ST AN471 APPLICATION NOTE

AN471

APPLICATION NOTE

SMART POWER TECHNOLOGIES FOR

POWERTRAIN & BODY ELECTRONICS

by R. Ferrari

Smart power ICs are becoming increasing by common in automotive powertrain and body electronics. This note provides a general introduction to the subject.

As is well known, electronics is slowly but progressively invading every part of the automotive environment (figure 1); entering first in the car radio, it has extended progressively and is now present in all of the subsystems of an automobile. For those people who prefer a "historical" approach, the evolution of auto electronics has been divided into three main sections, each subdivided into various phases, correlated with the state of the art in general electronics at that time. Today, at the beginning of the 90’s we are in the SMART POWER phase, and it is precisely that which we intend to discuss briefly here (see fig. 2).

We will look at, first of all, some definitions: smart power or intelligent power indicates those families of integrated circuits which include both logic control circuits and components capable of delivering a significant amount of power to a generic load. In numbers, a circuit can be considered smart power if it is able to deliver more than 0.5A to the load, or of withstanding more than 50V, or able to supply a power of at least 1W to the load.

Over the years STMicroelectronics has developed various technologies that allow the realization of smart power circuits (figure 3). The simplest way to classify these technologies is to refer to the process type, which can be purely bipolar or mixed, that is, including on a single piece of silicon both MOS structures (of control and power) and bipolar structures. Another method (figure 4) is to examine the way in which the current flows through the power section; horizontal, with the current entering and leaving through the upper surface, or vertical, where the current enters through the upper surface and leaves through the lower surface; for this lower connection instead of wire the tie bar of the package is used.

The choice of one technology rather than another depends on various elements (figure 5) but simplifying as far as possible the criteria, we can say that vertical technologies can guarantee, for a given area, lower resistances but they have the limitation of being able to include just one power device per circuit (or more than one, but always with the collectors or drains short-circuited); while

Figure 1. Electronics in present and future automobiles.

SAFETY & CONVENIENCE

BODY CONTROL

POWER TRAIN

DRIVER INFORMATION

 

 

 

 

Rear Window Defogger

Cruise Control

Ignition

Digital Gauges

 

 

 

 

Climate Control

Intermittent Wipar

Spark Timing

Digital Clock

 

 

 

 

Keyless Entry

Antitheft Devices

Voltage Regulator

Multitons Alarms

 

 

 

 

Automatic Door Lock

Electr. Suspension

Alternator

Engine Diagn. Results

 

 

 

 

Light Drimmer

Electr. Steering

Idle Speed control

Service Reminders

 

 

 

 

Traction Control

Multiplex Wiring

Turbo Control

Miles to Empty

 

 

 

 

Antiskid Braking

Module to Module

Emission System

Shift Indicator

 

 

 

 

Window Control

Communications

Transmiss. Control

Head-up Display

 

 

 

 

Memory Seat

Load Sensit. Braking

Diagnostics

CRT Display

 

 

 

 

Heasted Windshield

Hard/Soft Ride Control

 

Audio Annunciator

 

 

 

 

Voice Controlled Trunk

 

 

 

 

 

 

 

Airbag Restraints

 

 

 

 

 

 

 

November 2003

1/10

ST AN471 APPLICATION NOTE

AN471 APPLICATION NOTE

Figure 2.

Figure 3. Smart Power Technologies Matrix.

2/10

AN471 APPLICATION NOTE

Figure 4. Integrated DMOS structures.

1OR MORE HV LDMOS DEVICES WITH COMMON SOURCE

MANY POWER VDMOS DEVICES ANY CONFIGURATION

1 OR MORE HC VDMOS DEVICES WITH COMMON DRAIN

3/10

Loading...
+ 7 hidden pages