ST BAS70 User Manual

BAS70
Low capacitance, low series inductance and resistance Schottky diodes
Features
Very low conduction losses
Negligible switching losses
Low forward and reverse recovery times
Low capacitance diode
Low resistance and inductance
Description
The BAS70 series uses 70 V Schottky barrier diodes packaged in SOD-123, SOD-323, SOD­523, SOT-23, SOT-323, SOT-323-6L or SOT-666. These diodes are specially suited for signal detection and temperature compensation in RF applications.
SOD-123
SOD-323
SOD-523
SOT-23
SOT-323
BAS70ZFILM (Single)
BAS70JFILM (Single)
BAS70KFILM (Single)
BAS70FILM (Single)
BAS70-04FILM (Series)
BAS70-05FILM (Common cathode)
BAS70-06FILM (Common anode)
BAS70WFILM (Single)
BAS70-04WFILM (Series)
BAS70-05WFILM (Common cathode)
BAS70-06WFILM (Common anode)
BAS70-08SFILM (3 parallel diodes)

Table 1. Device summary

Symbol Value
I
F
V
RRM
(max) 2 pF
C
(max) 150 °C
T
j
70 mA
70 V
SOT-323-6L
SOT-666
BAS70-07P6FILM (2 parallel diodes)
BAS70-09P6FILM (2 opposite diodes)
Configurations in top view
October 2009 Doc ID 12563 Rev 2 1/14
www.st.com
14
Characteristics BAS70

1 Characteristics

Table 2. Absolute ratings (limiting values at Tj = 25 °C, unless otherwise specified)
Symbol Parameter Value Unit
V
I
T

Table 3. Thermal parameters

Repetitive peak reverse voltage 70 V
RRM
I
Continuous forward current 70 mA
F
Surge non repetitive forward current tp = 10 ms Sinusoidal 1 A
FSM
Storage temperature range - 65 to +150 °C
stg
T
Maximum operating junction temperature 150 °C
j
Maximum soldering temperature 260 °C
T
L
Symbol Parameter Value Unit
SOD-123, SOT-23 500
R
Junction to ambient
th(j-a)
(1)
°C/WSOT-323, SOD-323 550
SOD-523, SOT-666 600
1. Epoxy printed circuit board with recommended pad layout

Table 4. Static electrical characteristics

Symbol Parameter Test conditions Min. Typ. Max. Unit
V
= 50 V 100 nA
(1)
I
V
1. Pulse test: tp = 5 ms, δ < 2 %
2. Pulse test: tp = 380 µs, δ < 2 %

Table 5. Dynamic characteristics

Symbol Parameter
Reverse leakage current Tj = 25 °C
R
(2)
Forward voltage drop Tj = 25 °C
F
Test conditions
R
V
= 70 V 10
R
I
= 1 mA 410
F
= 10 mA 750
F
I
= 15 mA 1000
F
Min. Typ. Max. Unit
µA
mVI
C Diode capacitance V
Differential forward
R
F
resistance
L
Series inductance 1.5 nH
S
= 0 V, F = 1 MHz 2 pF
R
I
= 10 mA, F = 100 MHz 30 Ω
F
2/14 Doc ID 12563 Rev 2
BAS70 Characteristics
Figure 1. Average forward power dissipation
versus average forward current
P(W)
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
d=0.05
d=0.1
d=0.2
d=0.5
d=1
T
tp
=tp/T
I
(A)
F(AV)
d
Figure 3. Reverse leakage current versus
reverse applied voltage (typical values)
IR(µA)
1.E+02
1.E+01
1.E+00
1.E-01
1.E-02
1.E-03
0 10203040506070
Tj=150 °C
Tj=85 °C
Tj=25 °C
VR(V)
Figure 2. Average forward current versus
ambient temperature (δ = 1)
I
(A)
F(AV)
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.00
0 25 50 75 100 125 150
d
=tp/T
T
tp
T
(°C)
amb
Figure 4. Reverse leakage current versus
junction temperature (typical values)
IR(µA)
1.E+02
VR=50 V
1.E+01
1.E+00
1.E-01
1.E-02
0 25 50 75 100 125 150
Tj(°C)
Figure 5. Junction capacitance versus
reverse applied voltage (typical values)
C(pF)
10.0
1.0
0.1
0.1 1.0 10.0 100.0
VR(V)
V
OSC
F=1 MHz
=30 mV
Tj=25 °C
Figure 6. Forward voltage drop versus
forward current (typical values)
IFM(mA)
1.E+02
RMS
Doc ID 12563 Rev 2 3/14
Tj=150 °C
1.E+01
Tj=-40 °CTj=-40 °C
1.E+00
Tj=85°CTj=85°C
1.E-01
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
VFM(V)
Characteristics BAS70
2
Figure 7. Forward voltage drop versus
forward current (typical values)
IFM(mA)
1.E+02
1.E+01
1.E+00
1.E-01
Tj=125 °C
Tj=25 °C
VFM(V)
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Figure 9. Relative variation of thermal
impedance junction to ambient versus pulse duration
Z
(°C/W)
th(j-a)
1000
printed circuit board, epoxy FR4 e = 35 µm SOT-323-6L
100
CU
Single pulse SOT-323-6L
Figure 8. Differential forward resistance
versus forward current (typical values)
R()FΩ
1000
100
10
0.1 1.0 10.0
IF(mA)
F=100 MHz
Tj=25 °C
Figure 10. Relative variation of thermal
impedance junction to ambient versus pulse duration
Z
th(j-a)/Rth(j-a)
1.00
Single pulse
SOT-23
Aluminesubstrate
0.10
10 x 8 x 0.5 mm
10
1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
tP(s)
Figure 11. Relative variation of thermal
impedance junction to ambient versus pulse duration
Z
th(j-a)/Rth(j-a)
1.00
Single pulse
SOD-323
EpoxyFR4
S
=2.25 mm²
CU
e
=35 µm
0.10
printed circuit board, epoxy FR4 e = 35 µm SOD-323
0.01
1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
CU
CU
tP(s)
alluminium oxide substrate 10 x 8 x 0.5 mm SOT-23
0.01
1.E-02 1.E-01 1.E+00 1.E+01 1.E+0
Figure 12. Relative variation of thermal
impedance junction to ambient versus pulse duration
Z
th(j-a)/Rth(j-a)
1.00
Single pulse
SOT-666
Epoxy FR4
=35 µm
e
0.10
printed circuit board, epoxy FR4 e = 35 µm SOT-666
0.01
1.E-03 1.E-02 1.E-01 1.E+00 1.E+01
CU
CU
tP(s)
tP(s)
4/14 Doc ID 12563 Rev 2
BAS70 Ordering information scheme
Figure 13. Relative variation of thermal
Figure 14. Thermal impedance junction to impedance junction to ambient versus pulse duration
Z
th(j-a)/Rth(j-a)
1.00
Single pulse
SOD-523
EpoxyFR4 e
=35 µm
0.10
0.01
printed circuit board, epoxy FR4 e = 35 µm SOD-523
0.00
1.E-03 1.E-02 1.E-01 1.E+00 1.E+01
CU
CU
tP(s)
R
th(j-a)
600
550
500
450
400
350
300
0 5 10 15 20 25 30 35 40 45 50

2 Ordering information scheme

Figure 15. Ordering information scheme

BAS70 xx xx FILM
ambient versus copper surface under each lead
(°C/W)
printed circuit board, epoxy FR4 e = 35 µm SOD-323
CU
SCU(mm²)
Signal Schottky diodes
V=70V
RRM
Configuration
No letter = Single diode 04 = Series diodes 05 = Common cathode 06 = Common anode 07 = 2 Parallel diodes 08 = 3 Parallel diodes 09 = 2 Opposite diodes
Package
Blank = SOT-23 J = SOD-323 W = SOT-323 K = SOD-523 P6 = SOT-666 S = SOT323-6L Z = SOD-123
Packing
FILM = Tape and reel
Doc ID 12563 Rev 2 5/14
Loading...
+ 9 hidden pages