ST AN2679 APPLICATION NOTE

AN2679
Application note
Smart inductive proximity switch
Introduction
The STEVAL-IFS006V1 inductive proximity switch demonstration board is designed based on the principle of metal body detection using the eddy current effect on the HF losses of a coil. It consists of a single transistor HF oscillator, an ST7LITEUS5 microcontroller and the TDE1708DFT intelligent power switch. The board is a compact and cost-effective solution for an inductive proximity sensor designed for simplicity and for a wide temperature range and supply voltage variations. Other board features include:
Great flexibility: the MCU firmware can be modified depending on application
requirements
Sensitivity and hysteresis adjustment
In-circuit programming and debugging capabilities
Analog and digital temperature compensation
PNP and NPN sensor functionality configurations
Indicator status LED
Overload and short-circuit protection
GND and Vs open wire protection
Compact design
Supply voltage: 6 V to 48 VDC
Temperature range: -25 °C to +85 °C

Figure 1. Smart inductive proximity switch demonstration board

July 2008 Rev 1 1/16
www.st.com
Contents AN2679
Contents
1 Sensor overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Sensor circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Initial configuration and jumper settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Output driver configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 ICC connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Software implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2/16
AN2679 List of tables
List of tables
Table 1. Initial configuration and jumper settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 2. Low side (NPN) output driver configuration jumper settings. . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 3. High side (PNP) output driver configuration jumper settings . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 4. Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 5. Diagnostic LED blinking modes (power up self-test) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 6. Diagnostic LED blinking modes (normal operation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 7. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3/16
List of figures AN2679
List of figures
Figure 1. Smart inductive proximity switch demonstration board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 2. Smart inductive proximity switch block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 3. Initial configuration and jumper settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 4. Low side (NPN) output driver configuration jumper settings. . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 5. High side (PNP) output driver configuration jumper settings . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 6. Smart inductive proximity switch schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 7. Inducing the demonstration board self-test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 8. Oscillator amplitude vs. temperature (MCU pin 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 9. D2 voltage vs. temperature (MCU pin 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4/16
AN2679 Sensor overview

1 Sensor overview

Proximity switches are generally used to sense the position of a moving object in manufacturing processes. Typically, they utilize an oscillator driver circuit in combination with an induction tank circuit. The tank circuit includes an induction coil as a means for sensing the presence of an object such as metal. The magnetic field induces eddy currents in a conductive object which enters within the generated magnetic field. The oscillation amplitude is attenuated due to the energy drawn from the induction coil. The amount of the attenuation is directly related to the distance between the metal object and the induction coil.
A typical inductive proximity switch employs a ferrite cup core as the sensing element. It allows the flux field to be focused in front of the cup and to further increase the sensing distance. The oscillator typically operates between 100 kHz and 800 kHz, where the eddy current losses are significant.
Some benefits of the MCU approach compared with a traditional solution are:
more reliable operation thanks to the sensor self-diagnostics
cheap and easy sensor trimming in the production line
digital temperature compensation
linearization of the sensor characteristic
simple implementation of an analog or PWM output

Figure 2. Smart inductive proximity switch block diagram

)#0
/SCILLATOR
,
^K(Z
#
4EMPSENSOR
$ETECTOR
#
&
M6+
$#TO6
345LTRA,ITE
&,!3(
4)-%23
!$#
BIT
3ELFDIAGNOSTICS,%$

'0)/
+
4$%$&4
6
62%'6
)NDICATORSTATUS,%$
6TO6
3UPPLY6OLTAGE
,O
WSIDEOUTPUT
(IGHSIDEOUTPUT
'.$
!-6
5/16
Loading...
+ 11 hidden pages