AN670
Application note
Oscillator selection for ST62
Introduction
The purpose of this note is to give indications on how to choose a resonator or a quartz
crystal in order to achieve reliable oscillation with the ST62 Microcontroller. This document
provides first the major resonator parameters useful for a design. It then proposes
measurement methods to ensure a safe oscillation.
October 2008 Rev 2 1/12
www.st.com
Contents AN670
Contents
1 Oscillation frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Oscillation conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Barkhausen criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Measurement of the loop gain (open loop) . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Frequency stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Start-up time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Appendix A Test of a CSA Murata crystal resonator with an ST6210xx . . . . . . . 8
A.1 Choice of the network capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
A.2 Pseudo closed loop measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
A.3 Start-up time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
A.4 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Appendix B Calculation of the resonant frequency of ceramic resonator . . . . . 9
B.1 Equivalent circuit at the resonance frequency. . . . . . . . . . . . . . . . . . . . . . . 9
B.2 Transformation for simple calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
B.3 Resonant frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
B.4 Note. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2/12
AN670 Oscillation frequency
1 Oscillation frequency
The resonator can be modelised by a serial/parallel oscillator circuit as described in
Figure 1.
Figure 1.
The additional capacitances C
define a stable oscillating frequency. The value of these capacitances is usually given by the
manufacturer of the resonator.
The oscillation frequency is the resonant frequency of the equivalent circuit given in
Figure 2. The resonator is inductive in the oscillation frequency range.
are usually connected to the oscillator pins in order to
ext
Resonator model Figure 2. Equivalent circuit
3/12
Oscillation conditions AN670
G
B
Input
Output
G: Inverter/Amplifier
B: Resonator circuit
2 Oscillation conditions
The proposed method is based on the Barkhausen criteria. This leads to a safe result
providing that the oscillator fulfills these criteria. Three points have to be analysed: oscillator
start-up, frequency stability and the start-up time.
2.1 Barkhausen criteria
An oscillator can be modelized as defined in Figure 3. B is the resonator gain and G the
amplifier/inverter gain. The value of BxG defines the oscillator behaviour:
● BxG >> 1: square waveform, start-up OK
● BxG > 1: waveform with harmonic distortion, start-up OK
● BxG = 1: sine waveform, start-up critical
● BxG < 1: no oscillation
Figure 3. Oscillator model
2.2 Start-up
The oscillator can start if the gain BxG is above 1. The amplifier gain must compensate for
the resonator circuit attenuation and provide a sufficent gain margin (>3 dB).
In addition, the resonator circuit B must introduce a 180 ° phase delay if the G amplifier is an
inverter and no rotation if it is a non inverting amplifier.
With classical circuits such as a Pierce type oscillator (Figure 4.), the 180 ° phase rotation is
due to capacitances (C
Figure 4. Pierce type oscillator Figure 5. Equivalent schematic at the
and Cin).
out
resonant frequency
4/12