ST AN2716 APPLICATION NOTE

AN2716

STCC08 application guidelines

Introduction

The purpose of this document is to:

Describe the STCC08 device features

Give technical recommendations to:

Implement the STCC08 in the appliance

Achieve robust STCC08 design regarding EMI tests (IEC 61000-4-4)

June 2010

Doc ID 14460 Rev 2

1/28

www.st.com

Contents

AN2716

 

 

Contents

1

STCC08 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

 

1.1

Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

 

1.2

STCC08 non-insulated and insulated application diagram . . . . . . . . . . . .

5

 

1.3

AC switch control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

 

1.4

AC switch failure mode detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

1.4.1 STCC08 AVF output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4.2 AC switch state detection principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4.3 AC switch failures detection during normal operation . . . . . . . . . . . . . . . 9

1.5 AVF signal reading synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.1 Detection window width definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5.2 AC switch state detection after IN signal removal . . . . . . . . . . . . . . . . . 13

2

STCC08 consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

3

Recommended component values . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

4

ZVS detection application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

5

Electromagnetic compatibility (EMC) tests . . . . . . . . . . . . . . . . . . . . .

18

 

5.1

Demonstration board description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

 

5.2

IEC 61000-4-4 burst immunity test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

5.2.1 Test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.2.2 Demonstration board immunity test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.2.3 Advice to improve the application immunity . . . . . . . . . . . . . . . . . . . . . . 19

6

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

Appendix A Timing definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

Appendix B Demonstration board component layout. . . . . . . . . . . . . . . . . . . . .

24

Appendix C Demonstration board schematic . . . . . . . . . . . . . . . . . . . . . . . . . . .

25

2/28

Doc ID 14460 Rev 2

AN2716

Contents

 

 

Appendix D Demonstration board circuit layout view. . . . . . . . . . . . . . . . . . . . . 26

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Doc ID 14460 Rev 2

3/28

STCC08 description

AN2716

 

 

1 STCC08 description

1.1Main features

The STCC08 was designed to improve the safety of home appliances (see Reference 1.). This new device can drive up to 10 mA IGT AC switches (TRIAC, ACST and ACS - see Reference 2.) and send back to the microcontroller (MCU) a signal image of the voltage across the controlled AC switch. The STCC08 has three functional blocks (see Figure 1 and

Table 1).

A “gate driver” block used to drive an AC switch and to interface directly the STCC08 with the MCU (CMOS compatible)

A “power switch signal shaping” block used to measure the AC switch voltage

An “AVF driver” block used to give an image of the AC switch voltage to the MCU (digital information)

Figure 1. STCC08 block diagram

Gate driver

G (6)

+

IN (1)

 

 

 

 

-

 

 

 

 

RIG(7)

IN

 

STCC08

AVF

 

 

 

 

N/C

 

 

 

VCC (5)

AVF driver

 

AC

 

AVF (2)

 

 

 

 

18 GND

27 RIG

36 G

45 VCC

AC (4)

 

SO-8 package

 

Power switch

GND (8)

 

signal shaping

 

 

Table 1.

STCC08 pin descriptions

 

Pin

Symbol

Type

Description

 

 

 

 

1

IN

SIGNAL

AC switch drive

 

 

 

 

2

AVF

SIGNAL

Alternating voltage feedback: AC switch state output

 

 

 

 

3

NC

 

Not connected

 

 

 

 

4

AC

SIGNAL

AC switch state sense input

 

 

 

 

5

VCC

POWER

Positive power supply

6

G

SIGNAL

AC switch gate driver output

 

 

 

 

7

RIG

SIGNAL

AC switch gate current setting

8

GND

POWER

Power supply reference

 

 

 

 

Knowing the STCC08 IN input state (used to turn on or off the AC switch) and the voltage across the controlled AC switch (given by the STCC08 AVF output signal state), the MCU is able to identify all AC switch failures (diode mode, short circuit, or open circuit) and to take the appropriate actions to put the appliance in a secure state (see Reference 3.) by switching off an appliance front-end relay (see Section 1.4.3).

4/28

Doc ID 14460 Rev 2

ST AN2716 APPLICATION NOTE

AN2716

STCC08 description

 

 

1.2STCC08 non-insulated and insulated application diagram

The STCC08 is dedicated to applications with MCU. Figure 2 and Figure 3 show respectively the STCC08 non-insolated and insolated application diagrams. The STCC08 is compatible with 3.3 V and 5 V power supplies. The DC power supply must be a negative one. This means the Vcc terminal has to be connected to neutral. The GND voltage is then VCC (3.3 V or 5 V) below neutral. Such a connection is mandatory to drive ACS and most ACST and TRIAC devices (AC switches can be triggered only by a current taken from the gate).

Figure 2. Un-insulated application diagram

 

 

 

VCC = 3.3V to 5V

Neutral

 

 

 

 

ACS

Gate driver

VCC

 

G

IN

 

 

+

 

 

 

-

RIG

 

 

 

 

 

STCC08

R

 

 

IG

 

 

VCC

 

 

VCC

RShunt

 

RAC

AVF

Load

AVF driver

 

AC

 

 

 

 

 

 

 

 

Power switch

GND

 

 

 

 

 

signal shaping

 

Line

 

 

MCU

 

 

 

Front end relay

 

 

Figure 3. Insulated application diagram

 

 

 

 

 

Uninsulatated

Insulated

 

 

 

 

VCC1

5 V or 3.3 V

 

 

 

 

Power supply

 

 

 

 

Power supply

Neutral

 

 

 

 

 

 

 

 

 

 

 

 

ACS

G

Gate driver

IN

R2

VCC2

 

+

 

 

 

 

-

 

 

 

 

 

 

 

RIG

 

 

 

 

 

STCC08

R

OPTO1

 

 

 

VCC

IG

R1

 

 

 

 

 

VCC1

V

RShunt

 

RAC

 

 

RAVF

CC2

 

AVF driver

AVF

 

Load

AC

 

 

 

 

 

 

 

 

 

 

 

 

 

Power switch

GND

 

 

Line

 

 

signal shaping

 

 

 

 

 

 

 

 

MCU

 

 

 

 

 

 

Front end relay

 

 

 

OPTO2

 

 

 

 

 

 

Doc ID 14460 Rev 2

5/28

STCC08 description

AN2716

 

 

1.3AC switch control

The STCC08 controls up to 10 mA IGTTRIAC, ACST and ACS through the “gate driver” block designed to:

Drive the AC switch according to the IN control input state (CMOS compatible)

For IN = 1 = VCC Ö the AC switch is turned on

For IN = 0 = GND Ö the AC switch is turned off

Regulate the gate current of the AC switch thanks to the internal current controller

The gate current value (Pin G - to turn on the AC switch) is defined by the external resistor RIG value (resistor connected between the STCC08 RIG input and ground). Figure 4 gives the maximum value of this resistor (RIG_max) according to the minimum ambient

temperature (Tamb_min) of the appliance for two AC switch IGT values. Note that as the AC switch junction temperature increases when the AC switch is on (Tj > Tamb), the IG gate

current required to turn on the AC switch decreases (IG < IGT). So only the minimum ambient temperature has to be considered.

Figure 4. Resistor RIG value according to the minimum ambient temperature and AC switch IGT

RIG_max (Ω)

 

 

 

 

 

 

 

 

130

 

 

 

 

 

 

 

 

 

 

120

 

 

 

 

 

 

 

 

 

 

110

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

90

 

 

 

 

 

 

 

 

 

 

80

 

 

 

 

 

 

 

 

 

 

70

 

 

 

 

 

 

 

 

 

 

60

 

 

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

IGT AC Switch:

 

 

30

 

 

 

 

 

 

 

 

 

 

 

 

 

IGT 10mA @ 25 °C

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

IGT 5mA @ 25 °C

 

 

10

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

-20

-15

-10

-5

0

5

10

15

20

25

30

 

 

 

 

Tamb_min(°C)

 

 

 

 

For example, with a 10 mA IGT AC switch and a -20 °C minimum ambient temperature, a maximum 30 Ω RIG resistor can be used to turn on the AC switch throughout the whole appliance temperature range.

1.4AC switch failure mode detection

1.4.1STCC08 AVF output configuration

The STCC08 AVF driver block is used to send the AC switch state to the MCU (see Section 1.4.2). The STCC08 AVF output is an open collector and can be loaded with an external resistor (RAVF) or connected directly to the MCU, in pull-up input configuration (see

Figure 5).

6/28

Doc ID 14460 Rev 2

AN2716

STCC08 description

 

 

Figure 5. STCC08 AVF output configuration

VCC

STCC08 VCC STCC08

RAVF

AVF driver

AVF

AVF driver

AVF

 

 

 

 

IAVF

 

IAVF

GND

GND

VCC

VCC

UP-PULL

R

MCU

MCU

(a) AVF output loaded with an external resistor (RAVF)

(b) AVF output loaded with the MCU pull-up resistor (RPULL-UP)

The IAVF current in the STCC08 AVF pin must be lower than 5 mA (IAVF_max). Equation 1 defines the minimal RAVF or pull-up resistor value to use. For example, with VCC_max = 5.5 V, the RAVF or RPULL-UP resistor value must be higher than 1.1 kΩ to fulfill this condition.

Equation 1

R AVF _min or RPULL-UP_min >

VCC_max

I AVF _max (5 mA )

The AVF signal toggles from VCC to GND according to the AC switch state and the AC line

(see Section 1.4.2). The RAVF or RPULL-UP resistor values modify the AVF signal rise time (tR_AVF). This rise time increases with the MCU I/O pin capacitance and RAVF or

RPULL-UP resistors. To limit the influence of this delay on the AC switch state detection (see Section 1.4.2) and on the ZVS detection application (see Section 4), a 300 kΩ maximum

RAVF or RPULL-UP resistor value is recommended. With a 47 pF CL load capacitor and a 300 kΩ maximum RAVF resistor, the AVF rise time is typically about 50 µs (see Figure 6).

Figure 6. AVF signal rising time measurement information

STCC08

 

VCC

 

R AVF= 300 KΩ

 

 

 

 

 

 

C L= 47 pF

 

 

RAVF

 

 

 

 

 

AVF driver

AVF

 

 

90 % VCC

 

 

 

 

 

 

 

 

GND

CL

VAVF

10 % VCC

 

 

 

 

 

 

 

tR_AVF

Doc ID 14460 Rev 2

7/28

STCC08 description

AN2716

 

 

1.4.2AC switch state detection principle

The AC switch state detection is achieved thanks to the STCC08 “power switch signal shaping” block. This block measures the current (IAC) through the STCC08 AC input, which

is the image of the AC switch voltage (VT) during both AC line cycle (VLine). As illustrated in Figure 7, three cases can be considered.

Case 1: If the AC switch is off (VT = VLine), a low IAC current, in phase shift with the AC line (see Section 1.5.1), flows through resistor RAC for the both AC line polarities. In this case, the STCC08 AVF output signal (VAVF) remains at high level state (+VCC).

Case 2: If the AC switch is on (VT ≈ 0), no IAC current flows through the resistor RAC. In this case, the AVF output signal (VAVF) remains at low level state (GND).

Case 3: If the AC switch is off and the AC line voltage falls to zero voltage, no IAC current flows through the resistor RAC. In this case, the AVF output signal (VAVF) goes to zero level (GND).

Knowing the STCC08 IN input state, the MCU is then able to determine the AC switch state by analyzing the AVF signal (see Section 1.4.3).

Figure 7. AC switch failure detection principle

 

VT

 

 

 

 

 

ILoad

Neutral

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t (s)

 

 

 

G

STCC08

 

 

 

 

 

 

 

 

 

 

VT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Line

 

ACS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC

IAC

 

 

 

 

 

 

V

 

AC

 

 

 

 

 

 

 

IACT

Shunt

 

V

 

RAVF

 

 

 

 

 

 

 

-IACT

 

R

CC

 

 

 

 

 

 

 

 

 

t (s)

 

Load

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

IAC

AC

Power switch

AVF

1

3

1

3

1

3

1

2

Line

ILOAD

 

signal shaping

VAVF

 

 

 

 

VAVF

 

 

 

 

t (s)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AC switch off

 

 

AC switch on

 

 

 

 

 

 

The IAC current follows the waveform of the voltage across the AC switch. The AVF signal toggles between VCC and zero level (GND) at a certain IAC current value noted as IACT (see Figure 7). The IACT electrical parameter dispersion is shown in Table 2.

Table 2.

IACT electrical parameter dispersion

 

 

 

Maximum (IACT_max)

Minimum (IACT_min)

 

 

 

 

 

IACT

236 µA

82 µA

The IAC peak current value (IAC-peak) must be lower than 2.2 mA (maximum IAC current allowed through STCC08 AC input). Equation 2 defines the minimum resistor RAC value

(RAC_Min) to limit this IAC current in the worst case (if the AC load fails in short circuit). For example, with VLine_rms_max = 230 V + 10%, the RAC resistor value must be higher than 163 kΩ.

8/28

Doc ID 14460 Rev 2

AN2716 STCC08 description

Equation 2

R AC _ min

>

2 X V Line_ rms_ max

I AC _ peak _ max ( 2 . 2 mA )

 

 

The resistor RShunt is used to detect the AC switch state whatever the AC load state is (connected or disconnected). Without this resistor, the STCC08 AVF signal remains at low

level (GND) whatever the AC switch state when the AC load is disconnected (IAC = 0). To

detect the AC switch state when the AC load is disconnected (with the resistor RShunt), the IAC-peak current remains higher than the IACT_Max current (IAC current threshold to ensure the AC switch state detection - see Table 2). Equation 3 defines the condition on RAC and

RShunt resistors to ensure a right AC switch states detection in the worst case (if the AC load is disconnected). For example, with VLine_RMS_Min = 230 V - 10%, the RAC resistor value plus the RShunt resistor value must be lower than 1.24 MΩ.

Equation 3

RShunt_max + R AC_ max

2 X V Line_ rms_ min

<

 

I ACT_ max (236 µA)

To limit the power dissipation by resistors RAC and RShunt lower than ¼ W and their influences on the AC load, a 300 kΩ and 100 kΩ minimum value is recommended

respectively under 230 V rms and 100 V rms AC line. Equation 4 and Equation 5 give the power dissipation for RAC and RShunt in the worst case.

Equation 4

(V Line_ rms_ max )2

(PRAC) max =

R AC _ min

Equation 5

(V Line_ rms_ max )2

(PRShunt ) max =

RShunt _ min

1.4.3AC switch failures detection during normal operation

Knowing the STCC08 IN input state, the MCU is able to determine the AC switch state by analyzing the AVF signal. Figure 8 andTable 3 give the AC switch failure modes according to the AVF signal state and the STCC08 IN signal state. In case of AC switch failure, the MCU can put the appliance in a safe configuration by switching off an appliance front-end relay.

Doc ID 14460 Rev 2

9/28

Loading...
+ 19 hidden pages