ST AN3157 APPLICATION NOTE

April 2010 Doc ID 17105 Rev 1 1/26
AN3157
Application note
STEVAL-IPE010V1 poly-phase demonstration kit
for the STPMC1 and STPMS1
Introduction
This application note describes the STEVAL-IPE010V1 poly-phase demonstration kit for the
advanced 0.35 µm BCD6 technology.
The STPMC1 device functions as an energy calculator in power line systems, using the
Rogowski current transformer and shunt or Hall current sensors. It is used in combination
with one or more STPMS1 devices. It implements all the functions needed in a 1, 2 or 3-
phase energy meter, providing the effective measurement of active and reactive energies,
V
RMS
, I
RMS
, instantaneous voltage and current-per-phase in 1, 2 or 3-phase wye and delta
services, from 2 to 4 wires.
In a stand-alone configuration the STPMC1, which sends a pulse train signal with a
frequency proportional to the cumulative active power, can directly drive a stepper motor,
therefore implementing a simple active energy meter.
This device can also be coupled to a microprocessor for multi-function energy meters. In this
case, the measured data is read at a fixed time interval from the device internal registers by
the microcontroller through the SPI interface.
The STPMS1 is an ASSP designed as a building block for single or multi-phase energy
meters. It consists of a pre-amplifier and two 1st order ΔΣ modulators, band-gap voltage
reference, a low-drop voltage regulator and DC buffers in its analog section, and a clock
generator and output multiplexer in its digital section.
The demonstration kit is made up of a main board with the STPMC1 mounted, and it can be
coupled with up to 5 daughterboards, each with an STPMS1 mounted to sense the voltage
and current of each phase.
Note: The demonstration kit is available on request.

Figure 1. Demonstration kit block diagram

N R S T
Current
Sensor
Current
nsor
rent
nsor
Vol t age
Sensor
tage
Sensor
tage
nsor
Current
Sensor
STPMS1
STPMS1
STPMS1
STPMS1
STPMC1
DAR
DAS
DAH
CLK XTAL1 XTAL2
VSS VSSA
MOPMONVOTP
VCC
DAN
DAT
VDD
SDA- TD
SCL-NC
SYN- NP
SCS
LED
STPMC1
DAR
DAS
DAH
CLK XTAL1 XTAL2
VSS VSSA
MOPMONVOTP
VCC
DAN
DAT
VDD
SDA- TD
SCL-NC
SYN- NP
SCS
LED
e
t
n
s
o
r
t
a
g
e
S
e
s
o
S
T
P
M
S
1
C
u
r
r
e
n
t
n
s
o
r
t
a
g
e
n
s
o
r
S
S
C
u
r
r
e
n
t
S
e
n
s
o
r
S
T
P
M
S
1
P1P1
DARDAR
DATDATDANDAN
DAHDAH DASDAS
www.st.com
Contents AN3157
2/26 Doc ID 17105 Rev 1
Contents
1 Application description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Motherboard circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Daughterboard circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Current sensing circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Anti-aliasing filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Voltage sensing circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.4 Crosstalk cancellation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.5 Jumper settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Clock management network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Communication with microprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Board layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 Layout rules for the 3-phase system design . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Motherboard layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Daughterboard layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1 3-phase energy measurement accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.1 Test with symmetrical voltages and balanced load at P
F
= 1 . . . . . . . . . 12
4.2 Typical phase energy measurement accuracy . . . . . . . . . . . . . . . . . . . . . 13
4.2.1 Test with only one phase load at P
F
= 1 . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Test with only one phase load at P
F
= 0.5 inductive and 0.8 capacitive . . 14
Appendix A 3-phase systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
A.1 Power in 3-phase AC circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
A.2 Power measurement techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
A.2.1 Two-wattmeter method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
A.2.2 Three-wattmeter method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
A.2.3 One wattmeter method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
AN3157 Contents
Doc ID 17105 Rev 1 3/26
Appendix B BOM list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Application description AN3157
4/26 Doc ID 17105 Rev 1

1 Application description

The purpose of this STEVAL-IPE010V1 demonstration kit is to provide an evaluation
platform for the STPMC1 and STPMS1 devices, but it can also be used as a starting point to
design a Class 1 meter for 2 to 4-wire power line systems using delta or wye service.
Each phase is monitored by an independent daughterboard, in which an autonomous power
supply is provided to the board itself and, once it is connected, also to the motherboard.
In this board, the STPMS1 device senses the phase current through a CT or a shunt sensor,
and the phase voltage through a voltage divider. The presence of dedicated networks
reduces greatly the sampling (aliasing) noise and the crosstalk noise between voltage and
current channels, increasing meter precision. The STPMS1 produces a sigma-delta stream,
sent together with the supply voltage, to the STPMC1 through a card edge connector.
The motherboard receives the sigma-delta streams from the daughterboards which are
further elaborated by the STPMC1. This device, from a 4.194 MHz crystal oscillator,
provides a common clock with programmable frequency to all the daughterboards.
The motherboard, through a 10-pin flat cable connector (P1 in Figure 2) can be interfaced to
a microprocessor board to implement advanced metering features (multi-tariff, data
management and storage, communication, etc). It also has stepper motor connectors for a
simple energy meter implementation (W2, W5 in Figure 2).
The STPMC1 board can also be connected to a dedicated GUI (graphical user interface)
through the STPMxx parallel programmer/reader released with the application.

1.1 Operating conditions

Table 1. Operating conditions

Condition Value Unit
V
NOM
230 V
RMS
I
NOM
CT: I
NOM
= 1
Sh: I
NOM
= 5
A
RMS
I
MAX
CT: I
MAX
= 30
Sh: I
MAX
= 80
A
RMS
f
LIN
50 / 60 ± 10% Hz
T
OP
- 40 / + 85 °C
AN3157 Circuit description
Doc ID 17105 Rev 1 5/26

2 Circuit description

2.1 Motherboard circuit

The motherboard consists of the following sections:
STPMC1 circuit
Connectors
The schematic of the board is shown in Figure 2 and in Figure 3.

Figure 2. STPMC1 circuit schematics

VCC
VCC VCC VCC
VCC
VCC
VCC
DAR
DASDAT
CLK
DAN
DAH
CLK NCLK
R 61
4.7K
U8
STPMC1
1
2
3
4
5
6
7
8
9
1011
12
13
14
15
16
17
18
19
20
MON
MOP
SCS
VDD
VSS
VCC
VOTP
DAH
DAR
DASDAT
DAN
CLK
VSSA
SYN
CLKIN
CLKOUT
SCLNLC
SDATD
LED
R 62
4.7K
DAT
W34
1
2
W2 MON
W5 MOP
Y1
4194.304KHz
P1
1
5
910
8
6
4
2
3
7
U9A
ST_m74hc14
1 2
R56100
D7
+
C66
1000u
R16
100
C63
TP2
C61
15p
C64
10n
R15
100
DAN
R 60
4.7K
C65
100n
D10
DAH
R35
100
D11
R 63
4.7K
CLK
D8
D12
R55100
U9G
ST_m74hc14
7 14
GND VCC
C62
15p
R64
1M1%
DAR
W8
GND
D9
DAS
VCC
VCC VCC VCC
VCC
VCC
VCC
DAR
DASDAT
CLK
DAN
DAH
CLK NCLK
R 61
4.7K
U8
STPMC1
1
2
3
4
5
6
7
8
9
1011
12
13
14
15
16
17
18
19
20
MON
MOP
SCS
VDD
VSS
VCC
VOTP
DAH
DAR
DASDAT
DAN
CLK
VSSA
SYN
CLKIN
CLKOUT
SCLNLC
SDATD
LED
R 62
4.7K
DAT
W34
1
2
W2 MON
W5 MOP
Y1
4194.304KHz
P1
1
5
910
8
6
4
2
3
7
U9A
ST_m74hc14
1 2
R56100
D7
+
C66
1000u
R16
100
C63
TP2
C61
15p
C64
10n
R15
100
DAN
R 60
4.7K
C65
100n
D10
DAH
R35
100
D11
R 63
4.7K
CLK
D8
D12
R55100
U9G
ST_m74hc14
7 14
GND VCC
C62
15p
R64
1M1%
DAR
W8
GND
D9
DAS
Circuit description AN3157
6/26 Doc ID 17105 Rev 1

2.2 Daughterboard circuit

This section describes the implementation of each phase network which performs the power
measurement.
The schematic can be divided into the following subsets:
Current sensing circuit (1) or (2)
Anti-aliasing filter (3)
Voltage sensing circuit (4)
Crosstalk cancellation network (5)

2.2.1 Current sensing circuit

The STPMS1 has an external current sensing circuit using either a current transformer, in
which a burden resistor is used to produce a voltage between CIN and CIP proportional to
the current measured, or a shunt resistor.

2.2.2 Anti-aliasing filter

The anti-aliasing filter is a low-pass filter which has a negligible influence on the voltage
drop between CIN and CIP, and VIN and VIP. The aim of which is to reduce the distortion
caused by the sampling (also called aliasing) by removing the out-of-band frequencies of
the input signal before sampling it with the analog-to-digital converter.
Filtering is easily implemented with a resistor-capacitor (RC) single-pole circuit which
obtains an attenuation of - 20 dB/dec.

2.2.3 Voltage sensing circuit

A resistor divider is used as a voltage sensor. The 600 kΩ resistor is separated into four, 4 x
150 kΩ, in-series resistors, which ensure that a high voltage transient does not bypass the
resistor. This also reduces the potential across the resistors, thereby decreasing the
possibility of arcing. The following resistors are used to implement the resistor divider:
R = R13 + R2 + R3 + R4 = 600 kΩ
R5 = 475 Ω
The L1 inductor and the C2 capacitor create a filter which prevents electromagnetic
interference (EMI).

Figure 3. Motherboard connector schematics

VCC
VCC
VCC VCC
VCC VCC
NCLK
CLK
DAR DAS DAT
NCLK
CLK
NCLK
CLK
J1
Card_Edge_10
F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
J2
Card_Edge_10
F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
J3
Card_Edge_10
F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
VCC VCC
VCCVCC
DAN DAH
NCLK
CLK
NCLK
CLK
J5
Card_Edge_10
F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
J4
Card_Edge_10
F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
VCC
VCC
VCC VCC
VCC VCC
NCLK
CLK
DAR DAS DAT
NCLK
CLK
NCLK
CLK
J1
Card_Edge_10
F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
J2
Card_Edge_10
F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
J3
Card_Edge_10
F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
VCC VCC
VCCVCC
DAN DAH
NCLK
CLK
NCLK
CLK
J5
Card_Edge_10
F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
J4
Card_Edge_10
F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
AN3157 Circuit description
Doc ID 17105 Rev 1 7/26

2.2.4 Crosstalk cancellation network

The voltage front-end handles voltages of considerable amplitude, which makes it a
potential source of noise. Disturbances are readily emitted into current measurement
circuitry where they interfere with the actual signal to be measured. Typically, this produces
a non-linear error at small signal amplitudes and non-unity power factors. At unity power
factors, voltage and current signals are in phase and crosstalk between voltage and current
channels merely appears as a gain error, which can be calibrated. When voltage and
current are not in phase, crosstalk has a non-linear effect on the measurements, which
cannot be calibrated.
Crosstalk is minimized through good PCB planning and the proper use of filter components
in the crosstalk network. Recommended filter components are shown in Figure 4. The
network subtracts a signal proportional to the voltage input from the current input. This
prevents crosstalk.
Figure 4. Daughterboard circuit schematic
1
3
4
5
2
VCC
VCC
VCC
VCC
CLK
CLK
NCLK
NCLK
CLK
NCLK
CLK
DAR
DAR
R18
0
C13 100n
U1
stpms1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
vdd_reg
gnd_reg
vdd_ac
gnd_ac
cip
cin
vip
vin
vdd_av
vdd_d
ms0
ms1
clk
datn
dat
vcc
e1
e2
e3
e4
J1
Card_Edge_10
F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
C5
1u
C14
1u
VREG
170u
CLK
R7 1K 1%
R16
0
SH1
170u
JP1
1
2
3
45
6
7
8
C6
1u
JP2
1
2
3
45
6
7
8
TR1
E4622_X503
1
2
3
4
C7
5n
C12 100n
R14
10
R8 1K 1%
R6
3.4 1%
C8
5n
DAR
R15
0
D1
C3 22n
R1 82
VCC
C11
1u
N
R4 150k
R11
100 1%
R10
2.2M 1%
R2 150k
GND
R3 150k
D2
L1
220u
VCC
C2 1n
R5
475 1%
R17
10
R9
42.2k 1%
C1 470n
R13 150k
V1 460V
12
F
1
3
4
5
2
VCC
VCC
VCC
VCC
CLK
CLK
NCLK
NCLK
CLK
NCLK
CLK
DAR
DAR
R18
0
C13 100n
U1
stpms1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
vdd_reg
gnd_reg
vdd_ac
gnd_ac
cip
cin
vip
vin
vdd_av
vdd_d
ms0
ms1
clk
datn
dat
vcc
e1
e2
e3
e4
J1
Card_Edge_10
F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
C5
1u
C14
1u
VREG
170u
CLK
R7 1K 1%
R16
0
SH1
170u
JP1
1
2
3
45
6
7
8
C6
1u
JP2
1
2
3
45
6
7
8
TR1
E4622_X503
1
2
3
4
C7
5n
C12 100n
R14
10
R8 1K 1%
R6
3.4 1%
C8
5n
DAR
R15
0
D1
C3 22n
R1 82
VCC
C11
1u
N
R4 150k
R11
100 1%
R10
2.2M 1%
R2 150k
GND
R3 150k
D2
L1
220u
VCC
C2 1n
R5
475 1%
R17
10
R9
42.2k 1%
C1 470n
R13 150k
V1 460V
12
F
Circuit description AN3157
8/26 Doc ID 17105 Rev 1

2.2.5 Jumper settings

The on-board jumpers JP1 and JP2 allow the setting of the STPMS1 device according to
Ta bl e 2 and Tab le 3 below:
For further details on device configuration please refer to the device datasheet.

2.3 Clock management network

A 4.194 MHz quartz is used to supply the clock for the STPMC1 device. To set this
frequency, internal configuration bits MDIV and FR1 must be kept cleared.
A synchronized clock is provided to all STPMS1 devices through the CLK pin, the frequency
of which is programmable through bit HSA to 1.049 MHz or 2.097 MHz.

2.4 Communication with microprocessor

A control board with an embedded microprocessor may be connected to connector P1 using
a 10-wire flat cable. Ta bl e 4 describes the pinout of the connector.
The STPMC1 has an SPI communication port implemented by four multi-purpose pins
(SCS, SYN-NP, SDA-TD, SCL-NLC).
In stand-alone operating mode these multi-purpose pins produce:
negative power direction on the SYN-NP pin
tamper condition detected on the SDA-TD pin
no load condition detected on the SCL-NLC pin
For this reason these pins are connected to the three LEDs D9, D10 and D11.
In this configuration, the LED pin produces a pulse train with a frequency proportional to the
3-phase power and is connected to LED D12.
Table 2. Modes of operation
JP1 MS0 Description
1 1 Rogowsky mode, ampl = 32
2 NCLK ampl = 32 (reserved for future expansion)
3 0 Current transformer mode, ampl = 8
4 CLK shunt mode, ampl = 32, fclk = 8*mclk
Table 3. Changing of band-gap voltage reference
JP2 MS1 Description
1 1 TC = 190 ppm/°C
2 NCLK TC = 125 ppm/°C
3 0 TC = 100 ppm/°C
4 CLK TC = 170 ppm/°C
Loading...
+ 18 hidden pages