max) 150 °C
T
j
300 mA
40 V
November 2011 Doc ID 17696 Rev 1 1/9
www.st.com
9
Characteristics BAT54-Y
1 Characteristics
Table 2. Absolute ratings (limiting values at Tj = 25 °C, unless otherwise specified)
Symbol Parameter Value Unit
V
I
T
Table 3. Thermal parameters
Repetitive peak reverse voltage 40 V
RRM
Continuous forward current 300 mA
I
F
Surge non repetitive forward current tp = 10 ms sinusoidal 1 A
FSM
Storage temperature range -65 to +150 °C
stg
Operating junction temperature range -40 to +150 °C
T
j
T
Maximum soldering temperature 260 °C
L
Symbol Parameter Value Unit
R
1. Epoxy printed circuit board with recommended pad layout
Table 4. Static electrical characteristics
Junction to ambient
th(j-a)
(1)
SOT-23 500 °C/W
SOT-323 550 °C/W
Symbol Parameter Test conditions Min. Typ. Max. Unit
= 25 °C
T
Reverse leakage
(1)
I
R
current
j
= 100 °C 100
T
j
VR = 30 V
1
IF = 0.1 mA 240
I
= 1 mA 320
F
(2)
V
1. Pulse test: tp = 5 ms, δ < 2 %
2. Pulse test: tp = 380 µs, δ < 2 %
Table 5. Dynamic characteristics
Symbol Parameter
Forward voltage drop Tj = 25 °C
F
Test conditions
= 10 mA 400
I
F
= 30 mA 500
I
F
I
= 100 mA 900
F
Min. Typ. Max. Unit
µA
mV
Diode
C
t
rr
capacitance
Reverse
recovery time
V
= 1 V, F = 1 MHz 7 10 pF
R
IF = 10 mA, IR = 10 mA, Tj = 25 °C
= 1 mA, RL = 100 Ω
I
rr
2/9 Doc ID 17696 Rev 1
5ns
BAT54-Y Characteristics
Figure 1. Average forward power dissipation
versus average forward current
P(W)
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
δ=0.05
δ=0.2
δ=0.1
I
F(AV)
δ=0.5
(A)
δ
=tp/T
δ=1
T
tp
Figure 3. Reverse leakage current versus
reverse applied voltage
(typical values)
IR(µA)
1.E+02
Tj=100°C
1.E+01
1.E+00
1.E-01
1.E-02
0 5 10 15 20 25 30
Tj=50°C
Tj=25°C
VR(V)
Figure 2. Average forward current versus
ambient temperature (δ = 1)
I
(A)
F(AV)
0.35
0.30
0.25
0.20
0.15
δ
=tp/T
T
tp
T
(°C)
amb
0.10
0.05
0.00
0 25 50 75 100 125 150
Figure 4. Reverse leakage current versus
junction temperature
IR[Tj]/IR[Tj=25°C]
1.E+04
VR=3V
1.E+03
1.E+02
1.E+01
1.E+00
1.E-01
0 25 50 75 100 125 150
Tj(°C)
Figure 5. Junction capacitance versus
reverse applied voltage
(typical values)
C(pF)
10
1
1 10 100
VR(V)
V
F=1MHz
OSC
Tj=25°C
=30mV
Figure 6. Forward voltage drop versus
forward current (typical values)
IFM(A)
1.E+00
RMS
1.E-01
1.E-02
1.E-03
1.E-04
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
Doc ID 17696 Rev 1 3/9
Tj=100°CTj=100°C
Tj=50°CTj=50°C
Tj=25°CTj=25°C
Tj=-40 °CTj=-40 °C
VFM(V)