ST AN2771 APPLICATION NOTE

AN2771

Application note

2x58 W/T8 or 2x36 W/T8 ballast demonstration board driven by L6585D

Introduction

This application note describes a demonstration board able to drive 2x58 W linear T8 fluorescent tubes. In addition, the modifications needed to adapt the same board for 2x36 W linear T8 fluorescent tubes are specified.

The ballast is controlled by STMicroelectronics’ L6585D which integrates PFC and halfbridge control circuits, the relevant drivers, and the circuitry able to manage all lamp operating phases (preheating, ignition and run mode). Protections against primary failures (lamp disconnection, anti-capacitive mode, PFC overvoltage) are guaranteed and obtained with a minimum number of external components. After presenting the circuit description and design criteria, a short overview of the ballast performances is given.

Fluorescent lamps are driven more and more by electronic, rather than electromagnetic ballast, primarily because fluorescent lamps can produce around 20 % more light for the same input power when driven above 20 kHz instead of 50/60 Hz. Operation at this frequency also eliminates both light flickering (the response time of the discharge is too slow for the lamp to have a chance to extinguish during each cycle) and audible noise. An electronic ballast consumes less power and therefore dissipates less heat than an electromagnetic ballast. The energy saved can be estimated in the range of 20-25% for a given lamp power. Finally the electronic solution allows better control of the filament current and lamp voltage during preheating with the unquestionable benefit of increasing the mean lamp life.

Figure 1. 2x58W T8 ballast demonstration board

 

 

 

 

 

 

 

 

 

 

 

 

August 2008

Rev 1

1/27

 

 

 

 

www.st.com

Contents

AN2771

 

 

Contents

1

Basis of half-bridge inverter topology . . . . . . . . . . . . . . . . . . . . . . . . .

. 4

2

Main characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

3

Ballast design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

 

3.1

L6585D biasing circuitry (pin by pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

 

3.2

PFC power section design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

 

3.3

Half-bridge inverter design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

 

3.4

Symmetrical and asymmetrical EOL protection: improvements . . . . . . . .

13

4

Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

5

Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

6

Conduction emissions test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

 

6.1

Adapting the design for a 2x36 W T8 electronic ballast . . . . . . . . . . . . . .

21

7

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

2/27

AN2771

List of figures

 

 

List of figures

Figure 1. 2x58W T8 ballast demonstration board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 2. Electronic lamp ballast - capacitor-to-ground configuration . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 3. Electronic lamp ballast - lamp-to-ground configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 4. Dual lamp ballast series configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 5. Dual lamp ballast parallel configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 6. Electrical schematic 2x58 W T8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 7. TSM101 window comparator configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 8. External symmetrical EOL protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 9. L6585 startup sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 10. One lamp ignition phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 11. Low-side current in run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 12. Voltage and current lamp in run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 13. Asymmetrical EOL protection with broken cathode during run mode. . . . . . . . . . . . . . . . . 19 Figure 14. Symmetrical EOL protection behavior during ignition phase . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 15. Conducted emissions at 230 Vac 50 Hz - line 1 peak detector . . . . . . . . . . . . . . . . . . . . . 21 Figure 16. Conducted emissions at 230 Vac 50 Hz - line 2 peak detector . . . . . . . . . . . . . . . . . . . . . 21

3/27

Basis of half-bridge inverter topology

AN2771

 

 

1 Basis of half-bridge inverter topology

The half-bridge inverter operates in zero voltage switching (ZVS) resonant mode, to reduce the switching losses and the electromagnetic interference generated by the output wiring and the lamp. Voltage-fed series resonant half-bridge inverters are currently used for compact fluorescent lamp ballasts (CFL) and for many European tube lamp (TL) ballasts.

Generally, for lighting applications, considering the current preheating, it's possible to choose between two different topologies of the resonant circuit: capacitor-to-ground (Figure 2) or lamp-to-ground (Figure 3).

Figure 2. Electronic lamp ballast - capacitorFigure 3.

Electronic lamp ballast - lamp-to-

to-ground configuration

ground configuration

+

CRES

+

 

LRES

 

LrRES

CBlock

Vdc

 

Vdc

CRES

 

 

CBlock

 

_

 

_

 

In the design presented in this application note, a capacitor-to-ground configuration was used. For dual lamp ballast the lamps can be connected in series (Figure 4) or in parallel (Figure 5). In the system presented here, a parallel configuration was chosen for the following reasons:

lower voltage stress on the ballast output stage components, on the wiring, and on the fixture sockets

the resonant L and C associated with the lamps are less sensitive to component tolerances due to the lower operating lamp voltages compared to the series configuration

better lamp control as it is possible to independently monitor both lamp operations

Figure 4. Dual lamp ballast series

Figure 5. Dual lamp ballast parallel

configuration

configuration

+

CRES

+

CRES

 

 

 

 

 

LrRES

 

LrRES

LrPRE

 

 

 

 

-

CBlock

-

CBlock

 

4/27

 

 

 

AN2771

Main characteristics

 

 

2 Main characteristics

The electrical specifications for the electronic lamp ballast are given in Table 1 and the schematic for the 2x58 W T8 is presented in Figure 6. The ballast design procedure is detailed in the following section.

Table 1.

Input and output parameters

 

 

 

Input parameters

 

 

 

 

 

 

 

VIN

Input voltage range

 

185 to 265 VRMS

 

fline

Line frequency

 

50/60 Hz

 

 

Tube lamp

 

 

 

 

 

 

 

Number

2

 

 

 

 

 

Type

T8 in parallel configuration

 

 

 

 

 

Power

58 W or 36 W

 

 

 

 

 

 

 

 

Target output parameters

 

 

 

 

 

 

 

PF

Power factor

 

0.9

 

 

 

 

 

 

THD%

Total harmonic distortion

 

≤ 10

 

 

 

 

 

 

η %

Efficiency

 

90 %

 

 

 

 

 

5/27

ST AN2771 APPLICATION NOTE

6/27

 

 

D10

 

 

8

 

 

 

R5

 

 

 

1 MOhm

 

 

C4

5

 

 

 

 

 

470 nF

 

 

 

 

R9

 

 

 

390 kOhm

 

 

 

R33

0

D3

D4

R17

 

GF1M

GF1M

 

 

 

20//11 kOhm

 

J1

 

 

1

LPFC2

 

 

 

 

 

4

C11

 

2

 

C10

 

 

 

 

 

 

100nF 275V X2

 

1

100nF 275V X2

 

 

 

3

 

 

2

3

D5

D6

 

 

 

CON3

 

 

 

 

GF1M

GF1M

F1

3A

2x39 mH/0.7A

 

 

 

 

 

 

 

 

 

 

 

 

 

C20

 

 

 

 

 

 

1nF 275 VAC Y1

 

 

1N4007

 

D2

 

 

 

 

 

 

STTH1L06

 

 

 

 

 

3

 

 

 

 

 

 

 

0.8 mH

 

 

R6

 

R7

 

LPFC1

 

 

1.5 MOhm910 kOhm

1

C1

+

C21

 

 

 

 

 

 

 

 

47uF 450V

100nF 630V

R11

 

R12

 

R32

 

 

1.5 MOhm910 kOhm

 

0

 

 

 

 

 

 

R10

 

 

 

 

C8

 

15 kOhm

 

R18

 

R19

10 nF

 

 

18 kOhm

 

 

 

 

 

13 kOhm

 

 

D7

 

 

 

 

 

BAT46Z

 

 

 

 

Q3

 

 

 

 

 

 

STD6NK50Z

R21

 

 

 

 

 

 

10 Ohm

 

 

 

 

R53

0

 

 

 

 

R22

 

 

 

C25

 

 

0.33 ohm 1% 1W

 

 

 

 

 

 

 

 

CAP NP

3

Q8

BC847

2

1 3

1

R27

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

56K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C2

 

 

 

 

 

 

 

 

 

 

R13

 

 

 

 

 

 

R30

470//100 nF

 

 

 

 

 

 

 

30 KOhm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C3

R8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

56K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

33 nF

16 kOhm

 

 

 

 

 

 

 

 

 

 

 

 

R14

 

 

C7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C5

20 kOhm

C6

 

240 kOhm

 

 

 

 

 

 

 

 

 

 

 

 

 

1.8 nF

 

470//150 1.2 MOhm470//220 nF

R16

 

 

 

10 9 8 7 6 5 4 3 2 1

 

 

 

 

 

 

 

 

 

INV Comp

Mult

CTR -EOLR

EOLP TCH EOI

RF

Osc

U1

 

 

 

R20

C22

 

 

 

 

 

 

 

 

 

 

 

 

L6585D

 

 

 

 

Q2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

62 Ohm

220 pF 1kV

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STD8NM60N

 

ZCD PFCS

PFG

HBCS GND

LSD VCC Out

HSD

Boot

 

 

 

 

 

1

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L1

 

11

12

13

14

15

16

17

18

19

20

 

 

 

 

 

 

 

1.8 mH

 

 

 

 

 

 

 

 

R36

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

68k

 

 

 

 

 

 

 

 

 

 

 

C13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100nF 50V

 

 

 

 

 

 

R37

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

56k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.8 mH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q4

 

R40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R23

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

62 Ohm

 

68k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STD8NM60N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R41

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

56k

 

 

 

 

 

 

 

 

 

 

 

D8 1N4148

R29

10 Ohm

C16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C17

 

 

 

 

 

D9

 

1 nF 1kV

 

D13

R31

 

 

 

 

 

 

 

 

 

 

C18

 

 

 

LL4148

 

 

 

 

 

 

 

 

 

 

16V

 

 

 

 

 

 

 

 

 

4.7uF 50V

 

 

 

 

 

 

0.33 ohm 1% 1W

 

 

 

 

 

 

100nF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R56

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18k

 

 

 

 

 

 

 

 

 

R52

 

0

 

 

 

 

 

 

D11

BAT46Z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D12

BAT46Z

 

 

 

 

 

 

 

 

 

 

 

R49

 

R47

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

330k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

330k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R51

2k

 

 

2

 

 

 

Q7

3

R48

10

XO205MA

 

 

1

3

 

 

R50

 

BC847

1

 

56k

2

 

R55

 

Q6

BC847

 

470

 

2

R46

 

Q5

 

 

 

470k

 

 

 

 

 

 

 

 

 

 

.6 Figure

characteristics Main

 

 

R3

R4

 

Electrical

 

 

 

560 kOhm

560 kOhm

 

 

 

 

LAMP1

 

 

schematic

 

R34

 

C9

 

 

 

 

 

180k

 

10 nF 1600V

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

4

 

2x58

 

2

 

 

 

3

 

 

 

 

T8 Lamp1-58W

 

C12

 

 

 

 

 

 

 

 

 

 

 

 

 

100 nF, 400V

W

 

R35

 

C14

 

 

 

 

 

10 nF 1600V

 

 

 

 

180k

 

 

 

 

 

 

 

 

 

 

T8

 

 

 

LAMP2

 

 

 

4

 

 

 

1

 

 

 

3

 

 

 

2

 

 

 

 

 

T8 Lamp1-58W

 

 

 

 

 

 

 

 

 

C15

 

 

 

 

 

 

R24

100 nF, 400V

 

 

 

 

 

1.802 MOhm

 

 

 

 

 

 

 

 

R25

 

 

 

 

 

 

 

1.6 kOhm

R54

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0R

 

 

 

U2

 

 

 

R26

 

 

1 Vref

 

8

 

 

 

+Vcc

 

10 kOhm

 

 

2

Csense

Vrin

7

 

 

 

 

 

 

 

 

 

C19

3

Crref

Output

6

 

 

 

 

 

 

 

 

 

100 nF

4

GND

Crin

5

 

 

 

 

 

 

 

 

 

 

 

TSM101

 

 

 

 

 

AN2771

AN2771

Ballast design

 

 

3 Ballast design

The design of the major parts of the circuit is described in this section.

3.1L6585D biasing circuitry (pin by pin)

Designed in high-voltage BCD offline technology, the L6585D embeds a PFC controller, a half-bridge controller, the relevant drivers and the logic necessary to build an electronic ballast.

Pin 1 OSC is one of the two oscillator inputs. The value of the capacitor connected to ground defines the half-bridge switching frequency in each operating state. A value of 1.8 nF was chosen.

Pin 2 RF. The component choice with oscillator capacitance defines the half-bridge

switching frequency in each operating state. A resistor R14 connected to ground sets the run frequency while during preheating the switching frequency is set by the parallel of R14 with R13 connected between pins RF and EOI (short-circuit during preheating).

Choosing the following frequencies and ignition time:

f = 39 kHz

f = 65 kHz tign = 60 ms

run

pre

we can immediately calculate R14 with the following formula:

Equation 1

R14 = 1.326 = 20 kΩ

frun C5

and for the value of R13:

Equation 2

R13

=

1.326 R14

 

= 30 kΩ

fpre C5

R14

− 1.41

 

 

 

Pin 3 EOI is a multifunction pin. During preheating the pin is internally shorted to

ground by the logic, so the resistor (RPRE//RRUN) connected between the RF pin and ground sets the preheating switching frequency. During ignition pin EOI becomes high impedance. The ignition time is the time necessary for the pin voltage to exponentially

rise from zero to 1.9 V. The growth is steered by the C6* R13 time constant. As the value of R13 has already been calculated and tign at start is fixed, the value of C6 is calculated by the following formula:

Equation 3

C6

=

 

tign

= 666 nF

 

R13

 

3

 

7/27

Ballast design

AN2771

 

 

The value C6=620 nF was chosen. In order to have this value, two capacitors in parallel were mounted C6=470//150 nF.

Pin 4 TCH is the time counter and it is necessary to establish the preheating time and the protection intervention time (either overcurrent or EOL). To implement the time

counter, a R15C7 parallel network is connected between this pin and ground. Choosing C7=690 nF and tpre=1 sec and considering the internal current generator ICH=34 µA, we can calculate R15 as follows:

Equation 4

 

tpre

C7

4.63

 

ICH

R15 =

 

 

= 1.2 MΩ

 

 

 

C7 ln 4.63

1.5

Pin 5 EOLP is a 2 V reference and allows programming the window comparator of pin 6 (EOLR) according to table 5 of the L6585D datasheet. Choosing a reference tracking with the CTR pin and a window voltage amplitude ± 220 mV, we chose R16=240 kΩ.

Pin 6 EOLR is the input of both the window comparator and a re-lamp comparator. Concerning the window comparator (choosing tracking with CTR pin), the center is the same voltage as the CTR pin so the resistive divider connected across the block capacitor (see Cblock in Figure 2) is set such that under normal conditions:

Equation 5

 

VCTR = VBUSpfc

 

 

 

 

R19

 

 

 

 

R

+ (R

7

+ R )

 

 

 

 

 

 

 

19

 

 

12

 

 

 

VEOLR =

VBUSpfc

 

 

 

 

R8

 

 

 

 

 

 

 

 

 

+ (R3 + R4 )

 

 

 

 

2 R8

 

V

= V

 

(R7 + R12 )

= 2

(R3 + R4 )

+ 1

 

 

EOLR

CTR

 

 

R19

 

 

 

R8

 

 

 

 

 

 

 

To determine the resistance values of

 

(R7+R12), R19, (R3+R4), R8, decisions concerning

pin 7 CTR are needed.

 

 

 

 

 

 

 

 

 

 

 

 

 

Pin 7 CTR is a multifunction pin (PFC overvoltage, feedback disconnection, reference for EOL in case of tracking reading), connected to a resistive divider to the PFC output bus. Establishing the maximum PFC overvoltage (PFC output overshoot e.g. at startup)

at VOVPBUSpfc = 480 V and considering that the correspondent threshold on the CTR pin must be VthrCTR = 3.4 V, we can immediately calculate R7+R12 = 1.82 MΩ and R19 = 13 kΩ. From Equation 5, fixing R3+R4 = 1120 kΩ, the following resistance value is obtained R8 = 16 kΩ.

Pin 8 MULT. Assuming a peak value of VmultpkMax = 1.8 V (at VAC = 265 V) on the multiplier input (MULT, pin 8), the peak value at minimum line voltage is

VMULTpkmin = 1.8 × 185/265 = 1.25 V which, multiplied by the maximum slope of the multiplier, 0.75, gives 0.94 V peak voltage on current sense (CS, pin 4). Since the

linearity limit (1 V) is not exceeded, this is acceptable. Considering about 250 µA current for the divider, the lower resistor is 7.14 kΩ (20//11 kΩ ). To establish the upper resistance value (referring to the PFC section of the L6585D datasheet), the ratio between Vmult and Vin for different input voltage must be evaluated:

8/27

AN2771

 

 

 

 

 

 

 

 

 

Ballast design

 

 

 

 

 

 

 

 

 

 

 

Equation 6

 

 

 

 

 

 

 

 

 

 

 

V

 

 

R17

= VmultPK max = 4.8 10−3

 

 

 

inMax

R17 + (R5 + R9 )

 

 

2 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

inMax

 

 

V

 

17

 

=

VmultSlopeMax

=

VCSclamp

1

= 5.1 10−3

 

 

R

 

 

 

 

inMin

R17

+ (R5

+ R9 )

 

2 V

 

 

max slope

2 V

 

 

 

 

 

 

 

 

 

 

 

inMin

 

 

 

inMin

 

where:

VCSclamp is the clamp value of the voltage current sense for L6585D

max slope is the maximum slope of the multiplier characteristic family for L6585D

VmultSlopeMax is the maximum voltage in the mult pin with Vin=VinMin

To work in the linear area of the multiplier characteristic family, the upper resistance choice is made considering the lowest of ratios calculated in Equation 6 R5+R9=1.487 MΩ. R5+R9 = 1.390 MΩ was mounted.

Pin 9 COMP is the output of the E/A and also one of the two inputs of the multiplier. The feedback compensation network, placed between this pin and INV (10), is simply a

capacitor calculated as follows (considering R6+R11 is the upper resistance of the voltage divider between the PFC bus and COMP pin):

Equation 7

C2

=

 

10

 

 

= 530 nF

 

π (R6

+ R11)

 

2

 

A value of C2=560 nF was chosen.

Pin 10 INV. To implement the voltage control loop, a resistive divider (Figure 6) is

connected between the regulated output voltage VBUSpfc = 420 V of the boost and the

pin. The internal reference on the noninverting input of the E/A is 2.5 V, so R6 and R11 (Figure 6) are then selected, establishing a max overvoltage ∆VOVPBUSpfc = 60 V, as follows:

Equation 8

 

 

 

R

6

+ R

 

VBUSpfc

 

 

 

 

 

 

 

11

=

 

 

− 1

 

 

 

 

R18

2.5

 

 

 

 

 

 

 

R

6

+ R

 

=

∆VOVPBUSpfc

= 3 MΩ

 

 

 

 

 

11

 

 

IOVPth

 

 

 

 

 

 

 

 

 

 

 

 

R18 = 17.964 kΩ 18 kΩ

where IOVPth = 20 µA is the threshold current flowing through the compensation network in case an abrupt load drop happens.

Pin 11 ZCD is the input to the zero current detector circuit. The ZCD pin is connected to the auxiliary winding of the boost inductor through a limiting resistor. The ZCD circuit is negative-going edge-triggered: when the voltage on the pin falls below 0.7 V, the PWM latch is set and the MOSFET is turned on. To do so, however, the circuit must first be armed. Prior to falling below 0.7 V, the voltage on pin 11 must experience a positivegoing edge exceeding 1.4 V (due to the MOSFET's turnoff). The maximum main-to-

9/27

Loading...
+ 18 hidden pages