ST AN2859 APPLICATION NOTE

AN2859

Application note

Multiplexed diagnostics of AC switches using two STCC08s

Introduction

The aim of this application note is to present opportunities to reduce the number of input pins used on a microcontroller unit (MCU) to diagnose failures of several AC switches with the STCC08. This document deals with the multiplexed diagnostics of two STCC08 and gives technical recommendations on the implementation of this solution.

STCC08 overview

The STCC08 has been designed to improve home appliance safety. This new device can drive an AC switch (Triac, ACST and ACS) with a gate current IGT up to 10 mA and to send back to the microcontroller unit a signal image of the voltage across the controlled AC switch (this signal defines the AC switch state). The STCC08 has three functional blocks (see

Figure 1).

A "gate driver" block used to drive an AC switch and to interface directly the STCC08 with the MCU (CMOS compatible)

A "power switch signal shaping" block used to measure the AC switch voltage in both AC line cycles

An "AVF driver" block used to give an image of the AC switch voltage to the MCU (digital information)

Figure 1. STCC08 block diagram

G

Gate driver

 

 

 

IN

 

 

 

 

 

 

 

 

+

 

 

 

 

-

 

 

 

 

RIG

1

8

GND

 

IN

STCC08

AVF

2

7

RIG

 

VCC

N/C

3

6

G

AVF driver

AVF

 

 

VCC

AC

4

5

AC

 

 

 

 

Power switch

GND

 

SO -8

 

signal shaping

 

 

 

For more information about the STCC08, please refer to the ST Application note AN2716.

December 2009

Doc ID 15255 Rev 1

1/29

www.st.com

Contents

AN2859

 

 

Contents

1

Multiplexed diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 3

 

1.1

Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

 

1.2

Failure mode detection of two AC switches . . . . . . . . . . . . . . . . . . . . . . . .

4

 

1.3

VAVF signal reading synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

2

VSTATE level definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

3

Resistance settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

4

Detection windows digital value setting . . . . . . . . . . . . . . . . . . . . . . . .

15

5

Application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

6

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

Appendix A AC switch state deduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

Appendix B VSTATE signal voltage definition . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

Appendix C Resistance settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

C.1 First case: V1_Min > V0_Max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 C.2 Second case: V2_Min > V1_Max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 C.3 Third case: V2_Max < V3_Min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2/29

Doc ID 15255 Rev 1

AN2859

Multiplexed diagnostics

 

 

1 Multiplexed diagnostics

1.1Principle

The multiplexed diagnostic allows the detection of the state of several AC switches independently using only one MCU input. In this case, an analog/digital converter input (ADC) of the MCU should be used and must be configured with no pull-up resistor. In this document, only the multiplexed diagnostic of two STCC08 (STCC081 and STCC082) is described (see Figure 2). Note that two output pins of an MCU should be used to control each STCC08 (IN1 and IN2).

Figure 2. Multiplexed diagnostic schematic of two STCC08

Neutral

 

 

 

 

 

ACS2

G

 

IN2

 

 

 

 

 

 

 

 

 

RIG

 

 

 

 

STCC082

VCC

 

 

 

VCC

 

 

 

 

 

R1

 

 

 

RAC

 

MCU

RShunt

 

 

AVF

Load2

AC

 

R2

VCC

 

 

 

 

 

 

 

 

 

Line

 

 

 

VAVF2

 

 

 

 

 

 

Neutral

 

 

 

 

 

ACS1

G

 

IN1

 

 

 

 

 

RIG

 

 

 

 

 

VCC

 

 

 

VCC

STCC081

R3

 

RShunt

 

RAC

 

AVF

 

Load1

AC

 

R4

 

 

 

 

 

 

 

 

 

 

Line

 

 

 

GND VAVF1

VSTATE

 

 

 

 

 

To distinguish the state of each AC switch (ACS1 and ACS2) a divider bridge is used. Resistors R1, R2, R3 and R4 are designed to convert the VAVF digital signal given by each

STCC08 (VAVF1 and VAVF2) into an analog signal (VSTATE). Knowing the control state of each STCC08 (IN1 and IN2), the MCU is able to identify the state of each AC switch by

analyzing the VSTATE signal (see Section 1.2).

Note:

The STCC08 AVF output is an open collector output. Resistors R1 and R3 bias the

 

STCC08 AVF output and limit the collector current to 5 mA. For further information, and in

 

particular, resistor values for RAC, Rshunt, and RIG, refer to the ST Application note AN2716.

Doc ID 15255 Rev 1

3/29

Multiplexed diagnostics

AN2859

 

 

1.2Failure mode detection of two AC switches

Figure 3 to Figure 12 give the VSTATE signal level according to the state of each AC switch. V0, V1, V2 and V3 are levels reached by the parameter VSTATE and depends on R1, R2, R3, and R4 resitor values.Table 1 shows that we only need four different levels to define the

state of each AC switch.

Figure 3. Case 1: VSTATE = V3 (except at each zero crossing of the AC line)

VCC

 

 

 

VAC

VCC/COM

 

R1

ILoad_2

 

 

 

 

ILoad_2

STCC082

R2

 

AVF

VAC

VAC

 

ACS2

G

ILoad_1

 

VAVF2

 

 

 

Line

Load2

RAC

AC

IN2

VCC

 

RShunt

 

 

VSTATE

 

 

 

 

VCC/COM

R3

V3

 

 

 

 

ILoad_1

STCC081

R4

 

AVF

V2

 

 

VAC

ACS1

G

VSTATE

 

 

VAVF1

 

 

V1

Line

Load1

RAC

AC

 

 

 

 

 

RShunt

 

IN1

V0

 

 

 

 

ACS1 and ACS2 are not in conducting state

Figure 4. Case 2: VSTATE = V0

VCC

 

 

 

VAC

VCC/COM

 

R1

ILoad_2

 

STCC082

 

 

ILoad_2

R2

 

AVF

VAC

V

 

 

G

ILoad_1

AC

ACS2

 

 

 

VAVF2

 

Line

 

 

 

 

Load2

RAC

AC

IN2

VCC

RShunt

 

 

VSTATE

 

 

 

VCC/COM

R3

V3

 

 

 

STCC08

R4

 

ILoad_1

1

 

 

AVF

V2

 

 

V AC

ACS1

G

VSTATE

 

 

VAVF1

 

 

V1

Line

Load1

RAC

AC

 

 

 

 

 

 

 

RShunt

 

IN1

V0

 

 

 

 

ACS1 and ACS2 are in conducting state

4/29

Doc ID 15255 Rev 1

ST AN2859 APPLICATION NOTE

AN2859

 

 

 

Multiplexed diagnostics

Figure 5.

Case 3: VSTATE = V1 (except at each zero crossing of the AC line)

 

 

 

VCC

VAC

 

 

 

 

VCC/COM

 

R1

ILoad_2

 

ILoad_2

STCC082

R2

 

 

AVF

 

VAC

VAC

 

 

ACS2

G

VAVF2

ILoad_1

 

 

 

 

 

 

Line

Load2

RAC

AC

VCC

 

 

 

 

 

 

 

 

RShunt

 

IN2

 

 

VSTATE

 

 

 

 

 

VCC/COM

 

 

R3

 

V3

 

 

R4

 

 

 

ILoad_1

 

STCC081

 

 

 

 

AVF

 

 

V2

 

 

 

 

 

VAC

 

ACS1

G

 

VSTATE

 

 

 

VAVF1

V1

Line

 

 

 

Load1

RAC

AC

 

 

 

 

 

 

 

V0

 

RShunt

 

IN1

 

 

 

 

 

 

 

 

ACS1 is in conducting state and ACS2 is not in conducting state

Figure 6. Case 4: VSTATE = V2 (except at each zero crossing of the AC line)

VCC

 

 

VAC

VCC/COM

R1

ILoad_2

 

 

STCC082

R2

 

ILoad_2

 

VAC

AVF

 

VAC

ACS2

G

VAVF2

ILoad_1

 

 

Line Load2

 

 

 

RAC

AC

VCC

 

RShunt

 

IN2

 

VSTATE

VCC/COM

 

 

R3

V3

 

STCC081

R4

 

ILoad_1

 

 

 

AVF

 

V2

 

 

 

VAC

ACS1

G

 

 

VAVF1 VSTATE V1

Line Load1

RAC

AC

 

RShunt

 

IN1

V0

 

 

 

ACS1 is not in conducting state and ACS2 is in conducting state

Doc ID 15255 Rev 1

5/29

Multiplexed diagnostics

 

 

 

 

AN2859

Figure 7.

Case 5: VSTATE toggles between V1 and V3 at each AC line cycle

 

(except at each zero crossing of the AC line)

 

 

 

 

 

VCC

VAC

 

 

 

 

 

VCC/COM

 

 

 

R1

ILoad_2

 

 

STCC082

 

 

ILoad_2

 

R2

 

VAC

 

 

AVF

 

VAC

 

ACS2

G

VAVF2

ILoad_1

 

 

 

 

 

 

 

 

Line

Load2

RAC

AC

VCC

 

 

RShunt

 

IN2

 

VSTATE

 

 

 

 

VCC/COM

 

 

R3

V3

 

 

R4

 

 

 

 

STCC081

 

 

ILoad_1

AVF

 

V2

 

 

 

VAC

ACS1

G

VAVF1

VSTATE

 

 

 

V1

 

 

 

 

Line Load1

RAC

AC

 

RShunt

 

IN1

V0

 

 

 

ACS1 is failed in diode mode and ACS2 is not in conducting state

Figure 8. Case 6: VSTATE toggles between V2 and V3 at each AC line cycle (except at each zero crossing of the AC line)

 

 

 

VCC

 

VAC

 

 

 

 

 

VCC/COM

 

 

R1

 

ILoad_2

 

STCC082

 

 

 

ILoad_2

 

R2

 

 

 

AVF

 

 

VAC

VAC

 

 

 

ACS2

G

VAVF2

 

ILoad_1

 

 

 

 

 

Line Load2

RAC

AC

VCC

 

 

RShunt

 

IN2

 

 

VSTATE

VCC/COM

 

STCC081

R3

 

V3

ILoad_1

 

R4

 

 

 

AVF

 

 

V2

VAC

 

 

 

ACS1

G

VAVF1

VSTATE

 

 

 

 

V1

Line Load1

 

 

 

 

RAC

AC

 

 

 

RShunt

 

IN1

 

 

V0

 

 

 

 

 

ACS1 is not in conducting state and ACS2 is failed in diode mode

6/29

Doc ID 15255 Rev 1

AN2859

Multiplexed diagnostics

 

 

Figure 9. Case 7: VSTATE toggles between V1 and V2 at each AC line cycle (except at each zero crossing of the AC line)

VCC

 

 

 

 

VAC

VCC/COM

 

 

R1

ILoad_2

 

 

 

 

ILoad_2

 

STCC082

R2

 

 

AVF

 

VAC

VAC

 

 

ACS2

G

VAVF2

ILoad_1

 

 

 

 

 

 

Line

Load2

RAC

AC

VCC

 

 

RShunt

 

IN2

 

VSTATE

VCC/COM

 

 

R3

V3

 

STCC081

R4

 

 

ILoad_1

 

 

 

 

AVF

 

V2

 

 

 

 

VAC

ACS1

G

VSTATE

 

 

 

VAVF1

V1

 

 

 

 

Line

Load1

RAC

AC

 

 

RShunt

 

IN1

V0

 

 

 

 

ACS1 and ACS2 are failed in diode mode not on the same AC line polarities

Figure 10. Case 8: VSTATE toggles between V0 and V3 at each AC line cycle (except at each zero crossing of the AC line)

VCC

 

 

VAC

VCC/COM

R1

ILoad_2

STCC082

R2

 

ILoad_2

 

 

AVF

 

VAC

VAC

ACS2

G

VAVF2

ILoad_1

 

 

 

 

 

 

Line Load2

RAC

AC

VCC

 

RShunt

 

IN2

 

VSTATE

VCC/COM

 

STCC081

R3

V3

ILoad_1

 

R4

 

 

AVF

 

V2

VAC

 

 

ACS1

G

VAVF1

VSTATE

 

 

 

Line Load1

 

 

 

V1

RAC

AC

 

 

RShunt

 

IN1

 

V0

 

 

 

 

ACS1 and ACS2 are failed in diode mode on the same AC line polarities

Doc ID 15255 Rev 1

7/29

Multiplexed diagnostics

 

 

 

AN2859

Figure 11. Case 9: VSTATE toggles between V2 and V0 at each AC line cycle

 

 

 

VCC

VAC

 

 

 

 

VCC/COM

 

 

R1

ILoad_2

 

 

 

 

ILoad_2

 

STCC082

R2

 

 

AVF

 

VAC

VAC

 

 

ACS2

G

VAVF2

ILoad_1

 

 

 

 

 

 

Line

Load2

RAC

AC

VCC

 

 

RShunt

 

IN2

 

VSTATE

VCC/COM

 

 

R3

V3

 

STCC081

R4

 

 

ILoad_1

 

 

 

 

AVF

 

V2

 

 

 

 

VAC

ACS1

G

VSTATE

 

 

 

VAVF1

V1

 

 

 

 

Line Load1

RAC

AC

 

 

 

RShunt

 

IN1

 

 

V0

 

 

 

 

 

ACS1 is failed in diode mode and ACS2 is failed in short circuit

Figure 12. Case 10: VSTATE toggles between V1 and V0 at each AC line cycle

 

 

 

VCC

 

VAC

 

 

 

 

 

VCC/COM

 

 

R1

 

ILoad_2

 

STCC082

 

 

 

ILoad_2

 

R2

 

 

 

AVF

 

 

VAC

VAC

 

 

 

ACS2

G

VAVF2

 

ILoad_1

 

 

 

Line Load2

 

 

 

 

RAC

AC

VCC

 

 

RShunt

 

IN2

 

 

VSTATE

VCC/COM

 

STCC081

R3

 

V3

ILoad_1

 

R4

 

 

 

AVF

 

 

V2

VAC

 

 

 

ACS1

G

VAVF1

VSTATE

 

 

 

 

V1

Line Load1

 

 

 

 

RAC

AC

 

 

 

RShunt

 

IN1

 

 

V0

 

 

 

 

 

ACS1 is failed in shot circuit and ACS2 is failed in diode mode

8/29

Doc ID 15255 Rev 1

AN2859

 

 

Multiplexed diagnostics

 

 

 

 

 

 

Table 1.

Variation of the VSTATE signal according to the AC switch states

 

 

ACS1 state

ACS2 state

VSTATE status

 

 

 

 

 

 

 

ON

ON

VSTATE = V0

 

 

ON

OFF

VSTATE = V1

 

 

OFF

ON

VSTATE = V2

 

 

OFF

OFF

VSTATE = V3

Knowing the control state of each STCC08 (IN1 and IN2) and according to Table 1, the MCU

is able to detect the AC switch state by analyzing VSTATE signal. Appendix A defines the states of each ACS according to the VSTATE signal level (V0, V1, V2 and V3) and the control state of each STCC08. In the case of failure of one of the AC switches, the MCU can place

the application in a safe configuration by switching off an appliance front-end relay.

1.3VAVF signal reading synchronization

The STCC08 AVF output signal is an image of the AC switch voltage. This signal toggles between VCC and zero level (GND) according to whether the STCC08 AC input current (IAC) is higher or not than IACT (see AN2716). In case of multiplexed diagnostics the slight IACT electrical variation between ICs may result in the state of the AVF signal of each STCC08 (either VCC or zero level) not changing at exactly the same time. This has an impact on the

VSTATE signal and on the AC switches state detection (see Figure 13). Note that IACT1 and IACT2 define respectively the STTCO8 IAC input current for STCC081 and STCC082 to allow

VAVF signal to toggle between VCC and GND. For example, if the two STCC08 are not controlled (IN1 = IN2 = 0) and AC1 and AC2 are not in conducting state the AC1 and AC2

can be interpreted (see Table 1) as failed in short circuit if VSTATE is read between t0 and t1 (VSTATE = V0).

Doc ID 15255 Rev 1

9/29

Loading...
+ 20 hidden pages