ST AN4043 Application note

AN4043

Application note

SLLIMM™-nano small low-loss intelligent molded module

Introduction

In recent years the variable speed motor control market has required high performance solutions able to satisfy the increasing energy saving requirements, compactness, reliability, and system costs in home appliances, such as dish washers, refrigerator compressors, air conditioning fans, draining and recirculation pumps, and in low power industrial applications, such as small fans, pumps and tools, etc. To meet these market needs, STMicroelectronics has developed a new family of very compact, high efficiency, dual-in-line intelligent power modules, with optional extra features, called small low-loss intelligent molded module nano (SLLIMM™-nano).

The SLLIMM-nano product family combines optimized silicon chips, integrated in three main inverter blocks:

power stage

six very fast IGBTs

six freewheeling diodes

driving network

three high voltage gate drivers

three gate resistors

three bootstrap diodes

protection and optional features

op amp for advanced current sensing

comparator for fault protection against overcurrent and short-circuit

smart shutdown function

dead time, interlocking function and undervoltage lockout.

Thanks to its very good compactness, the fully isolated SLLIMM-nano package (NDIP) is the ideal solution for applications requiring reduced assembly space, without sacrificing thermal performance and reliability.

Compared to discrete-based inverters, including power devices, and driver and protection circuits, the SLLIMM-nano family provides a high integrated level that means simplified circuit design, reduced component count, lower weight, and high reliability.

The aim of this application note is to provide a detailed description of SLLIMM-nano products, providing guidelines to motor drive designers for an efficient, reliable, and fast design when using the new ST SLLIMM-nano family.

April 2012

Doc ID 022726 Rev 1

1/60

www.st.com

Contents

AN4043

 

 

Contents

1

Inverter design concept and SLLIMM-nano solution . . . . . . . . . . . . . .

. 5

 

1.1

Product synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

 

1.2

Product line-up and nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8

 

1.3

Internal circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

 

1.4

Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10

2

Electrical characteristics and functions . . . . . . . . . . . . . . . . . . . . . . . .

14

 

2.1

IGBTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

 

2.2

Freewheeling diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

 

2.3

High voltage gate drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

2.3.1 Logic inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2 High voltage level shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.3 Undervoltage lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.4 Dead time and interlocking function management . . . . . . . . . . . . . . . . . 19 2.3.5 Comparators for fault sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.6 Short-circuit protection and smart shutdown function . . . . . . . . . . . . . . 22

2.3.7Timing chart of short-circuit protection and smart shutdown function . . 23

2.3.8 Current sensing shunt resistor selection . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.9 RC filter network selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.10 Op amps for advanced current sensing . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.11 Bootstrap circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.12 Bootstrap capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.13 Initial bootstrap capacitor charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3

Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34

 

3.1

Package structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34

 

3.2

Package outline and dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

35

 

3.3

Input and output pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

36

4

Power losses and dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

41

 

4.1

Conduction power losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

41

 

4.2

Switching power losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

44

 

4.3

Thermal impedance overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

45

2/60

Doc ID 022726 Rev 1

AN4043 Contents

 

4.4

Power loss calculation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

49

5

Design and mounting guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

51

 

5.1

Layout suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

51

 

 

5.1.1

General suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

51

 

5.2

Mounting instructions and cooling techniques . . . . . . . . . . . . . . . . . . . . .

53

6

General handling precaution and storage notices . . . . . . . . . . . . . . . .

56

 

6.1

Packaging specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

57

7

References .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

58

8

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

59

Doc ID 022726 Rev 1

3/60

List of tables

AN4043

 

 

List of tables

Table 1. SLLIMM-nano line-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Table 2. Inverter part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 3. Control part of the STGIPN3H60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 4. Supply voltage and operation behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 5. Total system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 6. Integrated pull-up/down resistor values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 7. Interlocking function truth table of the STGIPN3H60A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Table 8. Interlocking function truth table of the STGIPN3H60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 9. Outline drawing of NDIP-26L package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 10. Input and output pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 11. Cauer and Foster RC thermal network elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Table 12. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4/60

Doc ID 022726 Rev 1

AN4043

List of figures

 

 

List of figures

Figure 1. Inverter motor drive block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 2. Discrete-based inverter vs. SLLIMM-nano solution comparison. . . . . . . . . . . . . . . . . . . . . . 7 Figure 3. SLLIMM block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 4. SLLIMM-nano nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 5. Internal circuit of the STGIPN3H60A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 6. Internal circuit of the STGIPN3H60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 7. Stray inductance components of output stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 8. High voltage gate drive die image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 9. High voltage gate driver block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 10. Logic input configuration for the STGIPN3H60A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 11. Logic input configuration for the STGIPN3H60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 12. Timing chart of undervoltage lockout function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 13. Timing chart of dead time function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 14. Smart shutdown equivalent circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 15. Timing chart of smart shutdown function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 16. Examples of SC protection circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 17. Example of SC event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 18. 3-phase system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 19. General advanced current sense scheme and waveforms. . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 20. Bootstrap circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 21. Bootstrap capacitor vs. switching frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 22. Initial bootstrap charging time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 23. Images and internal view of NDIP-26L package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure 24. Outline drawing of NDIP-26L package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 25. Pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Figure 26. Typical IGBT power losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure 27. IGBT and diode approximation of the output characteristics . . . . . . . . . . . . . . . . . . . . . . . 43 Figure 28. Typical switching waveforms of the STGIPN3H60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 29. Rth(j-a) equivalent thermal circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Figure 30. Thermal impedance Zth(j-a) curve for a single IGBT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Figure 31. Cauer RC equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 32. Foster RC equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 33. Maximum IC(RMS) current vs. fsw simulated curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Figure 34. General suggestions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 35. Example 1 on a possible wrong layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Figure 36. Example 2 on a possible wrong layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Figure 37. Cooling technique: copper plate on the PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Figure 38. Cooling technique: heatsink bonded on the package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Figure 39. Cooling technique: heatsink bonded on the PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Figure 40. Packaging specifications of NDIP-26L package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Doc ID 022726 Rev 1

5/60

Inverter design concept and SLLIMM-nano solution

AN4043

 

 

1 Inverter design concept and SLLIMM-nano solution

Motor drive applications, ranging from a few tens of watts to mega watts, are mainly based on the inverter concept thanks to the fact that this solution can meet efficiency, reliability, size, and cost constraints required in a number of markets.

As shown in Figure 1, an inverter for motor drive applications is basically composed of a power stage, mainly based on IGBTs and freewheeling diodes; a driving stage, based on high voltage gate drivers; a control unit, based on microcontrollers or DSPs; some optional sensors for protection and feedback signals for controls.

The approach of this solution with discrete devices produces high manufacturing costs associated with high reliability risks, bigger size and higher weight, a considerable number of components and the significant stray inductances and dispersions in the board layout.

Figure 1. Inverter motor drive block diagram

0DLQV %ULGJH UHFWLILHU

0LFURFRQWUROOHU

*DWH GULYHU

3RZHU VWDJH

0

6HQVRUV

)HHGEDFN

!-V

In recent years, the use of intelligent power modules has rapidly increased thanks to the benefits of greater integration levels. The new ST SLLIMM-nano family is able to replace more than 20 discrete devices in a single package. Figure 2 shows a comparison between a discrete-based inverter and the SLLIMM-nano solution, the advantages of SLLIMM-nano can be easily understood and can be summarized in a significantly improved design time, reduced manufacturing efforts, higher flexibility in a wide range of applications, and increased reliability and quality level.

In addition, the optimized silicon chips in both control and power stages and the optimized board layout provide maximized efficiency, reduced EMI and noise generation, higher levels of protection, and lower propagation delay time.

6/60

Doc ID 022726 Rev 1

AN4043

Inverter design concept and SLLIMM-nano solution

 

 

Figure 2. Discrete-based inverter vs. SLLIMM-nano solution comparison

3DVVLYH FRPSRQHQWV +9 JDWH GULYHUV

,*%7V ):'V

 

5HGXFHG WRWDO

 

V\VWHP FRVW

'LRGHV

 

(DV\ OD\RXW

5HGXFHG (0,

5HVLVWRUV

 

 

DQG QRLVH

 

 

DQG GHVLJQ

 

 

 

 

DQR

Q

 

 

6//,00

 

,PSURYHG

HIILFLHQF\

+LJK TXDOLW\

$GYDQFHG

SURWHFWLRQ

DQG UHOLDELOLW\

IXQFWLRQ

 

+LJK

 

FRPSDFWQHVV

 

!-V

1.1Product synopsis

The SLLIMM-nano family has been designed to satisfy the requirements of a wide range of final applications up to 100 W (in free air), such as:

dish washers

refrigerator compressors

air conditioning fans

draining and recirculation pumps

low power industrial applications

small fans, pumps and tools.

The main features and integrated functions can be summarized as follows:

600 V, 3 A ratings

3-phase IGBT inverter bridge including:

six low-loss IGBTs

six low forward voltage drop and soft recovery freewheeling diodes

three control ICs for gate driving and protection including:

smart shutdown function

comparator for fault protection against overcurrent and short-circuit

op amp for advanced current sensing

three integrated bootstrap diodes

interlocking function

undervoltage lockout

open emitter configuration for individual phase current sensing

very compact and fully isolated package

integrated gate resistors for IGBT switching speed optimum setting

gate driver proper biasing.

Doc ID 022726 Rev 1

7/60

Inverter design concept and SLLIMM-nano solution

AN4043

 

 

Figure 3 shows the block diagram of the SLLIMM-nano included in the inverter solution.

Figure 3. SLLIMM block diagram

 

 

 

 

 

0DLQV

%ULGJH UHFWLILHU

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*DWH GULYHU

 

+DOI EULGJH

 

 

 

 

89/2

/HYHO

%RRWVWUDS

 

 

 

 

 

'HDG WLPH

6KLIW

GLRGH

 

 

 

 

 

&RPSDUDWRU

6PDUW

2S$PS

 

 

 

 

 

 

 

6KXW 'RZQ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*DWH GULYHU

 

+DOI EULGJH

0

 

0LFURFRQWUROOHU

 

'HDG WLPH

6KLIW

GLRGH

 

 

 

 

89/2

/HYHO

%RRWVWUDS

 

 

 

 

 

 

 

&RPSDUDWRU

6PDUW

2S$PS

 

 

 

 

 

 

 

6KXW 'RZQ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*DWH GULYHU

 

+DOI EULGJH

 

 

 

 

89/2

/HYHO

%RRWVWUDS

 

 

 

 

 

'HDG WLPH

6KLIW

GLRGH

 

 

 

 

 

&RPSDUDWRU

6PDUW

2S$PS

 

 

 

 

 

 

 

6KXW 'RZQ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6//,00 QDQR

)HHGEDFN

!-V

The power devices (IGBTs and freewheeling diodes), incorporated in the half bridge block, are tailored for a motor drive application delivering the greatest overall efficiency, thanks to the optimized trade-off between conduction and switching power losses and very low EMI generation, as a result of reduced dV/dt and di/dt.

The IC gate drivers have been selected in order to meet two levels of functionality, giving users more freedom to choose: a basic version which includes the essential features for a cost-effective solution and a fully featured version which provides advanced options for a sophisticated control method.

The fully isolated NDIP package offers a high compactness level, very useful in those applications with reduced space, ensuring at the same time, high thermal performance and reliability levels.

8/60

Doc ID 022726 Rev 1

AN4043

Inverter design concept and SLLIMM-nano solution

 

 

1.2Product line-up and nomenclature

Table 1.

SLLIMM-nano line-up

 

 

 

Features

Basic version

Fully featured version

 

 

 

 

STGIPN3H60A

STGIPN3H60

 

 

 

 

 

 

Voltage (V)

 

600

600

 

 

 

Current @ TC = 25 °C (A)

3

3

RthJA max. (°C/W)

50

50

Package type

NDIP-26L

NDIP-26L

 

 

 

Package size (mm) X, Y, Z

29.5x12.5x3.1

29.5x12.5x3.1

 

 

 

Integrated bootstrap diode

Yes

Yes

 

 

 

 

SD function

 

No

Yes

 

 

 

Comparator for fault protection

No

Yes (1 pin)

 

 

 

Smart shutdown function

No

Yes

 

 

 

Op amps for advanced current sensing

No

Yes

 

 

 

Interlocking function

Yes

Yes

 

 

 

Undervoltage lockout

Yes

Yes

 

 

 

Open emitter configuration

Yes (3 pins)

Yes (3 pins)

 

 

 

3.3 / 5 V input interface compatibility

Yes

Yes

 

 

 

High-side IGBT input signal

Active high

Active high

 

 

 

Low-side IGBT input signal

Active high

Active low

 

 

 

 

Figure 4. SLLIMM-nano nomenclature

67

*

,3

]]

LLL

Z

YYY

[

2SWLRQ

$ %DVLF YHUVLRQ

,*%7

 

 

 

 

 

 

 

 

9&(6 YROWDJH GLYLGHG E\

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7HFKQRORJ\

,30

 

 

 

 

 

 

+ 9HU\ IDVW

6//,00

6//,00 QDQR

 

 

 

 

 

 

. 6KRUW FLUFXLW UXJJHG

 

 

 

 

 

 

3DFNDJH

 

 

 

 

: 8OWUD IDVW

1

1',3 / PROGHG 6//,00 QDQR

 

 

 

 

 

 

 

 

1RPLQDO FXUUHQW

6

6',3 / PROGHG 6//,00

 

/

6',3 / PROGHG 6//,00

 

,& FXUUHQW DW 7& &

 

 

 

 

 

 

 

 

 

 

 

!-V

Doc ID 022726 Rev 1

9/60

Inverter design concept and SLLIMM-nano solution

AN4043

 

 

1.3Internal circuit

Figure 5. Internal circuit of the STGIPN3H60A

10/60

Doc ID 022726 Rev 1

ST AN4043 Application note

AN4043

Inverter design concept and SLLIMM-nano solution

 

 

Figure 6. Internal circuit of the STGIPN3H60

1.4Absolute maximum ratings

The absolute maximum ratings represent the extreme capability of the device and they can be normally used as a worst limit design condition. It is important to note that the absolute maximum value is given according to a set of testing conditions such us temperature, frequency, voltage, and so on. Device performance can change according to the applied condition.

Doc ID 022726 Rev 1

11/60

Inverter design concept and SLLIMM-nano solution

AN4043

 

 

The SLLIMM-nano specifications are described below using the STGIPN3H60 datasheet as an example. Please refer to the respective product datasheets for a detailed description of all possible types.

Table 2.

Inverter part

 

 

Symbol

Parameter

Value

Unit

 

 

 

 

 

 

 

 

 

 

VCES

Collector emitter voltage (VIN(1) = 0)

600

V

±I (2)

Each IGBT continuous collector current at T = 25 °C

3

A

C

 

 

 

 

 

 

C

 

 

±IC(3)

Each IGBT pulsed collector current

18

A

PTOT

Each IGBT total dissipation at TC = 25 °C

8

W

 

 

 

 

 

 

 

 

 

 

1.Applied between HINU, HINV, HINW; LINU, LINV, LINW and GND.

2.Calculated according to the iterative Equation 1.

3.Pulse width limited by max. junction temperature.

Equation 1

IC(TC) =

Tjmax − TC

Rth(j−c) VCE(sat)(max)(@Tjmax,IC(TC))

 

VCES: collector emitter voltage

The power stage of the SLLIMM-nano is based on IGBTs (and freewheeling diodes) having 600 V VCES rating. Generally, considering the intelligent power module internal stray inductances during the commutations, which can generate some surge voltages, the

maximum surge voltage between P-N (VPN(surge)) allowed is lower than VCES, as shown in Figure 7. At the same time, considering also the surge voltage generated by the stray

inductance between the device and the DC-link capacitor, the maximum supply voltage (in

steady-state) applied between P-N (VPN) must be even lower than VPN(surge). Thanks to the small package size and the lower working current, this phenomenon is less marked in the

SLLIMM-nano than in a big intelligent power module.

12/60

Doc ID 022726 Rev 1

AN4043

Inverter design concept and SLLIMM-nano solution

 

 

Figure 7. Stray inductance components of output stage

7KH UHDO YROWDJH RYHU WKH ,*%7 'XH WR GL GW YDOXH DQG SDUDVLWLF )ODW 931 FDQ H[FHHG WKH UDWLQJ YROWDJH LQGXFWDQFH WKH RYHU YROWDJH VSLNH YDOXH

FDQ DSSHDU RQ WKH 6//,00 SLQV

931 VXUJH 931

3

+LJK

GL GW YDOXH

+9,&

WR PRWRU

&

9EXV

 

 

 

8 9 :

 

 

1

6//,00 QDQR

3DUDVLWLF LQGXFWDQFH

 

3DUDVLWLF LQGXFWDQFH

GXH WR WKH 6//,00 LQWHUQDO OD\RXW

 

GXH WR 3&% OD\RXW

 

 

 

!-V

±IC: each IGBT continuous collector current

The allowable DC current continuously flowing at the collector electrode (TC = 25 °C). The IC parameter is calculated according to Equation 1.

Table 3.

Control part of the STGIPN3H60

 

 

Symbol

Parameter

Value

Unit

 

 

 

 

 

 

VOUT

Output voltage applied between OUTU, OUTV, OUTW, and

Vboot -21 to Vboot +0.3

V

GND (VCC =15 V)

 

 

 

 

 

 

VCC

Low voltage power supply

-0.3 to 21

V

VCIN

Comparator input voltage

-0.3 to VCC +0.3

V

VOP+

Op amp non-inverting input

-0.3 to VCC +0.3

V

 

VOP

Op amp inverting input

-0.3 to VCC +0.3

V

Vboot

Bootstrap voltage

-0.3 to 620

V

 

VIN

Logic input voltage applied between HIN,

 

and GND

-0.3 to 15

V

LIN

V

 

 

Open drain voltage

-0.3 to 15

V

SD/OD

dVOUT/dt

Allowed output slew rate

50

V/ns

VCC: low voltage power supply

Doc ID 022726 Rev 1

13/60

Inverter design concept and SLLIMM-nano solution

AN4043

 

 

VCC represents the supply voltage of the control part. A local filtering is recommended to enhance the SLLIMM-nano noise immunity. Generally, the use of one electrolytic capacitor (with greater value but not negligible ESR) and one smaller ceramic capacitor (hundreds of nF), faster than the electrolytic one to provide current, is suggested.

Please refer to Table 4 in order to properly drive the SLLIMM-nano.

Table 4.

Supply voltage and operation behavior

VCC voltage (typ. value)

Operating behavior

 

 

 

STGIPN3H60A

STGIPN3H60

 

 

 

 

 

< 10 V

 

< 12 V

As the voltage is lower than the UVLO threshold the control circuit is not fully

 

turned on. A perfect functionality cannot be guaranteed.

 

 

 

 

 

 

12 V – 17 V

13.5 V – 18 V

Typical operating conditions

 

 

 

 

> 18 V

 

> 21 V

Control circuit is destroyed

 

 

 

 

Table 5.

Total system

 

 

Symbol

Parameter

Value

Unit

 

 

 

 

TJ

Operating junction temperature

-40 to 150

°C

TC

Module case operation temperature

-40 to 125

°C

14/60

Doc ID 022726 Rev 1

AN4043

Electrical characteristics and functions

 

 

2 Electrical characteristics and functions

In this section the main electrical characteristics of the power stage are discussed, together with a detailed description of all the SLLIMM-nano functions.

2.1IGBTs

The SLLIMM-nano achieves power savings in the inverter stage thanks to the use of IGBTs manufactured with the proprietary advanced PowerMESH™ process.

These power devices, optimized for the typical motor control switching frequency, offer an

excellent trade-off between voltage drop (VCE(sat)) and switching speed (tfall), and therefore minimize the two major sources of energy loss, conduction and switching, reducing the

environmental impact of daily-use equipment. A full analysis on the power losses of the complete system in reported in Section 4: Power losses and dissipation.

2.2Freewheeling diodes

Turbo 2 ultrafast high voltage diodes have been adequately selected for the SLLIMM-nano family and carefully tuned to achieve the best trr/VF trade-off and softness as freewheeling diodes in order to further improve the total performance of the inverter and significantly reduce the electromagnetic interference (EMI) in the motor control applications which are quite sensitive to this phenomena.

2.3High voltage gate drivers

The SLLIMM-nano is equipped with a versatile high voltage gate driver IC (HVIC), designed using BCD offline (Bipolar, CMOS, and DMOS) technology (see Figure 8) and particularly suited to field oriented control (FOC) motor driving applications, able to provide all the functions and current capability necessary for high-side and low-side IGBT driving. This driver can be used in all applications where high voltage shifted control is necessary and it includes a patented internal circuitry which replaces the external bootstrap diode.

Doc ID 022726 Rev 1

15/60

Electrical characteristics and functions

AN4043

 

 

Figure 8. High voltage gate drive die image

Each high voltage gate driver chip controls two IGBTs in half bridge topology, offering basic functions such as dead time, interlocking, integrated bootstrap diode, and also advanced features such as smart shutdown (patented), fault comparator, and a dedicated high performance op amp for advanced current sensing. A schematic summary of the features by device are listed in Table 1.

In this application note the main characteristics of a high voltage gate drive related to the SLLIMM-nano are discussed. For a greater understanding, please refer to the AN2738 application note.

16/60

Doc ID 022726 Rev 1

AN4043

Electrical characteristics and functions

 

 

Figure 9. High voltage gate driver block diagram

 

 

9&&

%RRWVWUDS GULYHU

)ORDWLQJ VWUXFWXUH

 

 

 

%227

9%227

9&&

 

 

8978

 

 

 

 

3

 

 

89

IURP /9*

 

 

 

 

WR '& OLQN

 

 

&'6'%6+10

 

 

 

 

 

 

GHWHFWLRQ

 

GHWHFWLRQ

+9*

 

 

 

 

 

+,1

/RJLF

/HYHO

6

GULYHU

+9*

 

&%227

IURPP&

 

 

 

 

VKLIWHU

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

6KRRW

 

 

 

 

287

 

 

 

 

WKURXJK

 

 

 

 

 

WR PRWRU

 

 

 

 

 

 

 

 

 

 

 

 

SUHYHQWLRQ

 

 

 

 

 

8 9 :

IURPP&

/,1

 

 

 

9&&

/9*

 

 

 

 

 

 

 

 

 

 

/9*

 

 

 

56'

9%LDV

6KXWGRZQ

 

 

 

GULYHU

 

 

 

6' 2'

ODWFK

 

 

 

 

 

 

 

IURP WRP&

6PDUW

 

9

 

 

 

1

 

 

 

 

 

 

 

 

&6'

 

VKXW

 

 

 

 

 

 

 

 

 

 

 

&3

&,1

 

 

*1'

GRZQ

 

 

 

 

 

 

 

 

 

 

&RPS

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

&6)6)

 

 

 

 

 

 

95()

 

 

 

 

 

'7

'HDG

 

9&&

 

 

 

 

9%LDV

 

 

 

WLPH

 

 

 

 

23

 

&')

5')

23287

 

 

 

 

 

 

 

 

 

 

 

 

23

 

 

 

 

 

2S DPS

 

 

 

 

 

 

 

 

+9,&

 

 

 

 

 

 

WR$'&

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6//,00 QDQR

 

 

 

 

 

56+817

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

!-V

 

 

2.3.1Logic inputs

The high voltage gate driver IC has two logic inputs, HIN and LIN, to separately control the high-side and low-side outputs, HVG and LVG. Please refer to Table 1 for the input signal logics by device.

In order to prevent any cross conduction between high-side and low-side IGBT, a safety time (dead time) is introduced (see Section 2.3.4: Dead time and interlocking function management for further details).

All the logic inputs are provided with hysteresis (~1 V) for low noise sensitivity and are TTL/CMOS 3.3 V compatible. Thanks to this low voltage interface logic compatibility, the SLLIMM-nano can be used with any kind of high performance controller, such as microcontrollers, DSPs or FPGAs.

As shown in the block diagrams of Figure 10 and Figure 11, the logic inputs have internal pull-down (or pull-up) resistors in order to set a proper logic level in the case of interruption in the logic lines. If logic inputs are left floating, the gate driver outputs LVG and HVG are set to low level. This simplifies the interface circuit by eliminating the six external resistors, therefore, saving cost, board space and number of components.

Doc ID 022726 Rev 1

17/60

Electrical characteristics and functions

AN4043

 

 

Figure 10. Logic input configuration for the STGIPN3H60A

 

 

%RRWVWUDS GULYHU

 

 

 

 

 

 

 

 

9%227

 

 

 

3

9&&

89 GHWHFWLRQ

89 GHWHFWLRQ

 

 

/RJLF

+LJK VLGH

 

 

OHYHO

 

 

 

VKLIWLQJ

 

+,1

 

GULYHU

 

 

6KRRW WKURXJK

287

 

 

 

 

SUHYHQWLRQ

 

 

/,1

 

/RZ VLGH

 

 

 

GULYHU

 

 

 

+9,&

 

 

6//,00 QDQR

1

 

 

 

 

 

!-V

Figure 11. Logic input configuration for the STGIPN3H60

 

 

%RRWVWUDS GULYHU

 

 

 

 

 

 

 

9%227

 

 

 

 

 

 

 

 

 

 

3

9&&

89 GHWHFWLRQ

89 GHWHFWLRQ

+LJK VLGH

 

 

 

 

 

 

 

/RJLF

 

OHYHO

 

 

 

 

VKLIWLQJ

 

+,1

 

 

 

 

 

 

 

GULYHU

287

 

9

 

 

 

 

6KRRW WKURXJK

 

 

 

 

 

 

 

 

 

 

SUHYHQWLRQ

/RZ VLGH

 

/,1

 

 

 

 

 

 

GULYHU

 

 

 

6KXWGRZQ

 

 

1

 

 

 

 

 

6'

6PDUW 6'

 

 

 

 

 

 

 

 

 

&,1

 

 

+9,&

 

95()

 

 

 

 

 

 

 

 

6//,00 QDQR

 

 

 

 

 

 

 

 

!-V

The typical values of the integrated pull-up/down resistors are shown in Table 6:

18/60

Doc ID 022726 Rev 1

Loading...
+ 42 hidden pages