ST AN2755 Application note

AN2755
Application note
400 W FOT-controlled PFC pre-regulator with the L6562A
Introduction
This application note describes an demonstration board based on the transition-mode PFC controller L6562A and presents the results of its bench demonstration. The board implements a 400 W, wide-range mains input PFC pre-conditioner suitable for ATX PSU, flat screen displays, etc. In order to allow the use of a low-cost device like the L6562A at this power level, usually prohibitive for this device, the chip is operated with fixed-off-time control. This allows continuous conduction mode operation, normally achievable with more expensive control chips and more complex control architectures.

Figure 1. Demonstration board (EVL6562A-400W)

July 2008 Rev 1 1/24
www.st.com
Contents AN2755
Contents
1 Main characteristics and circuit description . . . . . . . . . . . . . . . . . . . . . 5
2 Test results and significant waveforms . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Harmonic content measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Inductor current in FOT and L6562A THD optimizer . . . . . . . . . . . . . . . . 10
2.3 Overvoltage protection and disable function . . . . . . . . . . . . . . . . . . . . . . 11
3 Layout hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4 Audible noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5 Thermal measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6 Conducted emission pre-compliance test . . . . . . . . . . . . . . . . . . . . . . 16
7 Bill of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8 PFC coil specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8.1 General description and characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8.3 Mechanical aspect and pin numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2/24
AN2755 List of tables
List of tables
Table 1. Measured temperature table at 115 Vac and 230 Vac - full load . . . . . . . . . . . . . . . . . . . . 15 Table 2. Bill of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 3. Winding characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Table 4. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3/24
List of figures AN2755
List of figures
Figure 1. Demonstration board (EVL6562A-400W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 2. EVL6562A-400W demonstration board electrical schematic . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 3. EVL6562A-400W compliance to EN61000-3-2 standard at full load . . . . . . . . . . . . . . . . . 7 Figure 4. EVL6562A-400W compliance to JEIDA-MITI standard at full load . . . . . . . . . . . . . . . . . . . . 7 Figure 5. EVL6562A-400W compliance to EN61000-3-2 standard at 70 W load . . . . . . . . . . . . . . . 7 Figure 6. EVL6562A-400W compliance to JEIDA-MITI standard at 70 W load . . . . . . . . . . . . . . . . . . 7 Figure 7. EVL6562A-400W input current waveform at 100 V - 50 Hz - 400 W load . . . . . . . . . . . . . . 8 Figure 8. EVL6562A-400W input current waveform at 230 V - 50 Hz - 400 W load . . . . . . . . . . . . . . 8 Figure 9. EVL6562A-400W input current waveform at 100 V - 50 Hz - 200 W load . . . . . . . . . . . . . . 8 Figure 10. EVL6562A-400W input current waveform at 230 V - 50 Hz - 200 W load . . . . . . . . . . . . . . 8 Figure 11. EVL6562A-400W input current waveform at 100 V - 50 Hz - 70 W load . . . . . . . . . . . . . . . 8 Figure 12. EVL6562A-400W input current waveform at 230 V - 50 Hz - 70 W load . . . . . . . . . . . . . . . 8 Figure 13. Power factor vs. Vin and load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 14. THD vs. Vin and load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 15. Efficiency vs. Vin and load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 16. Static Vout regulation vs. Vin and load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 17. EVL6562A-400W inductor current ripple envelope at 115 Vac - 60 Hz - full load . . . . . . . 10 Figure 18. EVL6562A-400W inductor current ripple (detail) at 115 Vac - 60 Hz - full load . . . . . . . . . 10 Figure 19. EVL6562A-400W inductor current ripple envelope at 230 Vac - 50 Hz - full load . . . . . . . 11 Figure 20. EVL6562A-400W Inductor current ripple (detail) at 230 Vac-50 Hz -full load. . . . . . . . . . . 11 Figure 21. EVL6562A-400W PCB layout (not scaled 1:1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 22. Thermal map at 115 Vac - 60 Hz - full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 23. Thermal map at 230 Vac - 50 Hz - full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 24. 115 Vac and full load - phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 25. 115 Vac and full load - neutral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 26. 230 Vac and full load - phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 27. 230 Vac and full load - neutral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 28. Electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 29. Pin side view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4/24
AN2755 Main characteristics and circuit description

1 Main characteristics and circuit description

The main characteristics of the SMPS are listed here below:
Line voltage range: 90 to 265 Vac
Minimum line frequency (f
Regulated output voltage: 400 V
Rated output power: 400 W
Maximum 2f
Hold-up time: 22 ms (V
Maximum switching frequency: 85 kHz (V
Minimum estimated efficiency: 90 % (V
Maximum ambient temperature: 50 °C
EMI: In accordance with EN55022 class-B
PCB type and size: Single side, 70 µm, CEM-1, 148.5 x 132 mm
Low profile design: 35 mm component maximum height
output voltage ripple: 10 V pk-pk
L
The demonstration board implements a power factor correction (PFC) pre-regulator delivering 400 W continuous power on a regulated 400 V rail from a wide-range mains voltage and provides for the reduction of the mains harmonics, which allows meeting the European norm EN61000-3-2 or the Japanese norm JEIDA-MITI. This rail is the input for the cascaded isolated DC-DC converter that provides the output rails required by the load.
): 47 Hz
L
after hold-up time: 300 V)
DROP
= 90 Vac, P
in
= 90 Vac, P
in
= 400 W)
out
= 400 W)
out
The board is equipped with enough heat sinking to allow full-load operation in still air. With an appropriate airflow and without any change in the circuit, the demonstration board can easily deliver up to 450 W.
The controller is the L6562A (U1), integrating all the functions needed to control the PFC stage.
The L6562A controller chip is designed for transition-mode (TM) operation, where the boost inductor works next to the boundary between continuous (CCM) and discontinuous conduction mode (DCM). However, with a slightly different usage, the chip can operate so that the boost inductor works in CCM, hence surpassing the limitations of TM operation in terms of power handling capability. The gate-drive capability of the L6562A is also adequate to drive the MOSFETs used at higher power levels. This approach, which couples the simplicity and cost-effectiveness of TM operation with the high-current capability of CCM operation, is the Fixed-OFF-time (FOT) control. The control modulates the ON-time of the power switch, while its OFF-time is kept constant. More precisely, it uses the line-modulated FOT (LM-FOT) where the OFF-time of the power switch is not rigorously constant but is modulated by the instantaneous mains voltage. Please refer to [2] for a detailed description of this technique.
The power stage of the PFC is a conventional boost converter, connected to the output of the rectifier bridge D2. It includes the coil L4, the diode D3 and the capacitors C6 and C7. The boost switch is represented by the power mosfets Q1 and Q2. The NTC R2 limits the inrush current at switch-on. It has been connected on the DC rail, in series to the output electrolytic capacitor, in order to improve the efficiency during low-line operation. Additionally, the splitting in two of output capacitors (C6 and C7) allows managing the AC current mainly by the film capacitor C7 so that the electrolytic can be cheaper as it just has to bear the DC part only.
5/24
Main characteristics and circuit description AN2755
At startup the L6562A is powered by the Vcc capacitor (C12) that is charged via the resistors R3 and R4. Then the L4 secondary winding (pins 8-11) and the charge pump circuit (R5, C10, D5 and D4) generate the Vcc voltage powering the L6562A during normal operation.
The divider R32, R33 and R34 provides the L6562A multiplier with the information of the instantaneous voltage that is used to modulate the boost current. The divider R9, R10, R11, R12 & 13 is dedicated to sense the output. The Line-Modulated FOT is obtained by the timing generator components D6, C15, R15, C16, R16, R31, Q3.
The board is equipped with an input EMI filter designed for a 2-wire input mains plug. It is composed of two stages, a common mode pi-filter connected at the input (C1, L1, C2, C3) and a differential mode pi-filter after the input bridge (C4, L3, C5). It also offers the possibility to easily connect a downstream converter.

Figure 2. EVL6562A-400W demonstration board electrical schematic

J1
1 2
90 - 265Vac
8A/250V
R32
620k
D2
C3 680nF-X2
INV
COMP
MULT
R10
510k
R12 47K
L6562A
Q3 BC857C
D15X B60
+
-~~
R102 0R0
R11 510k
R13
12k
8
VCC
7
GD
6
GND
5
ZCDCS
+400Vdc
CM-1.5mH-5A
L1
C1
R1
470nF-X2
1M5
C14
2.2uF
R33
620k
C2 470nF
R9
510k
C13 22 0nF
R14 47k
1
2
3
4
C21
R34
10nF
10k
F1
L3 DM-51uH-6A
C4 470n F-630 V
R3 100K
R4 100K
C11 470nF/50V
R31 3k
C16 120p F
R101 0R0
R16 30k
C12 100uF/50V
C15 68pF
C5 470nF-63 0V
R15 1k8
811
D4 LL4148
LL41 48 D6
5-6
T PQ40- 500uH
R5 47R
C10 22N
D5 BZX8 5-C 18
C20 330pF
D1
1N54 06
1-2
D3
STTH8R06
C6
470nF-630V
R2
NTC 2R5-S237
330uF-450 V
+400Vdc
J2
1
+400Vdc
2
+400Vdc
3
NC
4
C7
RTN
5
RTN
+400Vout
D7 LL4148
D8 LL4148
R20 0R47-1 W
STP1 2NM50FP
R21
0R4 7-1W
Q1
Q2 STP1 2NM50FP
R22
R23
0R47-1W
0R4 7-1W
R36 3R9
R17 6R8
R35 3R9
R18 6R8
R19
1K0
6/24
AN2755 Test results and significant waveforms

2 Test results and significant waveforms

2.1 Harmonic content measurement

One of the main purposes of a PFC pre-conditioner is the correction of input current distortion, decreasing the harmonic contents below the limits of the actual regulations. Therefore, the board has been tested according to the European rule EN61000-3-2 class-D and Japanese rule JEIDA-MITI class-D, at full load and 70 W output power, at both the nominal input voltage mains.
As shown in the following figures of this page, the circuit is capable of reducing the harmonics well below the limits of both regulations from full load down to light load. 70 W of output power has been chosen because it approaches the lower power limit at which the harmonics have to be limited according to the mentioned rules.
Figure 3. EVL6562A-400W compliance to
10
EN61000-3-2 standard at full load
Measurements @ 230Vac Full load EN61000-3-2 class D limits
Figure 4. EVL6562A-400W compliance to
JEIDA-MITI standard at full load
Measurements @ 100Vac Full load JEIDA-MITI class D limits
10
1
0.1
0.01
Ha rm on i c c u rr en t ( A)
0.001
0.0001 1 3 5 7 9 111315171921232527293133353739
Harmonic Order (n)
Figure 5. EVL6562A-400W compliance to
1
0.1
0.01
Harmonic current (A)
0. 00 1
0.0001
EN61000-3-2 standard at 70 W load
Measurements @ 230Vac 70W EN61000-3-2 class D limits
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Harmonic Order (n)
1
0.1
0.01
Harmonic current (A)
0.001
0.0001 1 3 5 7 9111315171921232527293133353739
Harmonic Order (n)
Figure 6. EVL6562A-400W compliance to
JEIDA-MITI standard at 70 W load
Harmonic current (A)
0.001
0.0001
Measurements @ 100Vac 70W JEIDA-MITI cla ss D lim its
1
0.1
0. 01
1 3 5 7 9 1113151719 212325272931 33 3537 39
Harmonic Order (n)
For user reference, waveforms of the input current and voltage at the nominal input voltage mains and different load conditions are shown in the following figures.
7/24
Test results and significant waveforms AN2755
Figure 7. EVL6562A-400W input current
waveform at 100 V - 50 Hz - 400 W load
Figure 9. EVL6562A-400W input current
waveform at 100 V - 50 Hz - 200 W load
Figure 8. EVL6562A-400W input current
waveform at 230 V - 50 Hz - 400 W load
Figure 10. EVL6562A-400W input current
waveform at 230 V - 50 Hz - 200 W load
Figure 11. EVL6562A-400W input current
waveform
8/24
at 100 V - 50 Hz - 70 W load
Figure 12. EVL6562A-400W input current
waveform at 230 V - 50 Hz - 70 W load
Loading...
+ 16 hidden pages