ST AN4043 Application note

AN4043
Application note
SLLIMM™-nano
small low-loss intelligent molded module
Introduction
In recent years the variable speed motor control market has required high performance solutions able to satisfy the increasing energy saving requirements, compactness, reliability, and system costs in home appliances, such as dish washers, refrigerator compressors, air conditioning fans, draining and recirculation pumps, and in low power industrial applications, such as small fans, pumps and tools, etc. To meet these market needs, STMicroelectronics has developed a new family of very compact, high efficiency, dual-in-line intelligent power modules, with optional extra features, called small low-loss intelligent molded module nano (SLLIMM™-nano).
The SLLIMM-nano product family combines optimized silicon chips, integrated in three main inverter blocks:
power stage
six very fast IGBTs – six freewheeling diodes
driving network
three high voltage gate drivers – three gate resistors – three bootstrap diodes
protection and optional features
op amp for advanced current sensing – comparator for fault protection against overcurrent and short-circuit – smart shutdown function – dead time, interlocking function and undervoltage lockout.
Thanks to its very good compactness, the fully isolated SLLIMM-nano package (NDIP) is the ideal solution for applications requiring reduced assembly space, without sacrificing thermal performance and reliability.
Compared to discrete-based inverters, including power devices, and driver and protection circuits, the SLLIMM-nano family provides a high integrated level that means simplified circuit design, reduced component count, lower weight, and high reliability.
The aim of this application note is to provide a detailed description of SLLIMM-nano products, providing guidelines to motor drive designers for an efficient, reliable, and fast design when using the new ST SLLIMM-nano family.
April 2012 Doc ID 022726 Rev 1 1/60
www.st.com
Contents AN4043
Contents
1 Inverter design concept and SLLIMM-nano solution . . . . . . . . . . . . . . . 5
1.1 Product synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Product line-up and nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Internal circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Electrical characteristics and functions . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1 IGBTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Freewheeling diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 High voltage gate drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Logic inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 High voltage level shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Undervoltage lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.4 Dead time and interlocking function management . . . . . . . . . . . . . . . . . 19
2.3.5 Comparators for fault sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.6 Short-circuit protection and smart shutdown function . . . . . . . . . . . . . . 22
2.3.7 Timing chart of short-circuit protection and smart shutdown function . . 23
2.3.8 Current sensing shunt resistor selection . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.9 RC filter network selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.10 Op amps for advanced current sensing . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.11 Bootstrap circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.12 Bootstrap capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.13 Initial bootstrap capacitor charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1 Package structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Package outline and dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Input and output pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4 Power losses and dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1 Conduction power losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Switching power losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Thermal impedance overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2/60 Doc ID 022726 Rev 1
AN4043 Contents
4.4 Power loss calculation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5 Design and mounting guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1 Layout suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1.1 General suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Mounting instructions and cooling techniques . . . . . . . . . . . . . . . . . . . . . 53
6 General handling precaution and storage notices . . . . . . . . . . . . . . . . 56
6.1 Packaging specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Doc ID 022726 Rev 1 3/60
List of tables AN4043
List of tables
Table 1. SLLIMM-nano line-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 2. Inverter part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 3. Control part of the STGIPN3H60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 4. Supply voltage and operation behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 5. Total system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 6. Integrated pull-up/down resistor values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 7. Interlocking function truth table of the STGIPN3H60A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 8. Interlocking function truth table of the STGIPN3H60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 9. Outline drawing of NDIP-26L package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 10. Input and output pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 11. Cauer and Foster RC thermal network elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 12. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4/60 Doc ID 022726 Rev 1
AN4043 List of figures
List of figures
Figure 1. Inverter motor drive block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. Discrete-based inverter vs. SLLIMM-nano solution comparison. . . . . . . . . . . . . . . . . . . . . . 7
Figure 3. SLLIMM block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 4. SLLIMM-nano nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 5. Internal circuit of the STGIPN3H60A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 6. Internal circuit of the STGIPN3H60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 7. Stray inductance components of output stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 8. High voltage gate drive die image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 9. High voltage gate driver block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 10. Logic input configuration for the STGIPN3H60A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 11. Logic input configuration for the STGIPN3H60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 12. Timing chart of undervoltage lockout function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 13. Timing chart of dead time function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 14. Smart shutdown equivalent circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 15. Timing chart of smart shutdown function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 16. Examples of SC protection circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 17. Example of SC event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 18. 3-phase system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 19. General advanced current sense scheme and waveforms. . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 20. Bootstrap circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 21. Bootstrap capacitor vs. switching frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 22. Initial bootstrap charging time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 23. Images and internal view of NDIP-26L package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 24. Outline drawing of NDIP-26L package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 25. Pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 26. Typical IGBT power losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 27. IGBT and diode approximation of the output characteristics . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 28. Typical switching waveforms of the STGIPN3H60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 29. R Figure 30. Thermal impedance Z
Figure 31. Cauer RC equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 32. Foster RC equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 33. Maximum I
Figure 34. General suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 35. Example 1 on a possible wrong layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 36. Example 2 on a possible wrong layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 37. Cooling technique: copper plate on the PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 38. Cooling technique: heatsink bonded on the package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 39. Cooling technique: heatsink bonded on the PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 40. Packaging specifications of NDIP-26L package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
equivalent thermal circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
th(j-a)
current vs. fsw simulated curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
C(RMS)
curve for a single IGBT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
th(j-a)
Doc ID 022726 Rev 1 5/60
Inverter design concept and SLLIMM-nano solution AN4043

1 Inverter design concept and SLLIMM-nano solution

Motor drive applications, ranging from a few tens of watts to mega watts, are mainly based on the inverter concept thanks to the fact that this solution can meet efficiency, reliability, size, and cost constraints required in a number of markets.
As shown in
Figure 1
, an inverter for motor drive applications is basically composed of a power stage, mainly based on IGBTs and freewheeling diodes; a driving stage, based on high voltage gate drivers; a control unit, based on microcontrollers or DSPs; some optional sensors for protection and feedback signals for controls.
The approach of this solution with discrete devices produces high manufacturing costs associated with high reliability risks, bigger size and higher weight, a considerable number of components and the significant stray inductances and dispersions in the board layout.

Figure 1. Inverter motor drive block diagram

0DLQV
0LFURFRQWUROOHU
*DWHGULYHU 3RZHUVWDJH
%ULGJHUHFWLILHU
0
6HQVRUV
)HHGEDFN
In recent years, the use of intelligent power modules has rapidly increased thanks to the benefits of greater integration levels. The new ST SLLIMM-nano family is able to replace more than 20 discrete devices in a single package. discrete-based inverter and the SLLIMM-nano solution, the advantages of SLLIMM-nano can be easily understood and can be summarized in a significantly improved design time, reduced manufacturing efforts, higher flexibility in a wide range of applications, and increased reliability and quality level.
In addition, the optimized silicon chips in both control and power stages and the optimized board layout provide maximized efficiency, reduced EMI and noise generation, higher levels of protection, and lower propagation delay time.
6/60 Doc ID 022726 Rev 1
Figure 2
!-V
shows a comparison between a
AN4043 Inverter design concept and SLLIMM-nano solution

Figure 2. Discrete-based inverter vs. SLLIMM-nano solution comparison

LYHFRPSRQHQWV
3DVV
'LRG
5HVLVWRUV
HV
+9JDWHGULYHUV ,*%7V):'V

1.1 Product synopsis

The SLLIMM-nano family has been designed to satisfy the requirements of a wide range of final applications up to 100 W (in free air), such as:
dish washers
refrigerator compressors
air conditioning fans
draining and recirculation pumps
low power industrial applications
small fans, pumps and tools.
(DV\OD\RXW
DQGGHVLJQ
+LJKTXDOLW\
DQGUHOLDELOLW\
5HGXFHGWRWDO
V\VWHPFRVW
D
D
Q
Q
6//,00
6//,00
+LJK
FRPSDFWQHVV
5HGXFHG(0,
DQGQRLVH
QR
QR
$GYDQFHG SUR
WHFWLRQ
IXQFWLRQ
,PSURYHG HIILFLHQF\
!-V
The main features and integrated functions can be summarized as follows:
600 V, 3 A ratings
3-phase IGBT inverter bridge including:
six low-loss IGBTs – six low forward voltage drop and soft recovery freewheeling diodes
three control ICs for gate driving and protection including:
smart shutdown function – comparator for fault protection against overcurrent and short-circuit – op amp for advanced current sensing – three integrated bootstrap diodes – interlocking function – undervoltage lockout
open emitter configuration for individual phase current sensing
very compact and fully isolated package
integrated gate resistors for IGBT switching speed optimum setting
gate driver proper biasing.
Doc ID 022726 Rev 1 7/60
Inverter design concept and SLLIMM-nano solution AN4043
Figure 3

Figure 3. SLLIMM block diagram

shows the block diagram of the SLLIMM-nano included in the inverter solution.
*DWHGULYHU
89/2
'HDGWLPH
&RPSDUDWRU
6KXW'RZQ
*DWHGULYHU
89/2
0LFURFRQWUROOHU
'HDGWLPH
&RPSDUDWRU
6KXW'RZQ
*DWHGULYHU
89/2
'HDGWLPH
&RPSDUDWRU
6KXW'RZQ
/HYHO
6KLIW
6PDUW
/HYHO
6KLIW
6PDUW
/HYHO
6KLIW
6PDUW
0DLQV
%RRWVWUDS
GLRGH
2S$PS
%RRWVWUDS
GLRGH
2S$PS
%RRWVWUDS
GLRGH
2S$PS
)HHGEDFN
%ULGJHUHFWLILHU
+DOIEULGJH
+DOIEULGJH
+DOIEULGJH
6//,00QDQR
0
!-V
The power devices (IGBTs and freewheeling diodes), incorporated in the half bridge block, are tailored for a motor drive application delivering the greatest overall efficiency, thanks to the optimized trade-off between conduction and switching power losses and very low EMI generation, as a result of reduced dV/dt and di/dt.
The IC gate drivers have been selected in order to meet two levels of functionality, giving users more freedom to choose: a basic version which includes the essential features for a cost-effective solution and a fully featured version which provides advanced options for a sophisticated control method.
The fully isolated NDIP package offers a high compactness level, very useful in those applications with reduced space, ensuring at the same time, high thermal performance and reliability levels.
8/60 Doc ID 022726 Rev 1
AN4043 Inverter design concept and SLLIMM-nano solution

1.2 Product line-up and nomenclature

Table 1. SLLIMM-nano line-up

Basic version Fully featured version
Features
STGIPN3H60A STGIPN3H60
Voltage (V) 600 600
Current @ T
R
max. (°C/W) 50 50
thJA
Package type NDIP-26L NDIP-26L
Package size (mm) X, Y, Z 29.5x12.5x3.1 29.5x12.5x3.1
Integrated bootstrap diode Yes Yes
SD function No Yes
Comparator for fault protection No Yes (1 pin)
Smart shutdown function No Yes
Op amps for advanced current sensing No Yes
Interlocking function Yes Yes
Undervoltage lockout Yes Yes
Open emitter configuration Yes (3 pins) Yes (3 pins)
3.3 / 5 V input interface compatibility Yes Yes
High-side IGBT input signal Active high Active high
Low-side IGBT input signal Active high Active low
= 25 °C (A) 3 3
C

Figure 4. SLLIMM-nano nomenclature

67 * ,3 LLL]] Z YYY [
,*%7
,30
,00 6//,00QDQR
6//
3DFNDJH
1 1',3/PROGHG6//,00QDQR 6
6',3/PROGHG6//,00
/ 6',3/PROGHG6//,00
2SWLRQ
$ %DVLFYHUVLRQ «
9
YROWDJHGLYLGHGE\
&(6
7HFKQRORJ\
+ 9HU\IDVW . 6KRUWFLUFXLWUXJJHG : 8OWUDIDVW
1RPLQDOFXUUHQW
FXUUHQWDW7& &
,
&
!-V
Doc ID 022726 Rev 1 9/60
Inverter design concept and SLLIMM-nano solution AN4043

1.3 Internal circuit

Figure 5. Internal circuit of the STGIPN3H60A

10/60 Doc ID 022726 Rev 1
AN4043 Inverter design concept and SLLIMM-nano solution

Figure 6. Internal circuit of the STGIPN3H60

1.4 Absolute maximum ratings

The absolute maximum ratings represent the extreme capability of the device and they can be normally used as a worst limit design condition. It is important to note that the absolute maximum value is given according to a set of testing conditions such us temperature, frequency, voltage, and so on. Device performance can change according to the applied condition.
Doc ID 022726 Rev 1 11/60
Inverter design concept and SLLIMM-nano solution AN4043
The SLLIMM-nano specifications are described below using the STGIPN3H60 datasheet as an example. Please refer to the respective product datasheets for a detailed description of all possible types.

Table 2. Inverter part

Symbol Parameter Value Unit
V
CES
±I
±I
P
TOT
1. Applied between HINU, HINV, HINW; LINU, LINV, LINW and GND.
2. Calculated according to the iterative
3. Pulse width limited by max. junction temperature.
Collector emitter voltage (V
(2)
Each IGBT continuous collector current at TC = 25 °C 3 A
C
(3)
Each IGBT pulsed collector current 18 A
C
Each IGBT total dissipation at TC = 25 °C 8 W
(1)
IN
Equation 1
= 0)
600 V
.
Equation 1
V
: collector emitter voltage
CES
)T(I
=
CC
TT
Cmaxj
))T(IT(@VR
CCmax,j)(max)sat(CE)cj(th
The power stage of the SLLIMM-nano is based on IGBTs (and freewheeling diodes) having 600 V V
rating. Generally, considering the intelligent power module internal stray
CES
inductances during the commutations, which can generate some surge voltages, the maximum surge voltage between P-N (V
Figure 7
. At the same time, considering also the surge voltage generated by the stray
PN(surge)
) allowed is lower than V
, as shown in
CES
inductance between the device and the DC-link capacitor, the maximum supply voltage (in steady-state) applied between P-N (V
) must be even lower than V
PN
PN(surge)
. Thanks to the small package size and the lower working current, this phenomenon is less marked in the SLLIMM-nano than in a big intelligent power module.
12/60 Doc ID 022726 Rev 1
AN4043 Inverter design concept and SLLIMM-nano solution

Figure 7. Stray inductance components of output stage

7KHUHDOYROWDJHRYHUWKH,*%7
FDQH[FHHGWKHUDWLQJYROWDJH
'XHWRGLGW YDOXHDQGSDUDVLWLF
LQGXFWDQFHWKHRYHUYROWDJHVSLNH
)ODW9
YDOXH
31
FDQDSSHDURQWKH6//,00SLQV
9
9
31VXUJH
31
3
+LJK GLGW
YDOXH
9
9
EXV
EXV
+9,&
WRPRWRU
&
89:
1
6//,00QDQR
3DUDVLWLFLQGXFWDQFH
GXHWRWKH6//,00LQWHUQDOOD\RXW
±I
: each IGBT continuous collector current
C
The allowable DC current continuously flowing at the collector electrode (T parameter is calculated according to

Table 3. Control part of the STGIPN3H60

Symbol Parameter Value Unit
V
OUT
V
CC
V
CIN
V
OP+
V
OP
V
boot
V
V
SD/OD
dV
OUT
Output voltage applied between OUTU, OUTV, OUTW, and
GND (V
CC
Low voltage power supply -0.3 to 21 V
Comparator input voltage -0.3 to VCC +0.3 V
Op amp non-inverting input -0.3 to V
Op amp inverting input -0.3 to V
Bootstrap voltage -0.3 to 620 V
IN
Logic input voltage applied between HIN, LIN and GND -0.3 to 15 V
Open drain voltage -0.3 to 15 V
/dt Allowed output slew rate 50 V/ns
Equation 1
=15 V)
3DUDVLWLFLQGXFWDQFH
GXHWR3&%OD\RXW
!-V
.
V
-21 to V
boot
= 25 °C). The IC
C
+0.3 V
boot
+0.3 V
CC
+0.3 V
CC
V
: low voltage power supply
CC
Doc ID 022726 Rev 1 13/60
Inverter design concept and SLLIMM-nano solution AN4043
VCC represents the supply voltage of the control part. A local filtering is recommended to enhance the SLLIMM-nano noise immunity. Generally, the use of one electrolytic capacitor (with greater value but not negligible ESR) and one smaller ceramic capacitor (hundreds of nF), faster than the electrolytic one to provide current, is suggested.
Please refer to

Table 4. Supply voltage and operation behavior

Ta b le 4
in order to properly drive the SLLIMM-nano.
VCC voltage (typ. value)
Operating behavior
STGIPN3H60A STGIPN3H60
< 10 V < 12 V
As the voltage is lower than the UVLO threshold the control circuit is not fully
turned on. A perfect functionality cannot be guaranteed.
12 V – 17 V 13.5 V – 18 V Typical operating conditions
> 18 V > 21 V Control circuit is destroyed

Table 5. Total system

Symbol Parameter Value Unit
T
J
T
C
Operating junction temperature -40 to 150 °C
Module case operation temperature -40 to 125 °C
14/60 Doc ID 022726 Rev 1
AN4043 Electrical characteristics and functions

2 Electrical characteristics and functions

In this section the main electrical characteristics of the power stage are discussed, together with a detailed description of all the SLLIMM-nano functions.

2.1 IGBTs

The SLLIMM-nano achieves power savings in the inverter stage thanks to the use of IGBTs manufactured with the proprietary advanced PowerMESH™ process.
These power devices, optimized for the typical motor control switching frequency, offer an excellent trade-off between voltage drop (V minimize the two major sources of energy loss, conduction and switching, reducing the environmental impact of daily-use equipment. A full analysis on the power losses of the complete system in reported in

2.2 Freewheeling diodes

Turbo 2 ultrafast high voltage diodes have been adequately selected for the SLLIMM-nano family and carefully tuned to achieve the best t diodes in order to further improve the total performance of the inverter and significantly reduce the electromagnetic interference (EMI) in the motor control applications which are quite sensitive to this phenomena.
Section 4: Power losses and dissipation
) and switching speed (t
CE(sat)
/VF trade-off and softness as freewheeling
rr
), and therefore
fall
.

2.3 High voltage gate drivers

The SLLIMM-nano is equipped with a versatile high voltage gate driver IC (HVIC), designed using BCD offline (Bipolar, CMOS, and DMOS) technology (see suited to field oriented control (FOC) motor driving applications, able to provide all the functions and current capability necessary for high-side and low-side IGBT driving. This driver can be used in all applications where high voltage shifted control is necessary and it includes a patented internal circuitry which replaces the external bootstrap diode.
Figure 8
) and particularly
Doc ID 022726 Rev 1 15/60
Electrical characteristics and functions AN4043

Figure 8. High voltage gate drive die image

Each high voltage gate driver chip controls two IGBTs in half bridge topology, offering basic functions such as dead time, interlocking, integrated bootstrap diode, and also advanced features such as smart shutdown (patented), fault comparator, and a dedicated high performance op amp for advanced current sensing. A schematic summary of the features by device are listed in
Ta bl e 1
.
In this application note the main characteristics of a high voltage gate drive related to the SLLIMM-nano are discussed. For a greater understanding, please refer to the AN2738 application note.
16/60 Doc ID 022726 Rev 1
AN4043 Electrical characteristics and functions

Figure 9. High voltage gate driver block diagram

9
&&
IURPP&
IURPP&
IURPWRP&
&
')
WR$'&
9
&&
89
%RRWVWUDSGULYHU%RRWVWUDSGULYHU
IURP/9*
GHWHFWLRQ
+,1
9
/RJLF
6KRRW
WKURXJK
SUHYHQWLRQ
/,1
9
%LDV
5
6'
6'2'
&
6'
*1'
6PDUW
GRZQ
'7
6KXWGRZQ
ODWFK
VKXW
'HDG
WLPH
5
23
')
287
)ORDWLQJVWUXFWXUH
&'6' %6+10
GHWHFWLRQ
/HYHO
VKLIWHU
+9,&
6//,00QDQR
89
78
99
&RPS
9&&9
&&
2SDPS
%227
+9*
6 5
GULYHU
+9*
287
9
3
%227
WR'&OLQN
&
%227
WRPRWRU
89:
9&&9
&&
/9*
GULYHU
/9
*
1
&3
9
5()
!-V
&,1
23
23
&
5
5
6)
9
%LDV
6+817
6)

2.3.1 Logic inputs

The high voltage gate driver IC has two logic inputs, HIN and LIN, to separately control the high-side and low-side outputs, HVG and LVG. Please refer to logics by device.
In order to prevent any cross conduction between high-side and low-side IGBT, a safety time (dead time) is introduced (see
management
All the logic inputs are provided with hysteresis (~1 V) for low noise sensitivity and are TTL/CMOS 3.3 V compatible. Thanks to this low voltage interface logic compatibility, the SLLIMM-nano can be used with any kind of high performance controller, such as microcontrollers, DSPs or FPGAs.
As shown in the block diagrams of pull-down (or pull-up) resistors in order to set a proper logic level in the case of interruption in the logic lines. If logic inputs are left floating, the gate driver outputs LVG and HVG are set to low level. This simplifies the interface circuit by eliminating the six external resistors, therefore, saving cost, board space and number of components.
for further details).
Ta bl e 1
for the input signal
Section 2.3.4: Dead time and interlocking function
Figure 10
and
Figure 11
, the logic inputs have internal
Doc ID 022726 Rev 1 17/60
Electrical characteristics and functions AN4043
Figure 10. Logic input configuration for the STGIPN3H60A
9
&&
%RRWVWUDSGULYHU
9
%227
3
89GHWHFWLRQ89GHWHFWLRQ
+LJKVLGH
/RJLF
YHO
OH
VKLIWLQJ
+,1
/,1
RWWKURXJK
6KR
YHQWLRQ
SUH
GUL
YHU
/RZVLGH
GUL
YHU
287
+9,&
6//,00QDQR
1
!-V
Figure 11. Logic input configuration for the STGIPN3H60
%RRWVWUDSGULYHU
9
&&
89GHWHFWLRQ89GHWHFWLRQ
/RJLF
+,1
9
6KR
RWWKURXJK
SUHYHQWLRQ
/,1/,1
6KX
WGRZQ
6'
6PDUW6'
+9,&
6//,00QDQR
+LJKVLGH
OH
YHO
VKLIWLQJ
GUL
YHU
/RZVLGH
YHU
GUL
9
%227
3
287
1
&,1
9
5()
!-V
The typical values of the integrated pull-up/down resistors are shown in
18/60 Doc ID 022726 Rev 1
Ta bl e 6
:
+ 42 hidden pages