ST AN3108 Application note

AN3108
Application note
STLM75 firmware library for the STM32F10x
Introduction
This application note describes the firmware library implementing the STLM75 interface for the STM32F10xxx (STM32F101x, STM32F103x, STM32F105x, STM32F107x) microcontroller.
The firmware library source code is developed in 'Strict ANSI-C' (relaxed ANSI-C for the example application). Writing the whole library in 'Strict ANSI-C' makes it independent from the software toolchain. In addition, the firmware architecture is developed in separate layers and the HAL (hardware abstraction layer) makes it independent from the microcontroller used in the final application.
2
C read/write operation steps. As a result, using
Even though the firmware library source code is developed in 'ANSI-C', the code architecture follows an OOP (object oriented programming) approach.
Section 1 describes document and library rules.
Section 2 highlights the features of the STLM75 sensor and explains its hardware interface
with a master device microcontroller (STM32 in this case).
Section 3 and 4 highlight the features of the firmware library and describe its architecture
and its exported APIs (application programming interfaces) in detail.
Section 5 contains an example application source code describing how to configure and use
the library.
October 2010 Doc ID 16793 Rev 1 1/44
www.st.com
Contents AN3108
Contents
1 Document and library rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1 Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 STLM75 temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Sensor introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Interfacing the sensor with the microcontroller . . . . . . . . . . . . . . . . . . . . . . 6
3 STLM75 library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Library package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Library architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.1 API layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.2 HAL layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 STLM75 library firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1 API layer firmware overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 HAL Layer firmware overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.1 HAL types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 HAL functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5 Example application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1 main.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2/44 Doc ID 16793 Rev 1
AN3108 List of tables
List of tables
Table 1. List of abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 2. Signal names and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 3. Function description format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 4. NewTempSensor API function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 5. DelTempSensor API function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 6. Init API function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 7. Reset API function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 8. SetI2C_Settings API function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 9. SetSignals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 10. GetSignals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 11. SetRegister . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 12. GetRegister. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 13. SetConfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 14. GetConfiguration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 15. GetTemperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 16. SetTempHysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 17. GetTempHysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 18. SetTempOverLimit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 19. GetTemperatureOverLimit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 20. TS_ConfigSignal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 21. TS_InitI2C_Peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 22. TS_ResetI2C_Peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 23. TS_CheckEventWithTimeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 24. TS_FillDataFromRegister . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 25. TS_FillRegisterFromData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 26. TS_SetPointerRegister . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 27. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Doc ID 16793 Rev 1 3/44
List of figures AN3108
List of figures
Figure 1. Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. Typical 2-wire interface connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 3. Firmware library project files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 4. Firmware library architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 5. Firmware library API and types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 6. Application project files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4/44 Doc ID 16793 Rev 1
AN3108 Document and library rules

1 Document and library rules

This document uses the conventions described in the sections below.

1.1 Acronyms

The following table lists the acronyms used in this document.

Table 1. List of abbreviations

Acronym Meaning
API Application programming interface
HAL Hardware abstraction layer
MCU Microcontroller unit
I2C Inter-integrated circuit
OOP Object oriented programming
Doc ID 16793 Rev 1 5/44
STLM75 temperature sensor AN3108

2 STLM75 temperature sensor

2.1 Sensor introduction

The STLM75 is a high-precision digital CMOS temperature sensor IC with a sigma-delta temperature-to-digital converter and an I
2
C-compatible serial digital interface. It is targeted at general applications such as personal computers, system thermal management, electronics equipment, and industrial controllers, and is packaged in the industry standard 8-lead TSSOP and SO8 packages. The device contains a band-gap temperature sensor and 9-bit ADC which monitor and digitize the temperature to a resolution up to 0.5 °C. The STLM75 is typically accurate to ±3°C - max over the full temperature measurement range of
-55 °C to 125 °C with ±2 °C accuracy in the -25 °C to + 100 °C range (max). The STLM75 is factory-calibrated and requires no external components to measure temperature.
Refer to the STLM75 (Digital temperature sensor and thermal watchdog) datasheet for more information.

2.2 Interfacing the sensor with the microcontroller

The STLM75 has a simple 2-wire I2C-compatible digital serial interface which allows the user to access the data in the temperature register at any time. It communicates via the serial interface with a master controller which operates at speeds up to 400 kHz. Three pins (A0, A1, and A2) are available for address selection, and enable the user to connect up to 8 devices on the same bus without address conflicts. In addition, the serial interface gives the user easy access to all STLM75 registers to customize the operation of the device.
Figure 2 shows how the SMT32F10xxx microcontroller (master device) must be connected
to the STLM75 device.
Refer to the STLM75 datasheet for more information.

Figure 1. Logic diagram


3$!
3#,
!
!
!
Note: SDA and OS/INT are open drain.
6
$$
34,-
'.$
/3).4

!-V
6/44 Doc ID 16793 Rev 1
AN3108 STLM75 temperature sensor

Table 2. Signal names and pin descriptions

Pin Sym Type/direction Description
1 SDA Input/output Serial data input/output
2 SCL Input Serial clock input
3 OS/INT Output Over-limit signal/interrupt alert output
4 GND Supply ground Ground
5A
6A
7A
8V
2
1
0
DD
Input Address2 input
Input Address1 input
Input Address0 input
Supply power Supply voltage (2.7 V to 5.5 V)

Figure 2. Typical 2-wire interface connection diagram

0ULLUP
6
$$
½ K½
K
K½
0ULLUP
6
$$
34,-
6
$$
6
$$
½ &
/3).4
!
!
!

3$!
Note: SDA and OS/INT are open drain
3#,

'.$
-ASTER $EVICE
)#!DDRESS!!!
!-V
Doc ID 16793 Rev 1 7/44
STLM75 library AN3108

3 STLM75 library

3.1 Introduction

The STLM75 firmware library is fully developed in 'Strict ANSI-C' following an OOP approach. This means the final application using this library uses an instance of a temperature sensor object (TempSensor), and uses it according to its public methods and properties. The TempSensor is a structure containing public properties (data fields) and methods (functions pointers). The OOP encapsulation feature is assured.
The final application can create more than one TempSensor instance, and each instance can be matched with a different STLM75 temperature sensor assembled on the board. Therefore, the same library can be used to manage more temperature sensors simultaneously without communication and data conflict problems.
The library may be included in the final application as a library file (STLM75.a) and used as a black box through its exported public API, or can be included in the final application as source files (.c and .h), if the user wants to debug the library itself, or if it’s necessary to change the HAL functions in order to port the library on an alternative microcontroller to the STM32F10xxx.

3.2 Library package

The library was developed using the IAR EWARM 5.20 and the related workspace/project files are included in the delivered package. As all the firmware is written in 'Strict ANSI-C', the library porting on another toolset doesn't require any change in the library.
The library folder contains all the subdirectories and files that make up the core of the library:
The included sub-folder contains the firmware library header files. They don't need to
be modified by the user:
TempSensorObj.h: API layer file; this contains the Temperature Sensor Object
structure description in terms of methods and properties; The API functions are declared in this file.
TempSensorTypes.h: API layer file; this contains all the defined types used by
TempSensorObj.xxx files and related to the STLM75 temperature sensor.
TempSensorHal.h: HAL layer file; this contains all the Temperature Sensor
functions declaration whose implementation depends on the MCU used (STM32 for this delivery). The final user should change these files in order to reuse this STLM75 library with other microcontrollers
TempSensorHalTypes.h HAL layer file; this contains all the Temperature Sensor
types mapped on the used MCU library types (STM32 for this delivery). The final
8/44 Doc ID 16793 Rev 1
AN3108 STLM75 library
user should change this type mapping in order to reuse this STLM75 library with other microcontrollers
The source sub-folder contains the firmware library source files. They don't need to be
modified by the user:
TempSensorObj.c: API layer file; this contains the exported public API (Application
Programming Interface) and the related private internal functions. No direct reference to the Hardware and Micro firmware library occur in this file.
TempSensorHal.c: HAL layer file; this contains all the temperature sensor
functions implementation whose source code depends on the MCU used (STM32 for this delivery). The final user should change these file in order to reuse this STLM75 library with other microcontrollers
The STM32_Include sub-folder contains the STM32F10xxxV2.0.3 firmware library
included files. If the final user wants to use another microcontroller library version, replace this folder and check the HAL types and the microcontroller library function calls inside the HAL layer files (TempSensorHal.h, TempSensorHalTypes.h, TempSensorHal.c)
EWARMv5 sub-folder contains the IAR EWARM 5.20 workspace and project files:
STLM75_Lib.eww: The IAR workspace file
STLM75_Lib.ewp: The IAR project file

Figure 3. Firmware library project files

3.3 Library architecture

The library architecture is devised and developed in two separate layers:
API layer
HAL layer
This layer architecture improves the code reusability splitting the application programming interface code (fully portable and reusable) from the hardware abstraction layer code (hardware dependent and written onto the STM32F10xxx libraries).

3.3.1 API layer

The application programming interface layer allows the final application to use the library as a black-box. The library firmware encapsulation feature and exported API allow full control of
Doc ID 16793 Rev 1 9/44
STLM75 library AN3108
the STLM75 temperature sensor without the need of an in-depth study of sensor registers
2
and I
C read/write operation steps.
The API layer includes the following files:
TempSensorObj.h
TempSensorTypes.h
TempSensorObj.c;
See Section 4.1 for a more detailed description.

3.3.2 HAL layer

The hardware abstraction layer is directly built on the specific microcontroller firmware library and allows the built-upon layers, like the API layer, to implement its functions without the need of an in-depth study of the microcontroller used. This improves the library code reusability and guarantees easy portability on other microcontrollers.
The HAL layer includes the following files:
TempSensorHal.h
TempSensorHalTypes.h
TempSensorHal.c
See Section 4.2 for a more detailed description.
Figure 4. Firmware library architecture
10/44 Doc ID 16793 Rev 1
AN3108 STLM75 library firmware

4 STLM75 library firmware

This section describes the API and HAL layer implementation. Each library firmware function is described in detail. API and HAL layer functions are fully described. An example of how to use API functions is included. No example for HAL functions is provided because the final application should manage the STLM75 temperature sensor through the API layer functions only, without any direct access to the HAL functions.
The functions are described in the following format:

Table 3. Function description format

Name Description
Function name The name of the peripheral function
Function prototype Prototype declaration
Behavior description Brief explanation of how the function is executed
Input parameter {x} Description of the input parameters
Output parameter {x} Description of the output parameters
Return value Value returned by the function
Required preconditions Requirements before calling the function
Called functions Other library functions called

4.1 API layer firmware overview

The application programming interface layer allows the final application to easily use the STLM75 temperature sensor. An OOP approach is used, making it possible for the application to create and use one or more instances of a TempSensor object.
The TempSensor structure is seen by the application as an object with encapsulate properties and methods. All read/write operations on the temperature sensors are executed through this object. It is an advanced structure containing:
Properties as data fields
Methods as functions pointers
In this way, each API function belongs to the related TempSensor object instance and more instances, and then more temperature sensors, can be managed without any conflicts.
In addition, the library exports two public API global functions in order to create/destroy a TempSensor structure instance:
NewTempSensorObj function
DelTempSensorObj function
Doc ID 16793 Rev 1 11/44
STLM75 library firmware AN3108
NewTempSensorObj API global function
Ta bl e 4 describes the NewTempSensorObj function:

Table 4. NewTempSensor API function

Name Description
Function name NewTempSensorObj
Function prototype TempSensorType* NewTempSensorObj (void)
Behavior description Create and initialize a new TempSensor object (a C structure)
Input parameter {x} None
Output parameter {x} None
Return value The created object pointer or null if the object cannot be created
Required preconditions None
Called functions No API/HAL layers functions;
Example:
TempSensorType* pObjTempSensor;
pObjTempSensor = NewTempSensorObj ();
/* Hardware Configuration: Signals: SCL, SDA, OS_INT pins */
TS_SignalsType TempSensorSignals;
...
/* Hardware Configuration: I2C pheripheral */
TS_I2C_SettingsType TempSensorI2C_Settings;
...
/* Initialize the temperature sensor according to previous Signals and I2C_Settings */
pObjTempSensor->Init(pObjTempSensor, &TempSensorSignals, &TempSensorI2C_Settings);
Once a TempSensor object instance is created using the NewTempSensorObj function, the TempSensor object itself provides all its features through its internal function pointers.
Figure 2 shows the TempSensor object properties and methods in detail, which the final
application can use to interact with the temperature sensor.
12/44 Doc ID 16793 Rev 1
AN3108 STLM75 library firmware
DelTempSensorObj API global function
Ta bl e 5 describes the DelTempSensorObj function:

Table 5. DelTempSensor API function

Name Description
Function name DelTempSensorObj
Function prototype TS_ErrStatus DelTempSensorObj (TempSensorType** ppTempSensor)
Behavior description
Input parameter {x} ppTempSensor - Object pointer
Output parameter {x} None
Return value TS_OK if successful, TS_ERROR otherwise
Required preconditions NewTempSensorObj must have been called before
Called functions No API/HAL layers functions;
Destroy the Object internal members and free the memory allocated when
NewTempSensorObj function is called.
Example:
TempSensorType* pObjTempSensor;
TS_ErrStatus errStatus;
...
errStatus = DelTempSensorObj(pTempSensorObj);

Figure 5. Firmware library API and types

Doc ID 16793 Rev 1 13/44
STLM75 library firmware AN3108
TempSensorObj API types/properties/functions
This section describes the TempSensor structure, all its exported API functions and all the defined types. See Figure 2.
Below you can find a description of the defined types used by the TempSensor object source code and a description of its properties and methods. Except for TempSensorType, all API layer types are defined in the TempSensorTypes.h file.
TempSensorType type
The TempSensorType is defined in the following TempSensorObj.h file. The final TempSensor object is an instance of this defined structure.
The following described structure type can be considered as an OOP-class including private and public properties and public methods.
All the structure fields with a prefix name of 'm_' can be considered as private properties. This means these structure fields must not be directly accessed by the final application and Getxxx methods should be used instead. Clearly the final application could access these private members, but it should NEVER do so.
The final application must interact with this library using the following public properties and methods only, as described in Figure 2 and in the following sections.
#define TEMP_SENSOR_OBJ /* Temperature Sensor definition */ \
/* */ \
/* PRIVATE PROPERTIES */ \
TS_u8 m_Configuration; \
TS_TemperatureType m_Temperature; \
TS_TemperatureType m_TempHysteresis; \
TS_TemperatureType m_TempOverLimit; \
TS_RegistersType m_Registers; \
TS_I2C_SettingsType m_I2C_Settings; \
/* */ \
/* PUBLIC PROPERTIES */ \
TS_SignalsType Signals; /* The Micro/STLM75 signals */ \
TS_u32 TimeoutTicks; /* Timeout in ticks */ \
/* */ \
/* PUBLIC METHODS */ \
TS_ErrStatus (*Init) (TempSensorType*); \
TS_ErrStatus (*Reset) (TempSensorType*); \
TS_ErrStatus (*SetI2C_Settings) (TempSensorType*, TS_I2C_SettingsType* pI2C_Settings); \
TS_ErrStatus (*SetSignals) (TempSensorType*, TS_SignalsType* pSignals); \
14/44 Doc ID 16793 Rev 1
AN3108 STLM75 library firmware
TS_SignalsType* (*GetSignals) (TempSensorType*); \
TS_ErrStatus (*SetRegister) (TempSensorType*, TS_RegSelectionType, TS_u16);\
TS_u16 (*GetRegister) (TempSensorType*, TS_RegSelectionType eRegSelection); \
TS_TemperatureType* (*GetTemperature) (TempSensorType*, TS_Boolean bForceRegisterRead); \
TS_ErrStatus (*SetConfiguration) (TempSensorType*, TS_u8 uConfigValue); \
TS_u8 (*GetConfiguration) (TempSensorType*, TS_Boolean bForceRegisterRead); \
TS_ErrStatus (*SetTempHysteresis)(TempSensorType*, TS_TemperatureType* pTemperature); \
TS_TemperatureType* (*GetTempHysteresis)(TempSensorType*, TS_Boolean bForceRegisterRead); \
TS_ErrStatus (*SetTempOverLimit) (TempSensorType*, TS_TemperatureType* pTemperature); \
TS_TemperatureType* (*GetTempOverLimit) (TempSensorType*, TS_Boolean bForceRegisterRead); \
/* */ \
/* PUBLIC EVENTS */ \
TS_ErrStatus (*OnOverLimitIrq) (TempSensorType*);
typedef struct TempSensor TempSensorType; /* Forward declaration for circular typedefs */
struct TempSensor {
TEMP_SENSOR_OBJ
};
TS_Boolean type
/* Boolean types */
typedef enum {
TS_FALSE = 0,
TS_TRUE = !TS_FALSE
} TS_Boolean;
TS_ErrStatus type
/* Error status types */
typedef enum {
TS_ERROR = 0,
Doc ID 16793 Rev 1 15/44
STLM75 library firmware AN3108
TS_OK = !TS_ERROR
} TS_ErrStatus;
TS_Reg8Type and TS_Reg16Type types
/* Register types */
typedef TS_u8 TS_Reg8Type;
typedef TS_u16 TS_Reg16Type;
TS_RegLengthType type
/* Register length type */
typedef enum{
TS_REG_1BYTE_LEN = 1,
TS_REG_2BYTE_LEN
} TS_RegLengthType;
TS_RegPointerType type
/* Command/Pointer register type */
typedef enum{
TS_P_REG_TEMP = 0x00, /* P1=0 P2=0 */
TS_P_REG_CONF = 0x01, /* P1=0 P2=1 */
TS_P_REG_Thys = 0x02, /* P1=1 P2=0 */
TS_P_REG_Tos = 0x03 /* P1=1 P2=1 */
} TS_RegPointerType;
TS_RegSelection type
/* Register selection type */
typedef enum{
TS_SEL_CONF_REG = 0x00,
TS_SEL_TEMP_REG = 0x01,
TS_SEL_HYST_REG = 0x02,
TS_SEL_OVER_REG = 0x04
} TS_RegSelectionType;
TS_SignType type
/* Temperature value sign type */
typedef enum{
TS_PLUS_SIGN,
TS_MINUS_SIGN
16/44 Doc ID 16793 Rev 1
AN3108 STLM75 library firmware
} TS_SignType;
TS_RegistersType type
/* The STLM75 Registers */
typedef struct {
TS_Reg8Type TS_PointerReg; /* Command-Pointer register */
TS_Reg8Type TS_ConfigReg; /* Configuration register */
TS_Reg16Type TS_TemperatureReg; /* Temperature register */
TS_Reg16Type TS_HysteresisReg; /* Hysteresis temp.register */
TS_Reg16Type TS_OverLimitReg; /* Over-limit temp.register */
} TS_RegistersType;
TS_TemperatureType type
/* The STLM75 Temperature */
typedef struct {
TS_SignType TS_Sign; /* Positive or negative sign */
TS_u8 TS_IntegerValue; /* Integer part of the value */
TS_u8 TS_DecimalValue; /* Decimal part of the value */
} TS_TemperatureType;
TS_SignalsType type
/* The STLM75 Signals */
typedef struct {
TS_SignalType TS_SCL;
TS_SignalType TS_SDA;
TS_SignalType TS_OS_INT;
} TS_SignalsType;
TempSensor:: Signals API property
The TempSensor structure exports the following public property:
TS_SignalsType Signals;
The signals property contains the SCL, SDA, and OS_INT pin configuration. This property is redundant because the final application can use GetSignals and SetSignals API layer functions in order to manage signals property. The property has been left as public for utility scope only. It is recommended that the final application instead uses GetSignals and SetSignals functions to directly access signals public property.
Doc ID 16793 Rev 1 17/44
STLM75 library firmware AN3108
TempSensor::TimeoutTicks API property
The TempSensor structure exports the following public property:
TS_u32 TimeoutTicks;
The TimeoutTick property allows the final application to avoid application block in case of
2
I
C communication problems. TimeoutTick is the number of g_TempSensorTick to wait during an I considering that an error has occurred and resetting the I
The following is an example of TimeoutTicks property:
...
2
C communication between the microcontroller and the STLM75 before
2
C peripheral.
Warning: TimeoutTicks must be set to >0 as following ONLY if
g_TempSensorTick is defined as: extern volatile u32 g_TempSensorTick; in the final application source code, and it is incremented in a scheduler timer IRQ handler. If you don't want to use timeout feature, don't configure the TimeoutTicks property or set it to 0.
...
File: main.c
int main(void)
{
...
/* configure SysTick timer in order to have a tick each ms */
...
/* configure the Temperature Sensor TimeoutTicks */
pObjTempSensor->TimeoutTicks = 2; /* 2ms:we have a g_TempSensorTick each millisecond */
...
}
File: stm32f10x_it.c
extern volatile u32 g_TempSensorTick;
...
void SysTickHandler(void)
{
// Increment Temperature Sensor tick for Timeout purpose
g_TempSensorTick ++;
18/44 Doc ID 16793 Rev 1
AN3108 STLM75 library firmware
}
...
TempSensor:: Init API function
Ta bl e 6 describes the Init function of the TempSensor structure:

Table 6. Init API function

Name Description
Function name Init
Function prototype
Behavior description Initialize the TempSensor object.
Input parameter {x}
Output parameter {x} None
Return value TS_OK if successful, TS_ERROR otherwise
Required preconditions NewTempSensorObj, must have been called before.
TS_ErrStatus Init (TempSensorType* pThis, TS_SignalsType* pSignals,
TS_I2C_SettingsType* pI2C_Settings)
pThis - Object pointer;
pSignals - A Signal collection structure pointer;
pI2C_Settings - A I2C peripheral structure pointer;
API function:
TS_ErrStatus SetSignals (TempSensorType* pThis, TS_SignalsType*
pSignals);
Called functions
TS_ErrStatus SetI2C_Settings (TempSensorType* pThis,
TS_I2C_SettingsType* pI2C_Settings);
HAL function:
void TS_InitI2C_Peripheral(TS_I2C_SettingsType* pI2C_Settings);
Example:
TS_SignalsType TempSensorSignals;
TS_I2C_SettingsType TempSensorI2C_Settings;
...
/* Initialize the temperature sensor according to previous Signals and I2C_Settings */
pObjTempSensor->Init(pObjTempSensor, &TempSensorSignals, &TempSensorI2C_Settings);
TempSensor:: Reset API function
Ta bl e 7 describes the reset function of the TempSensor structure:
Doc ID 16793 Rev 1 19/44
STLM75 library firmware AN3108

Table 7. Reset API function

Name Description
Function name Reset
Function prototype TS_ErrStatus Reset (TempSensorType* pThis)
Behavior description Reset the Micro/Sensor I
Input parameter {x} pThis - object pointer
Output parameter {x} None
Return value TS_OK if successful, TS_ERROR otherwise
Required preconditions
Called functions
NewTempSensorObj, TempSensor:: Init functions must have been called
HAL function:
void TS_ResetI2C_Peripheral(TS_I2C_SettingsType* pI2C_Settings);
void TS_InitI2C_Peripheral(TS_I2C_SettingsType* pI2C_Settings);
2
C communication.
before.
Example:
...
/* Reset the I2C communication */
pObjTempSensor->Reset(pObjTempSensor);
TempSensor:: SetI2C_Settings API function
Ta bl e 8 describes the SetI2C_Settings function of the TempSensor structure.
This function is called by the TempSensor:Init function during the initialization phase, therefore it’s not necessary to directly call it. The final application can specifically call this function in order to change the I

Table 8. SetI2C_Settings API function

Name Description
Function name SetI2C_Settings
Function prototype
Behavior description
Input parameter {x}
Output parameter {x} None
Return value TS_OK if successful, TS_ERROR otherwise
Required preconditions NewTempSensorObj function must have been called before.
Called functions
Set the STLM75 I2C peripheral settings copying the right values from the
2
C peripheral settings after initialization.
TS_ErrStatus SetI2C_Settings (TempSensorType* pThis,
TS_I2C_SettingsType* pI2C_Settings)
passed parameter
pThis - Object pointer;
pI2C_Settings - A I2C peripheral structure pointer;
HAL function:
void TS_InitI2C_Peripheral(TS_I2C_SettingsType* pI2C_Settings);
20/44 Doc ID 16793 Rev 1
AN3108 STLM75 library firmware
Example:
TS_I2C_SettingsType TempSensorI2C_Settings;
/* Enable I2C2 clock */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C2, ENABLE);
/* I2C Peripheral settings initialization */
TempSensorI2C_Settings.TS_I2C_Ptr = I2C2;
TempSensorI2C_Settings.TS_I2C_Clock = 0x90;
TempSensorI2C_Settings.TS_I2C_Address = 400000;
pObjTempSensor->SetI2C_Settings(pObjTempSensor, &TempSensorI2C_Settings);
TempSensor:: SetSignals API function
Ta bl e 9 describes the SetSignals function of the TempSensor structure.
This function is called by the TempSensor:Init function during the initialization phase, therefore it’s not necessary to directly call it. The final application can specifically call this function in order to change the microcontroller signal (port, pin, mode) settings after initialization.

Table 9. SetSignals

Name Description
Function name SetSignals
Function prototype
Behavior description
Input parameter {x}
Output parameter {x} None
Return value TS_OK if successful, TS_ERROR otherwise
Required preconditions NewTempSensorObj function must have been called before.
Called functions
TS_ErrStatus SetSignals (TempSensorType* pThis, TS_SignalsType*
pSignals)
Set the STLM75 signals (port and pin) using the right values from the
passed parameter
pThis - Object pointer;
pSignals - A Signal collection structure pointer;
HAL function:
void TS_ConfigSignal(TS_SignalType* pSignal)
Doc ID 16793 Rev 1 21/44
STLM75 library firmware AN3108
Example:
TS_SignalsType TempSensorSignals;
/* Enable GPIOB clock */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
/* GPIO signals configuration */
/* Configure PB.10 as alternate function Open-Drain */
TempSensorSignals.TS_SCL.Port = GPIOB;
TempSensorSignals.TS_SCL.Pin = GPIO_Pin_10;
TempSensorSignals.TS_SCL.Mode = GPIO_Mode_AF_OD;
/* Configure PB.11 as alternate function Open-Drain */
TempSensorSignals.TS_SDA.Port = GPIOB;
TempSensorSignals.TS_SDA.Pin = GPIO_Pin_11;
TempSensorSignals.TS_SDA.Mode = GPIO_Mode_AF_OD;
/* Configure PB.12 as alternate function Open-Drain */
TempSensorSignals.TS_OS_INT.Port = GPIOB;
TempSensorSignals.TS_OS_INT.Pin = GPIO_Pin_12;
TempSensorSignals.TS_OS_INT.Mode = GPIO_Mode_AF_PP;
pObjTempSensor->SetSignals(pObjTempSensor, &TempSensorSignals);
TempSensor:: GetSignals API function
Ta bl e 1 0 describes the GetSignals function of the TempSensor structure.

Table 10. GetSignals

Name Description
Function name GetSignals
Function prototype TS_SignalsType* GetSignals (TempSensorType* pThis)
Behavior description Return the Signal collection structure pointer
Input parameter {x} pThis - Object pointer
Output parameter {x} None
Return value The signals structure pointer
22/44 Doc ID 16793 Rev 1
AN3108 STLM75 library firmware
Table 10. GetSignals (continued)
Name Description
Required preconditions NewTempSensorObj function must have been called before.
Called functions None
TS_SignalsType* pTempSensorSignals;
/* Get the Signals */
pTempSensorSignals = pObjTempSensor->GetSignals(pObjTempSensor);
TempSensor:: SetRegister API function
Ta bl e 1 1 describes the SetRegister function of the TempSensor structure.
This function can be considered as an advanced function for the final user who knows STLM75 internal registers. This function call can be avoided by calling one of the following specific functions:
SetConfiguration, SetTempHysteresis, SetTempOverLimit;
Note that calling the SetRegister advanced function instead of a specific one, internal TempSensor object data (m_Configuration, m_TempHysteresis, m_TempOverLimit) is not assigned.

Table 11. SetRegister

Name Description
Function name SetRegister
Function prototype
Behavior description
Input parameter {x}
Output parameter {x} None
Return value TS_OK if successful, TS_ERROR otherwise
Required preconditions
Called functions
Set the STLM75 register identified by eRegSelection type with the value
uRegValue - The value to be assigned to the register. This is a 16-bit
NewTempSensorObj, TempSensor:: Init functions must have been called
TS_ErrStatus SetRegister (TempSensorType* pThis,
TS_RegSelectionType eRegSelection, TS_u16 uRegValue)
passed as parameter
pThis - Object pointer;
eRegSelection - The type associated to the register to be set;
value, so for the 8-bit register, only the LSB must be considered
before.
HAL function:
TS_ErrStatus TS_SetPointerRegister(…);
TS_ErrStatus TS_FillRegisterFromData(…);
Doc ID 16793 Rev 1 23/44
STLM75 library firmware AN3108
Example:
...
pObjTempSensor->SetRegister(pObjTempSensor, TS_SEL_CONF_REG, 0);
TempSensor:: GetRegister API function
Ta bl e 1 2 describes the GetRegister function of the TempSensor structure.
This function can be considered as an advanced function for the final user who knows STLM75 internal registers. This function call can be avoided by calling one of the following specific functions:
GetConfiguration, GetTemperature, GetTempHysteresis, GetTempOverLimit;

Table 12. GetRegister

Name Description
Function name GetRegister
Function prototype
TS_u16 GetRegister (TempSensorType* pThis, TS_RegSelectionType
eRegSelection)
Return a 16-bit register value. The right register is identified by
Behavior description
Input parameter {x}
Output parameter {x} None
Return value Register value if successful, TS_NULL_REG_VALUE otherwise
Required preconditions
Called functions
eRegSelection type passed as parameter. For the 8-bit register, only the
LSB must be considered in the return value.
pThis - Object pointer;
eRegSelection - The type associated to the register to be set
NewTempSensorObj, TempSensor:: Init functions must have been called
before.
HAL function:
TS_ErrStatus TS_SetPointerRegister(…);
TS_ErrStatus TS_FillDataFromRegister (…);
Example:
TS_u16 uTemperatureRegisterValue;
uTemperatureRegisterValue = pObjTempSensor­>GetRegister(pObjTempSensor, TS_SEL_TEMP_REG);
24/44 Doc ID 16793 Rev 1
AN3108 STLM75 library firmware
TempSensor:: SetConfiguration API function
Ta bl e 1 3 describes the SetConfiguration function of the TempSensor structure.

Table 13. SetConfiguration

Name Description
Function name SetConfiguration
Function prototype
Behavior description Set the 8-bit Configuration register value.
Input parameter {x}
Output parameter {x} None
Return value TS_OK if successful, TS_ERROR otherwise
Required preconditions
Called functions
TS_ErrStatus SetConfiguration (TempSensorType* pThis, TS_u8
uConfigValue)
pThis - Object pointer;
uConfigValue - The 8-bit value to write in the register
NewTempSensorObj, TempSensor:: Init functions must have been called
before.
HAL function:
TS_ErrStatus TS_SetPointerRegister(…);
TS_ErrStatus TS_FillRegisterFromData(…);
Example:
u8 uTestConfigurationValue;
...
/* Write the following value for Configuration register: 0x00 */
uTestConfigurationValue = 0x00;
pObjTempSensor->SetConfiguration (pObjTempSensor, uTestConfigurationValue);
TempSensor:: GetConfiguration API function
Ta bl e 1 4 describes the GetConfiguration function of the TempSensor structure.

Table 14. GetConfiguration

Name Description
Function name GetConfiguration
Function prototype
Behavior description Return the 8-bit Configuration register value.
Input parameter {x}
Output parameter {x} None
TS_u8 GetConfiguration (TempSensorType* pThis, TS_Boolean
bForceRegisterRead)
pThis - Object pointer;
bForceRegisterRead - if TS_TRUE reads the value from the register
otherwise the last read value returns
Doc ID 16793 Rev 1 25/44
STLM75 library firmware AN3108
Table 14. GetConfiguration (continued)
Name Description
Return value Configuration value if successful, TS_NULL_REG_VALUE otherwise
Required preconditions
Called functions
NewTempSensorObj, TempSensor:: Init functions must have been called
before.
HAL function:
TS_ErrStatus TS_SetPointerRegister(…);
TS_ErrStatus TS_FillDataFromRegister (…);
Example:
u8 uTestConfigurationValue;
/* Get the configuration value forcing a STLM75 register reading */
uTestConfigurationValue = pObjTempSensor->GetConfiguration (pObjTempSensor, TS_TRUE);
TempSensor:: GetTemperature API function
Ta bl e 1 5 describes the GetTemperature function of the TempSensor structure.

Table 15. GetTemperature

Name Description
Function name GetTemperature
Function prototype
Behavior description Return Temperature structure pointer.
Input parameter {x}
Output parameter {x} None
Return value Temperature pointer if successful, TS_NULL_PTR otherwise
Required preconditions
Called functions
TS_TemperatureType* GetTemperature (TempSensorType* pThis,
TS_Boolean bForceRegisterRead)
pThis - Object pointer;
bForceRegisterRead - if TS_TRUE reads the value from the register
otherwise the last read value returns
NewTempSensorObj, TempSensor:: Init functions must have been called
before.
HAL function:
TS_ErrStatus TS_SetPointerRegister(…);
TS_ErrStatus TS_FillDataFromRegister (…);
Example:
TS_TemperatureType* pStrTemperature;
/* Get the read temperature structure pointer forcing a STLM75 register reading */
26/44 Doc ID 16793 Rev 1
AN3108 STLM75 library firmware
pStrTemperature = pObjTempSensor->GetTemperature (pObjTempSensor, TS_TRUE);
TempSensor:: SetTempHysteresis API function
Ta bl e 1 6 describes the SetTempHysteresis function of the TempSensor structure.

Table 16. SetTempHysteresis

Name Description
Function name SetTempHysteresis
Function prototype
Behavior description Set the 16-bit Hysteresis temperature register value.
Input parameter {x}
Output parameter {x} None
Return value TS_OK if successful, TS_ERROR otherwise
Required preconditions
TS_ErrStatus SetTempHysteresis (TempSensorType* pThis,
TS_TemperatureType* pTemperature)
pThis - Object pointer;
pTemperature - Hysteresis temperature structure pointer
NewTempSensorObj, TempSensor:: Init functions must have been called
before.
HAL function:
Called functions
TS_ErrStatus TS_SetPointerRegister(…);
TS_ErrStatus TS_FillRegisterFromData(…);
Example:
TS_TemperatureType strTestTemperature;
...
/* Write the following value for Hysteresis register: +75.5° C */
strTestTemperature.TS_Sign = TS_PLUS_SIGN;
strTestTemperature.TS_IntegerValue = 75;
strTestTemperature.TS_DecimalValue = 5; /* 0 or 5 only */
pObjTempSensor->SetTempHysteresis (pObjTempSensor, &strTestTemperature);
TempSensor:: GetTempHysteresis API function
Ta bl e 1 7 describes the GetTempHysteresis function of the TempSensor structure.

Table 17. GetTempHysteresis

Name Description
Function name GetTempHysteresis
Function prototype
TS_TemperatureType* GetTempHysteresis (TempSensorType* pThis,
TS_Boolean bForceRegisterRead)
Doc ID 16793 Rev 1 27/44
STLM75 library firmware AN3108
Table 17. GetTempHysteresis (continued)
Name Description
Behavior description Return the Hysteresis temperature structure pointer.
pThis - Object pointer;
Input parameter {x}
Output parameter {x} None
Return value Hysteresis temperature pointer if successful, TS_NULL_PTR otherwise
Required preconditions
Called functions
bForceRegisterRead - if TS_TRUE reads the value from the register
otherwise the last read value returns
NewTempSensorObj, TempSensor:: Init functions must have been called
before.
HAL function:
TS_ErrStatus TS_SetPointerRegister(…);
TS_ErrStatus TS_FillDataFromRegister (…);
Example:
TS_TemperatureType* pStrTemperature;
/* Get the Hysteresis temperature structure pointer forcing a STLM75 register reading */
pStrTemperature = pObjTempSensor->GetTempHysteresis (pObjTempSensor, TS_TRUE);
TempSensor:: SetTempOverLimit API function
Ta bl e 1 8 describes the SetTempOverLimit function of the TempSensor structure.

Table 18. SetTempOverLimit

Name Description
Function name SetTempOverLimit
Function prototype
Behavior description Set the 16-bit Over-limit temperature register value.
Input parameter {x}
Output parameter {x} None
Return value TS_OK if successful, TS_ERROR otherwise
Required preconditions
Called functions
TS_ErrStatus SetTempOverLimit (TempSensorType* pThis,
TS_TemperatureType* pTemperature)
pThis - Object pointer;
pTemperature - Over-limit temperature structure pointer
NewTempSensorObj, TempSensor:: Init functions must have been called
before.
HAL function:
TS_ErrStatus TS_SetPointerRegister(…);
TS_ErrStatus TS_FillRegisterFromData(…);
28/44 Doc ID 16793 Rev 1
AN3108 STLM75 library firmware
Example:
TS_TemperatureType strTestTemperature;
...
/* Write the following value for Over-Limit register: +75.5° C */
strTestTemperature.TS_Sign = TS_PLUS_SIGN;
strTestTemperature.TS_IntegerValue = 75;
strTestTemperature.TS_DecimalValue = 5; /* 0 or 5 only */
pObjTempSensor->SetTempOverLimit (pObjTempSensor, &strTestTemperature);
TempSensor:: GetTempOverLimit API function
Ta bl e 1 9 describes the GetTempOverLimit function of the TempSensor structure.

Table 19. GetTemperatureOverLimit

Name Description
Function name GetTempOverLimit
Function prototype
TS_TemperatureType* GetTempOverLimit (TempSensorType* pThis,
TS_Boolean bForceRegisterRead)
Behavior description Return the Over-limit temperature structure pointer.
pThis - Object pointer;
Input parameter {x}
Output parameter {x} None
Return value Over-limit temperature pointer if successful, TS_NULL_PTR otherwise
Required preconditions
Called functions
bForceRegisterRead - if TS_TRUE reads the value from the register
otherwise the last read value returns
NewTempSensorObj, TempSensor:: Init functions must have been called
before.
HAL function:
TS_ErrStatus TS_SetPointerRegister(…);
TS_ErrStatus TS_FillDataFromRegister (…);
Example:
TS_TemperatureType* pStrTemperature;
/* Get the Over-Limit temperature structure pointer forcing a STLM75 register reading */
pStrTemperature = pObjTempSensor->GetTempOverLimit (pObjTempSensor, TS_TRUE);
Doc ID 16793 Rev 1 29/44
STLM75 library firmware AN3108

4.2 HAL Layer firmware overview

This section describes the hardware abstraction layer function used by the upper API layer described in the previous section. All the library microcontroller hardware dependent functions and related defined types are described in this section. See Figure 2.
The final application should NEVER directly use these HAL functions, and it should manage the STLM75 temperature sensor through the API layer functions as described above.

4.2.1 HAL types

Standard types redefinition
/* Standard type redefinition in order
to maintain code portability */
typedef signed long TS_s32;
typedef signed short TS_s16;
typedef signed char TS_s8;
typedef unsigned long TS_u32;
typedef unsigned short TS_u16;
typedef unsigned char TS_u8;
STM32 library types redefinition
/* Redefine micro specific types */
typedef GPIO_TypeDef* TS_PortType;
typedef GPIOMode_TypeDef TS_ModeType;
typedef u32 TS_PinType;
typedef I2C_TypeDef* TS_I2CType;
TS_SignalActionType type
/* Signal state enumeration */
typedef enum
{ TS_SIGNAL_LOW = Bit_RESET,
TS_SIGNAL_HIGH = Bit_SET
} TS_SignalActionType;
TS_StateType type
/* State type */
typedef enum
{
TS_DISABLE = DISABLE,
TS_ENABLE = ENABLE
30/44 Doc ID 16793 Rev 1
AN3108 STLM75 library firmware
} TS_StateType;
TS_SignalType type
/* The STLM75 Single Signal type */
typedef struct {
TS_PortType Port;
TS_PinType Pin;
TS_ModeType Mode;
} TS_SignalType;
TS_I2C_SettingsType type
/* The STLM75 I2C Peripheral settings */
typedef struct {
TS_I2CType TS_I2C_Ptr;
TS_u32 TS_I2C_Clock;
TS_u16 TS_I2C_Address;
} TS_I2C_SettingsType;

4.2.2 HAL functions

TS_ConfigSignal HAL function
Ta bl e 2 0 describes the TS_ConfigSignal function of the hardware abstraction layer.
Table 20. TS_ConfigSignal
Name Description
Function name TS_ConfigSignal
Function prototype void TS_ConfigSignal(TS_SignalType* pSignal)
Behavior description Config the signal pin according to the passed parameters
Input parameter {x} pSignal - Signal structure pointer
Output parameter {x} None
Return value None
Required preconditions None
Called functions None
Doc ID 16793 Rev 1 31/44
STLM75 library firmware AN3108
TS_InitI2C_Peripheral HAL function
Ta bl e 2 1 describes the TS_InitI2C_Peripheral function of the hardware abstraction layer.
Table 21. TS_InitI2C_Peripheral
Name Description
Function name TS_InitI2C_Peripheral
Function prototype void TS_InitI2C_Peripheral(TS_I2C_SettingsType* pI2C_Settings)
Behavior description
Input parameter {x} pI2C_Settings - I2C peripheral settings structure pointer
Output parameter {x} None
Return value None
Required preconditions None
Called functions None
Initialize and configure the I2C peripheral used by the micro in order to
manage the STLM75 temperature sensor device
TS_ResetI2C_Peripheral HAL function
Ta bl e 2 2 describes the TS_ResetI2C_Peripheral function of the hardware abstraction layer.
Table 22. TS_ResetI2C_Peripheral
Name Description
Function name TS_ResetI2C_Peripheral
Function prototype void TS_ResetI2C_Peripheral(TS_I2C_SettingsType* pI2C_Settings)
Behavior description
Input parameter {x} pI2C_Settings - I2C peripheral settings structure pointer
Output parameter {x} None
Return value None
Required preconditions None
Called functions None
Apply a software Reset on the I2C peripheral, e.g. in order to exit from an
I2C blocking error
32/44 Doc ID 16793 Rev 1
AN3108 STLM75 library firmware
TS_CheckEventWithTimeout HAL function
Ta bl e 2 3 describes the TS_CheckEventWithTimeout function of the hardware abstraction
layer.
Table 23. TS_CheckEventWithTimeout
Name Description
Function name TS_CheckEventWithTimeout
Function prototype
Behavior description
Input parameter {x}
Output parameter {x} None
Return value TS_OK if event occurs inside the timeout time, TS_ERROR otherwise
Required preconditions
Called functions None
TS_ErrStatus TS_CheckEventWithTimeout(TS_I2C_SettingsType*
pI2C_Settings, u32 I2C_EVENT, u32 uTimeoutTicks)
Check the I2C event inside a max timeout time. This function requires that
the g_TempSensorTick variable is defined as extern in the main
application, and it is incremented in SysTickHandler Interrupt or another
scheduler time.
pI2C_Settings - I2C peripheral settings structure pointer;
I2C_EVENT - The I2C event to check;
uTimeoutTicks - The g_TempSensorTick to wait before return an error;
uTimeoutTicks must be >=1.
g_TempSensorTick variable is defined as extern in the main application,
and it is incremented in a scheduler time.
TS_FillDataFromRegister HAL function
Ta bl e 2 4 describes the TS_FillDataFromRegister function of the hardware abstraction layer.
Table 24. TS_FillDataFromRegister
Name Description
Function name TS_FillDataFromRegister
TS_ErrStatus TS_FillDataFromRegister(TS_I2C_SettingsType*
Function prototype
Read from the specified STLM75 a register value (8 or 16 bits) and return
Behavior description
pI2C_Settings,TS_u16* pReadRegValue,
TS_RegLengthType eRegLenType, u32 uTimeoutTicks)
the value in output parameter.
Warning: SetPointerRegister function MUST be
called before calling this one.
pI2C_Settings - I2C peripheral settings structure pointer;
Input parameter {x}
eRegLenType - Register byte-length type (Can be 1-Byt or 2-Byte);
uTimeoutTicks - The g_TempSensorTick to wait before returning an error;
uTimeoutTicks must be >=1.
Doc ID 16793 Rev 1 33/44
STLM75 library firmware AN3108
Table 24. TS_FillDataFromRegister (continued)
Name Description
Output parameter {x} pReadRegValue - Read register value pointer;
Return value TS_OK if successful, TS_ERROR otherwise
Required preconditions SetPointerRegister function MUST be called before calling this one.
Called functions TS_ErrStatus TS_CheckEventWithTimeout(…)
TS_FillRegisterFromData HAL function
Ta bl e 2 5 describes the TS_FillRegisterFromData function of the hardware abstraction layer.
Table 25. TS_FillRegisterFromData
Name Description
Function name TS_FillRegisterFromData
TS_ErrStatus TS_FillRegisterFromData(TS_I2C_SettingsType*
Function prototype
pI2C_Settings,TS_u16 uWriteRegValue, TS_RegLengthType
eRegLenType, u32 uTimeoutTicks)
Write the data passed in input parameter on the specified STLM75 register
value (8 or 16 bits).
Behavior description
Warning: WARNING: SetPointerRegister
function MUST be called before calling this one.
pI2C_Settings - I2C peripheral settings structure pointer;
eRegLenType - Register byte-length type (Can be 1-Byt or 2-Byte);
Input parameter {x}
uTimeoutTicks - The g_TempSensorTick to wait before returning an error;
Output parameter {x} None
Return value TS_OK if successful, TS_ERROR otherwise
Required preconditions SetPointerRegister function MUST be called before calling this one.
Called functions TS_ErrStatus TS_CheckEventWithTimeout(…)
uWriteRegValue - Data value to write on the right register;
uTimeoutTicks must be >=1.
34/44 Doc ID 16793 Rev 1
AN3108 STLM75 library firmware
TS_SetPointerRegister HAL function
Ta bl e 2 6 describes the TS_SetPointerRegister function of the hardware abstraction layer.
Table 26. TS_SetPointerRegister
Name Description
Function name TS_SetPointerRegister
TS_ErrStatus TS_SetPointerRegister(TS_I2C_SettingsType*
Function prototype
pI2C_Settings, TS_RegPointerType eRegPointer, u32
uTimeoutTicks)
Behavior description
Input parameter {x}
Output parameter {x} None
Return value TS_OK if successful, TS_ERROR otherwise
Required preconditions None
Called functions TS_ErrStatus TS_CheckEventWithTimeout(…)
Set the STLM75 Command/Pointer register, before executing a Read/Write
operation on STLM75 register
pI2C_Settings - I2C peripheral settings structure pointer;
eRegLenType - Register byte-length type (Can be 1-Byt or 2-Byte);
uTimeoutTicks - The g_TempSensorTick to wait before returning an error;
uTimeoutTicks must be >=1.
Doc ID 16793 Rev 1 35/44
Example application AN3108

5 Example application

Together with the STLM75 firmware library package, an example application is delivered in order to provide the final user with a real example of STLM75 library use. See Figure 6.
The delivered example application has been developed using IAR EWARM 5.20 IDE and can be built for both STM32F10xxx Medium-density and High-density microcontroller families.
An application project which wants to use the STLM75 library must:
Include the STLM75.a file in the project generated compiling the STLM75_LIB library
firmware delivered in the final library package. See Section 3.2. The 2STLM75 library source code can be included instead of the STLM75.a object file
Implement a main function as described in the following section.

Figure 6. Application project files

5.1 main.c

An example of a main application is reported below. The main function contains an example of the STLM75 library initialization/configuration and implements temperature sensor registers read/write operations:
/* Includes -----------------------------------------------------*/
#include "stm32f10x_lib.h"
#include "TempSensorObj.h"
#include <stdio.h>
/* Private typedef ----------------------------------------------*/
/* Private define -----------------------------------------------*/
36/44 Doc ID 16793 Rev 1
AN3108 Example application
// STLM75 TEMPERATURE SENSOR DEFINES
// Temperature sensor controller signal
#define TMP_I2C_PERIPHERAL I2C2
#define TMP_I2C_SLAVE_ADDR7 0x90 // 1001 0000
#define TMP_I2C_CLOCK_SPEED 400000 //400Khz
#define TMP_SCL_PORT GPIOB
#define TMP_SCL_PIN GPIO_Pin_10
#define TMP_SCL_MODE GPIO_Mode_AF_OD
#define TMP_SDA_PORT GPIOB
#define TMP_SDA_PIN GPIO_Pin_11
#define TMP_SDA_MODE GPIO_Mode_AF_OD
#define TMP_OS_INT_PORT GPIOB
#define TMP_OS_INT_PIN GPIO_Pin_12
#define TMP_OS_INT_MODE GPIO_Mode_AF_PP
/* Private macro ------------------------------------------------*/
/* Private variables --------------------------------------------*/
ErrorStatus HSEStartUpStatus;
/* Private function prototypes ----------------------------------*/
void RCC_Configuration (void);
void NVIC_Configuration (void);
void SysTick_Configuration(void);
void STLM75_Configuration (TempSensorType* pObjTempSensor);
/* Private functions --------------------------------------------*/
/******************************************************************
* Function Name : Main
* Description : Main program.
* Input : None
* Output : None
* Return : None
******************************************************************/
int main(void)
Doc ID 16793 Rev 1 37/44
Example application AN3108
{
TempSensorType* pObjTempSensor;
TS_TemperatureType* pStrTemperature;
TS_TemperatureType strTestTemperature;
u8 uTestConfigurationValue;
char cTemperatureSign;
u16 uReadingNumber = 0;
#ifdef DEBUG
debug();
#endif
/* System clocks configuration -------------------------------*/
RCC_Configuration();
/* NVIC configuration ----------------------------------------*/
NVIC_Configuration();
/* STLM75 configuration --------------------------------------*/
pObjTempSensor = NewTempSensorObj ();
STLM75_Configuration(pObjTempSensor);
/* You can configure timeout to avoid application block in case of I2C communication problems. TimeoutTick is the number of g_TempSensorTick to wait during an I2C communication between Micro and STLM75 before considering an error has occurred and resetting the I2C peripheral.
WARNING: TimeoutTicks must be set >0 as following ONLY if g_TempSensorTick is defined as "extern volatile u32 g_TempSensorTick" in this Application,and is incremented in SysTickHandler or another timer irq handler. */
pObjTempSensor->TimeoutTicks = 2; /* 2ms:we have a g_TempSensorTick each millisecond */
/* STLM75 Library use example --------------------------------*/
38/44 Doc ID 16793 Rev 1
AN3108 Example application
/* TEST: Write the following value for the Configuration register: 0x00 */
uTestConfigurationValue = 0x00;
pObjTempSensor->SetConfiguration (pObjTempSensor, uTestConfigurationValue);
/* TEST: Write the following value for the Hysteresis register:
75.5° C */
strTestTemperature.TS_Sign = TS_PLUS_SIGN;
strTestTemperature.TS_IntegerValue = 75;
strTestTemperature.TS_DecimalValue = 5; /* 0 or 5 only */
pObjTempSensor->SetTempHysteresis (pObjTempSensor, &strTestTemperature);
/* TEST: Write the following value for the Over-Limit register:
50.5° C */
strTestTemperature.TS_Sign = TS_PLUS_SIGN;
strTestTemperature.TS_IntegerValue = 50;
strTestTemperature.TS_DecimalValue = 5; /* 0 or 5 only */
pObjTempSensor->SetTempOverLimit (pObjTempSensor, &strTestTemperature);
/* TEST: Read STLM75 values for the Configuration, Hysteresis
and Over-Limit temp. registers */
uTestConfigurationValue = pObjTempSensor->GetConfiguration (pObjTempSensor, TS_TRUE);
pStrTemperature = pObjTempSensor->GetTempHysteresis (pObjTempSensor, TS_TRUE);
pStrTemperature = pObjTempSensor->GetTempOverLimit (pObjTempSensor, TS_TRUE);
/* Infinite main loop ----------------------------------------*/
while(1)
{
/* TEST: Read observed STLM75 temperature and show the read value */
pStrTemperature = pObjTempSensor->GetTemperature (pObjTempSensor, TS_TRUE);
Doc ID 16793 Rev 1 39/44
Example application AN3108
cTemperatureSign = (pStrTemperature->TS_Sign == TS_PLUS_SIGN) ? '+' : '-';
/* Send Temperature read data to the debugger Terminal Output Window */
printf ("Read Temperature (%d): %c%d.%d\r\n", \
uReadingNumber++, \
cTemperatureSign, \
pStrTemperature->TS_IntegerValue, \
pStrTemperature->TS_DecimalValue);
}
}
/******************************************************************
* Function Name : STLM75_Configuration
* Description : Configure the Micro I2C peripheral and GPIO pins in order to use
* : the TempSensor hardware components present on the application board
* Input : pObjTempSensor - The STLM75 temperature sensor object pointer
* Output : None
* Return : None
******************************************************************/
void STLM75_Configuration (TempSensorType* pObjTempSensor)
{
TS_SignalsType TempSensorSignals;
TS_I2C_SettingsType TempSensorI2C_Settings;
/* Enable I2C2 clock */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C2, ENABLE);
/* Enable GPIOB clock */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
/* GPIO signals configuration */
40/44 Doc ID 16793 Rev 1
AN3108 Example application
/* Configure PB.10 as alternate function Open-Drain */
TempSensorSignals.TS_SCL.Port = TMP_SCL_PORT;
TempSensorSignals.TS_SCL.Pin = TMP_SCL_PIN;
TempSensorSignals.TS_SCL.Mode = TMP_SCL_MODE;
/* Configure PB.11 as alternate function Open-Drain */
TempSensorSignals.TS_SDA.Port = TMP_SDA_PORT;
TempSensorSignals.TS_SDA.Pin = TMP_SDA_PIN;
TempSensorSignals.TS_SDA.Mode = TMP_SDA_MODE;
/* Configure PB.12 as alternate function Open-Drain */
TempSensorSignals.TS_OS_INT.Port = TMP_OS_INT_PORT;
TempSensorSignals.TS_OS_INT.Pin = TMP_OS_INT_PIN;
TempSensorSignals.TS_OS_INT.Mode = TMP_OS_INT_MODE;
//OverLimitConfigIrq();
// I2C Peripheral settings configuration
TempSensorI2C_Settings.TS_I2C_Ptr = TMP_I2C_PERIPHERAL;
TempSensorI2C_Settings.TS_I2C_Clock = TMP_I2C_CLOCK_SPEED;
TempSensorI2C_Settings.TS_I2C_Address = TMP_I2C_SLAVE_ADDR7;
/* Initialize the Temperature Sensor Object */
pObjTempSensor->Init(pObjTempSensor, &TempSensorSignals, &TempSensorI2C_Settings);
}
Doc ID 16793 Rev 1 41/44
References AN3108

6 References

1. STLM75; Digital temperature sensor and thermal watchdog, datasheet
2. RM0008; STM32F101xx, STM32F102xx, STM32F103xx, STM32F105xx and
STM32F107xx advanced ARM-based 32-bit MCUs, reference manual
3. STM32F10xFWLib 2.0.3, AN2953; How to migrate from the STM32F10xxx firmware
library V2.0.3 to the STM32F10xxx standard peripheral library V3.0.0, application note
42/44 Doc ID 16793 Rev 1
AN3108 Revision history

7 Revision history

Table 27. Document revision history

Date Revision Changes
12-Oct-2010 1 Initial release.
Doc ID 16793 Rev 1 43/44
AN3108
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
44/44 Doc ID 16793 Rev 1
Loading...