ST AN2852 APPLICATION NOTE

AN2852
Application note
EVL6591-90WADP: 90 W AC-DC asymmetrical
half-bridge adapter using L6591 and L6563
Introduction
This document describes the characteristics and performance of a 90 W wide range input AC-DC adapter based on asymmetrical half-bridge topology (AHB).
Thanks to the AHB topology, the system offers good electrical performance (EPA 2.0 compliant) with a low-voltage and high-current output (12 V - 7.5 A).
The order code for this de monstration board is EVL6591-90WADP.

Figure 1. EVL6591-90WADP demonstration board

AM01816v1
January 2009 Rev 1 1/35
www.st.com
Contents AN2852
Contents
1 Main characteristics and circuit description . . . . . . . . . . . . . . . . . . . . . 4
2 Operating waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Asymmetrical half-bridge (AHB) typical waveforms . . . . . . . . . . . . . . . . . . 7
2.2 Low-load operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Short-circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Startup sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Electrical performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Efficiency measurement and no-load consumption . . . . . . . . . . . . . . . . . 17
3.2 Harmonic content measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4 Thermal measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5 Conducted noise measurements (pre-compliance test) . . . . . . . . . . . 24
6 Bill of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7 PFC coil specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2 Mechanical aspect and pin numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8 AHB transformer specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.1 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.2 Mechanical aspect and pin numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9 PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2/35
AN2852 List of figures
List of figures
Figure 1. EVL6591-90WADP demonstration board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 2. EVL6591-90WADP schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 3. AHB primary side key waveforms at full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 4. Detailed AHB zero-voltage switching at full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 5. Detailed AHB zero-voltage switching at half load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 6. AHB secondary side key waveforms at full load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 7. Burst mode at no load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 8. Detailed burst mode at no load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 9. Load transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 10. Detailed short-circuit behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 11. HICCUP mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 12. Detailed OVP intervention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 13. OVP intervention: system is latched. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 14. Complete startup sequence at 115Vac and full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 15. Detailed startup sequence at 115Vac and full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 16. Efficiency vs. O/P power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 17. No-load consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 18. EN61000-3-2 measurements at full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 19. JEIDA-MITI measurements at full load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 20. EN61000-3-2 measurements at 75 W input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 21. JEIDA-MITI measurements at 75 W input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 22. PF vs. input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 23. THD vs. input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 24. Thermal map at 115Vac - full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 25. Thermal map at 230Vac - full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 26. CE peak measure at 115Vac and full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 27. CE peak measure at 230Vac and full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 28. Electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 29. Bottom view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 30. Electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 31. Windings position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 32. Top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 33. Topside silk screen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 34. Bottomside silk screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 35. Copper traces (bottomside) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3/35
Main characteristics and circuit description AN2852

1 Main characteristics and circuit description

The main characteristics of the SMPS adapter are as follows:
Input mains range
–Vin: 88 ~ 264 Vrms f: 45 ~ 66 Hz
Output: 12Vdc ± 2% - 7.5 A
No-load: Pin below 0.35 W
Protections
Short-circuit –Overload – Ouput overvoltage – Brownout
PCB type and size
–CEM-1 – Single-side 70 µm – 174 x 78 mm
Safety: according to EN60065
EMI: according to EN50022 - class B
The adapter implements a two-stage solution. The front-end PFC uses a boost topology working in transition mode (TM). The IC used is the L6563, advanced TM PFC controller, which integrates all the functions an d protection needed to control the stage and an interface with the downstream DC-DC converter.
The power stage of the PFC comprises inductor L2, MOSFET Q1, diode D4 and capacitor C9. The PFC circuit is quite standard and already well described in previous ST application notes. Therefore this note will f ocus on the AHB stage and its controller, the L6591. This DC­DC converter comprises a half-bridge (MOSFET Q3 and Q4) connected to the output voltage of the PFC stage that driv es the se ries connection of a DC blocking capacitor (C44) and the primary of the transformer (T1). The tran sf ormer has two secondary windings with a center tap connection tied to ground. The other ends are connected to the output diodes D12 and D13. The output inductor is betw ee n th e co mmo n cathod e of diod es D1 2 and D1 3 and the output. The L6591 includes a current mode PWM control ler (fixed-frequency solution), gate drivers for both low and high-side MOSFETs with integrated bootstrap diode and all the functions and protections tailored for this topology. The device is housed in an SO-16 narrow package.
This adapter uses the magnetizing current and the output inductor current ripple to obtain the correct primary current direction to achieve zero-voltage switching (ZVS) at turn-on of both MOSFETs. The transformer construction is quite simple as it is a layer type with the primary winding split in two parts (sandwich configuration) and two secondary windings. The primary leakage inductance is about 3% of the magnetizing inductance. The h alf-bridge is operated at fixed frequency with complementary duty cycles on the two MOSFETs. The high-side FET is on during the D time and the low-side FET is on for the 1-D time. C44 is calculated in order to have a resonance frequency due to Lm and C44 well below the switching frequency (t hat, in this applicat ion, has bee n set at abou t 100 kHz). In this way the voltage on C44 is nearly constant and equal to Vin x D where Vin is the high-voltage input
4/35
AN2852 Main characteristics and circuit description
bus and D is the duty cycle. For stability reasons related to the topology, the IC limits the maximum duty cycle at 50%. The current in the primary tank circuit is read by the controller thanks to the sense resistors R81 and R82. The self supply is basically obtained thanks to an auxiliary winding on the AHB transformer. A small charge pump on the auxiliary windings of the PFC inductor helps during the startup phase. A pin dedicated to startup sequencing, a spare latched protection (dedicated here to out put overvoltage protecti on), the soft-start function, the overload protection, an interface with the PFC controller and the integrated high-voltage startup generator complete the features of the L6591. All the functions and protections are detailed in the following sections.
5/35
Main characteristics and circuit description AN2852

Figure 2. EVL6591-90WADP schematic

R30
J2
1
2
Output connector
12V-7.5A
C56
100NF
R97
N.M.
C46
25V
1000uF
+
L3
3.3uH
D12
STPS16L40CT
C58
1N8
9
R94
C21
C20
2N2
2N2
12R
T1
AHB Trafo
2
+
+
C62
N.M.
N.M.
C61
JP9
N.M.
10
12
4
5
C59
470PF
D13
STPS30100ST
14
R95
47R
6
R29
100K
BZV55-B11
D28
BZV55-B13
U5A
PC817
12
D25
R87
N.M.
R86
33K
C53
N.M.
R85
220K
R88
2K2
R83
6K8
12
U3A
2K2
BC847C
2 3
1 Q11
Q10
BC847C
2 3
R24
1.8K
1
R25
4.7K
R96
470
C55
N.M.
R93
3K3
C54
1uF
1
R91
U4
75K
TS3431
3 2
PC817
D3
1N4005
D1
F1
T4A
J1
R11
R7
2R5
R6
D4
STTH2L 06
L2
GBU6J
-+
C4
470NF
L1
86A-5163
4 8
1 5
C2
2N2
C1
470nF
1
2
3
Input connector
STP12NM50FP
C44
220NF
250V
Q3
R53
3M0
680K
+
C9
47uF
10 3
8 5
700uH
C5
470NF
400V
C3
2N2
88 - 264Vac
0R0
R12
3M0
680K
R8
450V
R70
33R
R13
8.2K
R28
24K9
10R
R72
D23
100NF
C14
LL4148
16
HVSTAR T
U2
L6591
LINE1DIS2ISEN3SS4OSC
R71
10R
C41
4N7
D27
LL4148
R19
56K
R100
0R0
14
VCC
INV
U1
1
R18
56K
C13
1uF
C42
100NF
15
BOOT
13
GD
COMP
2
R10
15K
R3
680K
R9
82K
C17
N.M.
D21
+
1N4148
D22
C40
10NF
LL4148
R98
220K
+
C15
22uF
0R0
R54
100NF
C39
R1
1M0
R2
R55
1M2
0R0
Q4
R73
100K
STP12N M50FP
R74
R75
14
HVG
C45 220PF
12
GND
MULT3CS4VFF5TBO6PFC_OK
10R
56R
D24
LL4148
11
12
13
N.C.
GND
FGND
VREF
6
5
C43 10NF
R78 19K6
LL4148 D29
2.2NF
U5B
C47
PC817
STP12NM50FP
Q1
R46
100K
R21
27R
10
11
9
ZCD
RUN
PWM_STOP
R15
C11
10NF
R14
18K
4
3
150K
10
LVG
COMP7PFC_STOP
8
PWM_LATCH
7
R82
0R82
R81
0R82
R79
100K
R77
56R
C51
22uF
+
C50
100NF
9
Vcc
8
C52
100NF
C48
6.8NF
C49
330PF
R23
0R47
R22
0R47
R20
0R0
C16
1N0
R80
1K0
R27
470
L6563
R26
240K
C12
470NF
R17
0R0
D26
R90
0R0
R84
220R
U3B
PC817
43
R99
15K
C10
1N0
C22
220PF
C57
STPS1L60A
R89
100uF
+
R69
N.M.
1
2 3
D20
N.M.
NM
Q9
R101
0R0
100K
AM01817v1
6/35
AN2852 Operating waveforms

2 Operating waveforms

2.1 Asymmetrical half-bridge (AHB) typical waveforms

As mentioned before, this application note f ocuses on the AHB stage . This DC-DC conv erter has the 400 V PFC bus as input and delivers 12 V at the output.
In Figure 3 the primary side key waveforms with full load applied are shown. Figure 4 shows the detail of the two transition s during one s witching cycle. Wh en the LVG signal goes do wn, the current is negative and so the half- bridge node (that has a certain capacitance value due to the Coss of the MOSFETs and the stra y ca pacitance of the circuit) is cha rged up to 400 V. After the deadtime has elapsed the high-side driver is turned on with zero volts across the high-side MOSFET drain-source pins. The driver activation is visible on the HVG signal when there is the small voltage step on the high part of the waveform.
When the high-side driver is turned off, the primary current is positive, so the half-bridge node is discharged down to zero volts and the body diode of Q4 is activated. After the deadtime the LVG turns on in ZVS condition.

Figure 3. AHB primary side key waveforms at full load

Ch1: LVG pin voltage (yellow)
Ch3: HVG pin voltage (purple)
Ch4: primary winding current (green)
Typically, in the AHB topology, the most critical transition is the one between LVG turn-off and HVG turn-on. In f act it is visibl e that the current a v ailable to mov e the half-bridge point is less with respect to the other transition. This is due to the magnetizing current that is not symmetrical with an average value of zero amps but has a certain offset due to the asymmetrical driving of the tank circuit.
The fast current variation during transitions is due to the reversal of the current direction in the secondary windings. The effort in this design was to maintain a negative current after
AM01818v1
7/35
Operating waveforms AN2852
the positive variation at LVG turn-off. This was done by a correct design of the magnetizing current, output inductor current ripple and choice of turns ratio.

Figure 4. Detailed AHB zero-voltage switching at full load

Ch1: LVG pin voltage (yellow)
Ch3: HVG pin voltage (purple)
Ch4: primary winding current (green)
AM01819v1
The ZVS condition is harder to meet as the load increases , so full load is the w orst condition to have for a correct ZVS operation. In Figure 5 the same waveforms are shown with half load. Since the output current is reduced, the fast primary side current variations are also reduced and so the magnetizing current (that remains basically the same if the load changes) becomes proportionally higher. The result is that there is more current available for moving the half-bridge node.
8/35
AN2852 Operating waveforms

Figure 5. Detailed AHB zero-voltage switching at half load

Ch1: LVG pin voltage (yellow) Ch3: HVG pin voltage (purple)
Ch4: primary winding current (green)
AM01820v1
The key w av ef orms at the secondary side are shown in Figure 6. It is interesting to note that, while the current is swapped between the two diodes, the voltage at their cathode is nearly zero.

Figure 6. AHB secondary side key waveforms at full load

Ch1: D12 and D13 common cathode voltage (yellow) Ch2: diode D12 current (blue)
Ch3: FGND pin voltage (purple)
Ch4: diode D13 current (green)
AM01821v1
9/35
Operating waveforms AN2852
Another peculiarity of this topology is that, since it is asymmetrical, the diode D13 has to carry higher average and RMS current and sustain higher reverse voltage with respect to diode D12. This implies that D13 dissipates a lot mor e t han D12 an d ma kes sense, in order to improve efficiency and save money, to have a synchronous rectification only on D13.

2.2 Low-load operation

At light loads (and no-load) conditions the system enters a controlled burst mode operation, allowing input power reduction. The burst mode is activated according to the COMP pin level.
In Figure 7 and Figure 8 the burst mode operation with no load is shown. Under a certain load also the PFC stage works in burst mode operat ion (sp ecifically t he PFC enters in b ur st mode for a load value higher than the one for the AHB). Using the PFC_STOP pin of the L6591 and the PFC_OK pin of the L6563, a simple interface is built in order to keep the burst modes of the two ICs synchronized. This operation allows fast response to a heavy load transition since the PFC is already on when the power is needed. This avoids output voltage dips. The load transition from 0 to 100% and vice versa can be seen in Figure 9.

Figure 7. Burst mode at no load

Ch1: LVG pin voltage (yellow) Ch2: Q1 (PFC MOSFET) gate (blue)
Ch3:PFC output voltage Ch4: COMP pin voltage (green)
10/35
AM01822v1
AN2852 Operating waveforms

Figure 8. Detailed burst mode at no load

Ch1: LVG pin voltage (yellow) Ch2: Q1 (PFC MOSFET) gate (blue)
Ch3:PFC output voltage Ch4: L6563 PFC_OK pin voltage (green)
AM01823v1

Figure 9. Load transitions

Ch2: output voltage (blue) Ch4: output current (green)
AM01824v1
11/35
Loading...
+ 24 hidden pages