ST AN3275 APPLICATION NOTE

AN3275
Application note
Improving the performance of smartcard interfaces
using the ST8024L
Introduction
The ST8024L is a smartcard interface offered as a drop-in replacement for the ST8024 device. Enhancements and changes to the ST8024L device include:
Incorporated 1.8 V V
Lower V
threshold voltage
TH
This application note provides information and suggestions for the optimal use and performance of the ST8024L smartcard interface, including PCB layout, external component placement, and connections (see ST8024L application hardware guidelines on page 18). The implementation of all the blocks and procedures for card activation and deactivation (see Figure 1) of the smartcard are also explained.
The ST8024L is a smartcard interface designed to minimize microprocessor hardware and software complexity in all applications that require a smartcard (e.g., set-top box, electronic payment, pay TV, and identification cards). The electrical characteristics of the ST8024L are in accordance with New Digital Systems (NDS) and compliant with ISO7816-3, GSM11.11, and EMV 4.0. Two devices (ST8024LCDR and ST8024LCTR) in the ST8024L family have been certified by NDS.
CC
output

Figure 1. ST8024L internal block diagram

V
DD
100nF
21 6
18
23
20
19
3
1
2
24
25
27
28
26
SUPPLY
INTERNAL
REFERENCE
VOLTAGE SENSE
CLOCK
CIRCUITRY
OSCILLATOR
ST8024L
22
GND
HORSEQ
CLK
V
ALARM
ref
POWER_ON
SEQUENCER
V
OFF
RSTIN
CMDVCC
CLKDIV2
CLKDIV2
XTAL1
XTAL2
AUX1U C
AUX2U C
I/OUC
DD
5V/3V
(1)
R
1
PORADJ/1.8V
(1)
R
2
(1)
(2)
(2)
(2)
(2)
V
DDP
100nF 100nF
STEP-UP CONVERTER
INTERNAL OSCILLATOR
2.5 MHz
CLKUP
EN1
EN3
THERMAL
PROTECTION
C1–
7
EN2
PV
CC
GENERATOR
EN5
BUFFER
EN4
CLOCK
BUFFER
I/O
TRANSCEIVER
I/O
TRANSCEIVER
I/O
TRANSCEIVER
C1+
5
4
PGND
V
8
UP
100nF
V
CC
V
CC
RST
17
100nF
14
CGND
16
RST
15
CLK
10
PRES
9
(2)
PRES
13
(2)
AUX1
12
11
AUX2
I/O
(2)
CS18100
October 2010 Doc ID 17962 Rev 1 1/32
www.st.com
Contents AN3275
Contents
1 Activation/deactivation sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Card clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Emergency deactivation/fault detection . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1 PORADJ VDD undervoltage without external resistor bridge . . . . . . . . . . . 9
3.2 PORADJ V
3.3 Fault on card removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 V
3.5 V
3.6 Overtemperature fault protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
short-circuit fault protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
CC
drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
DDP
undervoltage with external divider . . . . . . . . . . . . . . . . . . . 11
DD
4 ST8024L application hardware guidelines . . . . . . . . . . . . . . . . . . . . . . 18
4.1 Power supply optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Clock section optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Smartcard connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Input and output connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2/32 Doc ID 17962 Rev 1
AN3275 List of tables
List of tables
Table 1. CLK division factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 2. Resistor values for V Table 3. V Table 4. V
Table 5. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
PORADJ
CC
trip point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
selection settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
TH(ext)fall
trip point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Doc ID 17962 Rev 1 3/32
List of figures AN3275
List of figures
Figure 1. ST8024L internal block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 2. ST8024L activation sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 3. Deactivation sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 4. Card activation/deactivation flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 5. CLKDIV change clock duty cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 6. ST8024L automatic deactivation sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 7. External resistor bridge applied to PORADJ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 8. V Figure 9. V
TH(ext) rise
TH(ext) fall
Figure 10. Card extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 11. ST8024L activation sequence (after t
Figure 12. ST8024L current supply sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 13. I
short-circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
SC
Figure 14. Deactivation caused by V
Figure 15. ST8024L application PCB top layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 16. ST8024L application PCB bottom layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 17. Step-up converter block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 18. ST8024L application PCB storage and pumping capacitors . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 19. ST8024L application PCB crystal (XTAL) connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 20. ST8024L application PCB smartcard connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 21. Ripple on V Figure 22. Ripple on V Figure 23. Ripple on V
Figure 24. ST8024L application PCB schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
(external rising threshold voltage on VDD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
(external falling threshold on VDD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
debounce
drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
DDP
output voltage, 80 mA pulsed load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
CC
output voltage, 65 mA pulsed load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
CC
output voltage, 50 mA pulsed load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
CC
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4/32 Doc ID 17962 Rev 1
AN3275 Activation/deactivation sequence

1 Activation/deactivation sequence

The core of the ST8024L is the sequencer (shown in Figure 1 on page 1) that must coordinate the Enable signals for the activation and deactivation sequence as well as check for possible fault conditions. The smart card is basically a microcontroller and needs to be activated/deactivated by a correct sequence as required by the ISO/IEC7816 standard. The ST8024L activation and deactivation sequences are shown in Figure 2 and Figure 3 on
page 6, respectively. Please refer to the ST8024L datasheet for details.
Figure 2 shows the activation sequence (the card is active) and CMDVcc
low. The activation sequence starts and the first block to be enabled is the step-up converter (V
), linked to En1 (see Figure 1), while the last enabled signal is RST that allows the card
UP
software to start.
Figure 3 shows the deactivation sequence (when CMDVcc
an automatic deactivation sequence, finishing in the inactive state after t time).

Figure 2. ST8024L activation sequence

goes high). The circuit executes
taken from high to
(deactivation
de
Doc ID 17962 Rev 1 5/32
Activation/deactivation sequence AN3275

Figure 3. Deactivation sequence

6/32 Doc ID 17962 Rev 1
AN3275 Activation/deactivation sequence

Figure 4. Card activation/deactivation flowchart

Start
OFF pin = V
Set CMDVcc
from high to low
Initiate activation
Charge pump is ON
Regulator is ON
I/O is enabled
CLK is active
Set RSTIN
from low to high
Start card
communication
Completed
Set CMDVcc
from low to high
DD
No
Error message
“No Card”
End
Fault detection
OFF pin = GND
Ye s
Ala
rm error message
“Error during
communication”
Initiate deactivation
RST goes high
CLK is disabled
I/O is disabled
Regulator is OFF
Charge pump is OFF
No
No alarm
Initiate deactivation
RST goes low
CLK is disabled
I/O is disabled
Regulator is OFF
Charge pump is OFF
End
Set CMDVcc
from low to high
End
AM04943v1
Doc ID 17962 Rev 1 7/32
Card clock AN3275

2 Card clock

The card clock signal (CLK) is present on the CLK pin when the ST8024L is activated. It is linked to the internal En4 signal (see Figure 1 on page 1) and its frequency is obtained according to the settings in Tab le 1 .
According to the ISO/IEC7816 specifications, the CLK duty cycle must be guaranteed between 45% and 55%, even when the status of CLKDIV1 or CLKDIV2 changes. Figure 5 shows how the ST8024L ensures duty cycle accuracy by waiting for completion of a whole clock cycle before changing the frequency (CLKDIV1 change, rising edge of CH2). The output duty cycle is 50% ±5%, even if the clock division changes.
The card clock signal (CLK) can be established by connecting a crystal (“XTAL”) between the XTAL1 and XTAL2 pins, or by an external signal applied to the XTAL1 pin. In this case, the XTAL2 pin must be left floating. The external signal voltage level must be limited between GND and V

Table 1. CLK division factor

voltage.
DD
CLKDIV1 CLKDIV2 f
0 0 1/8 f
0 1 1/4 f
1 1 1/2 f
10f

Figure 5. CLKDIV change clock duty cycle

clk
XTAL
XTAL
XTAL
XTAL
CH1 = output CLK waveform
CH2 = CLKDIV1 pin
Conditions: V
= 3.3 V; V
DD
= 5 V; 5/3V = H
DDP
Mode: ACTIVE
f
= 10 MHz; CLKDIV2 = 0 V
XTAL
8/32 Doc ID 17962 Rev 1
AN3275 Emergency deactivation/fault detection

3 Emergency deactivation/fault detection

ST8024L is equipped with a fault detection circuitry which monitors the following conditions (see Figure 1 on page 1):
V
Fault on card removal
V
V
Overtemperature

3.1 PORADJ VDD undervoltage without external resistor bridge

The PORADJ pin can be used to provide early detection of power failure on VDD. The ST8024L logic circuitry is supplied by V damage or malfunction of the device and/or card, a voltage supervisor block is embedded (see Figure 1). This block monitors V voltage on V and V
As V 100 mV, typ), after a certain amount of time (t reset pulse width, 8 ms typ, see Figure 6 on page 10), CMDVcc sequence starts and V to GND to avoid capturing noise is recommended.
undervoltage
DD
short-circuit
CC
drop, and
DDP
, 2.45 V, typ), the supervisor immediately starts the deactivation sequence
DD
goes low.
CC
goes higher than V
DD
. In order to avoid voltage spikes that could cause
DD
TH2
+ V
and when it gets lower than V
DD
HYS2
, (V
is the hysteresis of threshold voltage,
HYS2
w
+ t
debounce
, where tw is the internal power-on
(falling threshold
TH2
goes low. The activation
goes high. The PORADJ pin can be left floating, but connecting it
CC
Note: See Fault on card removal on page 14 for t
debounce
feature details.
Doc ID 17962 Rev 1 9/32
Emergency deactivation/fault detection AN3275

Figure 6. ST8024L automatic deactivation sequence

CH1 = CMDVcc
CH2 = V
CC
CH3 = OFF
CH4 = V
DD
Conditions: VDD = 3.3 V; V
Mode: ACTIVE
f
= 10 MHz; CLKDIV2 = 0 V
XTAL
Note: Deactivation: V
Activation: As V
2.393 V.
TH2
V
DD
TH2
= 5 V; 5/3V = H
DDP
+ V
(2.498 V) and CMDVcc goes low, VCC goes high.
HYS2
10/32 Doc ID 17962 Rev 1
Loading...
+ 22 hidden pages