ST AN828 Application note

ST AN828 Application note

 

AN828

®

APPLICATION NOTE

 

 

 

1500W - 440V POWER FACTOR CORRECTOR

 

PREREGULATOR

 

 

The application here described has been tailored to supply a three phase inverter for motion control (see fig.1). To reduce the current in the switches of the inverter, the output voltage of the power factor has been held quite high.

The target specification of the PFC application is:

Mains supply Vin(rms)

= 220Vac ±20%

 

(f = 50/60Hz)

Output Voltage Vout

= 440Vdc

Output Power Pout

= 1500W

A switching frequency of 60kHz has been chosen as a good compromise between requirements of small size magnetics and low switching losses.

For this application a full isolated ISOTOP(TM) STE30NA50-DK has been used.

This module is especially intended for boost applications and consists off the integration of a low RDS/500V Mosfet with a TURBOSWITCH(TM) diode.

The use of the module allows a compact and ef-

Figure 1: Schematic Diagram

fective solution in terms of layout and power dissipation. The output stage of the L4981A/B is capable of driving directly the module without the aid of a buffer stage. The L4981A controller is supplied by the auxiliary of the boost inductor, a Graetz bridge and a simple resistor for the startup phase. The Output capacitor filter has been realized connecting in parallel four tap in "series" configuration. This solution allows the use standard parts, in terms of the rated voltage, resulting easier to be implemented in comparison with a "single" configuration. To be noted that the high frequency filter (C1 + C2) has been split in two parts. In this way it is possible to held a low value capacitor (C2) connected to the output of the rectifier bridge, minimising the harmonic distortion (introduced by the rectified DC contents). On the other hand, the capacitor (C1) connected to the AC side of the bridge, performs most of the high frequency filter function without introducing DC content.

The schematic circuit is shown in fig.1

 

 

 

 

 

 

T

 

C2

 

 

 

 

 

 

220nF

 

 

 

 

-

 

 

R4

 

R3

 

 

FUSE

 

75K

 

 

1M

 

 

 

10A/250V

 

1W

 

 

 

 

+

 

 

 

 

 

R5

 

 

BRIDGE

 

 

 

 

 

 

 

47

 

 

+

KBPC25-04

 

 

 

 

 

 

500mW

 

C1

 

 

 

 

 

Vi

2.2μF

 

 

 

 

 

250V

 

 

 

 

 

 

-

 

4

 

19

 

 

 

 

 

 

176VAC/265VAC

 

1

 

 

 

 

 

 

7

 

 

 

 

 

 

6

 

 

 

 

 

 

11

 

 

 

 

 

R1

2

8

5

 

 

 

5.1K

 

 

 

 

 

 

1%

 

 

 

 

 

 

 

 

 

R6 100K

C3

 

 

 

 

 

5%

330nF

 

 

 

 

 

 

 

 

R2

 

 

R8

R9

 

 

220

 

 

3.9K

3.9K

 

 

1%

 

 

5%

5%

RS 10mΩ

Transformer

Core: THOMSON - CSF GER55x28x25

Gap: 3.1mm for a total primary inductance of 440μH

Primary: 42 turns of 8x0.5mm (#24 AWG)

Secondary: 4 turns of #27 AWG (0.15mm)

 

 

 

 

 

STE30NA50-DK

 

 

 

D2

 

 

 

 

R14

R16

 

4 x

 

 

 

 

 

 

 

 

 

820K

909K

1N4150

 

 

 

 

 

 

 

 

1%

1%

Dz 18V 500mW

 

C6 330nF

 

 

 

 

 

 

 

 

C4 220μF 25V

R10 120K 5%

R11 3.9K 5%

 

Rx

 

 

 

 

 

 

 

13

 

14

 

 

150K

 

 

 

 

 

 

 

 

 

 

3

 

 

 

L4981A

 

 

 

 

 

Rx

 

 

 

R12 15 5%

 

150K

 

 

 

 

20

 

 

 

 

 

 

 

 

R13

 

 

 

 

 

 

 

1 5%

 

 

9

18

17

12

10

D3

 

 

1N4150

 

 

 

 

 

 

 

R15

R17

 

 

 

 

 

 

 

 

 

 

 

 

10K

10K

 

 

 

 

 

 

1%

1%

 

C5

R7

C7

 

 

 

 

 

105nF

27K

10μF

 

 

 

 

 

 

1%

16V

 

 

 

 

 

 

 

 

 

 

D95IN249C

+

Po=1500W

Vo=440V

4 x

470μF

315V Co

1μF

4 x 630V

470μF

315V

-

October 2002

1/3

AN828 APPLICATION NOTE

L4981A PARTS LIST

Boost inductor (T) L = 0.44mH

Rs = 10mΩ /1W

Core :Thomson - E 55x28x25

R1

= 5.1kΩ /1%

Gap = 3mm

R2

= 220Ω /1%

Primary Turns = 42 (8 x 0.5mm)

R3

= 75kΩ/1Ω

Secondary Turns = 4 (0.15mm)

R4

= 1M

 

 

R5

= 47 /1/2Ω

Co= 940μF = [(4 + 4) x 470μF/315V + 1μF/630V]

R6

= 100kΩ

R7

= 27k /1%

C1

= 2.2μF/250Vac

C2

= 220nF/630V

R8

+ R9 = 3.9kΩ

R10

= 120kΩ

C3

= 330nF

R11

= 3.9kΩ

C4

= 220μF/25V

R12

+ R13 = 15Ω

C5

= 1.5nF

R14

= 820kΩ /1%

C6

= 330nF

R15

= 10kΩ /1%

C7

= 10μF

R16

= 909kΩ

 

 

Power Switch = STE30NA50-DK

R17

= 10kΩ

 

 

 

Input Bridge = KPBC25-04

 

 

 

D2

= 1N4150 (X 4)

 

 

 

D3

= 1N4150

 

 

 

Table 1: Test Result.

Mains rms

Vout

Pout

Power

Harmonic Distortion (%)

Efficiency

(V)

(V)

(W)

Factor

THD

AH3

(%)

 

 

 

 

 

 

 

176

451

509

0.998

2.0

1.9

94.2

 

 

 

 

 

 

 

176

444

937

0.999

1.4

1.3

94.0

 

 

 

 

 

 

 

176

438

1396

0.999

1.0

0.9

94.0

 

 

 

 

 

 

 

220

451

509

0.996

2.1

1.9

95.6

 

 

 

 

 

 

 

220

445

941

0.998

1.5

1.4

95.2

 

 

 

 

 

 

 

220

438

1396

0.999

1.0

0.9

95.3

 

 

 

 

 

 

 

260

452

511

0.993

2.5

1.9

95.1

 

 

 

 

 

 

 

260

446

945

0.997

1.4

1.3

96.4

 

 

 

 

 

 

 

260

439

1402

0.999

1.1

0.8

96.1

 

 

 

 

 

 

 

CONCLUSIONS

The evaluation has been done using the "A" version of the L4981 controller, without using additional features obtaining high performance results, in terms of efficiency and harmonic content.

Further improvements are possible using the additional features of the I.C. such as the LFF (pin 16) for the best control of the output voltage or by the use of the B version to minimise the EMI filter.

2/3

Loading...
+ 1 hidden pages