ST AN2657 Application note

AN2657
Application note
An innovative verilog model for predicting
LDMOS DC, small and large signal behavior
Introduction
To reduce the design cycle time and cost for wireless applications it is useful to ha v e models that can help RF Engineers predict and simulate the behavior of RF power transistors. Recently, STMicroelectronics has been strongly focused on developing new models for RF LDMOS power transistors.
The model introduced here is simple in concept, and describes with good approximation DC, small signal S-parameter and large signal behavior, and could be a starting point for designers in dev eloping their ne w applications . This model has been implemen ted in Agilent Advanced Design System, in verilog Language, and includes the parasitic elements of the package, as well as a thermal node which takes self heating effects into account.
In this applicatio note we will briefly describe how to extract the model parameters for the PD54003L-E device, which is a 3 W - 7.2 V - 500 MHz LDMOS housed in a PowerFLAT plastic package (5 x 5 mm). As an internally unmatched device, the PD54003L-E can be used in various portable applications ov er HF, VHF and UHF frequency bands. At the end of this note we will validate this ne w model using ST's DB-54003L-175 demoboard, especially designed for 2-way portable radio applications using PD54003L- E over the 135-175 MHz frequency band.
Thanks to their cost effectiveness and high performance, LDMOS devices are widely used in radio frequency applications, ranging from digital communication infrastructures (cellular base stations) to low cost portable radios (private mobile radios) commonly known as walkie-talkies.
November 2007 Rev 1 1/18
www.st.com
Contents AN2657
Contents
1 Model description and parameter extraction . . . . . . . . . . . . . . . . . . . . . 4
2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2/18
AN2657 List of figures
List of figures
Figure 1. Model schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 2. R
Figure 3. Gate-drain charge variation vs. Vds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 4. Generic internal RF package structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 5. PowerFLAT cross-section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 6. Simulated version of the PowerFLAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 7. S-parameters of the simulated package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 8. Overall model schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 9. Measured C
Figure 10. Measured S-parameters vs. simulated parameters (Vds= 7.2 V; Idq= 100 mA) . . . . . . . . 14
Figure 11. Measured input and output DC curves vs. simulated curves . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 12. DB-54003L-175 demoboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 13. Measured RF demonstration board performance vs simulated performance. . . . . . . . . . . 15
vs. Vds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
jfet
, C
, C
iss
oss
vs. simulated parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
rss
3/18
Model description and parameter extraction AN2657

1 Model description and parameter extraction

The model introduced in this application note is a behavioral model with the equations written in verilog language [1] [2].

Figure 1. Model schematic

By observing the equivalent model schematic of Figure 1, the following elements can be noted:
Parasitic elements associated with the device
Nonlinear current generator
JFET resistance
Substrate-body diode
Parasitic elements
To model the parasitic elements of the device, a resistor and an inductor are place d in series at each terminal. The model can change the resistance and inductance v alu es accord ing to the simulation temperature.
Parameter P in Equation 1 is the temperature dependence, where T coefficient, T is the temperature used in the simu lation and Tnom is the temper ature used to measure the parameter value.
Equation 1
PT() PT
()1TCTT
NOM
()+()=
NOM
is its temperature
c
4/18
AN2657 Model description and parameter extraction
Nonlinear current generator
The nonlinear current generat or controlled by Vgs and Vds is the most important factor used to calculate the static and dynamic current of the device. Moreover, the static current is required to define the working region of the MOS.

Table 1. Parameters required for the extraction of the current generator equations

Name Description
VT0 Threshold voltage [V] ETA Drain induce barrier lowering (DIBL) [V-1]
-2
KP0 Transconduttance [A*V
THETA Mobility degradation [V
VGTHETA Mobility degradation exponent [-]
THETA2..9 From 2nd to 9th degradation polynomial factor [V
XN Slope subthreshold current [V
DEL Body effect linearization coefficient [-]
DELVG Body effect linearization coefficient independent of Vgs [V-1]
L0 Critical length [m]
L Channel length [m]
]
-VGTHETA
]
-2
]
-1
]
EPS Output conductance factor if L0>L [m]
KE Output conductance factor if L0<L [Vm]
DT_KP Mobility thermal coefficient [-]
-1
DT_VT Thermal coefficient of threshold voltage [°C
]
Table 1 reports all the parameters required to extract the equat ions of th e current ge nerat or.
To get the generator current equation, a set of equations must be defined. An important parameter to consider is the threshold voltage of the device shown in Equation 2.
Equation 2
V
THVT0
η VDSDVVT T T
-
()+=
NOM
Moreover, a new threshold voltage formula is necessary to describe the weak and strong inversion region in a single equation (Equation 3).
Equation 3
VR V
2XNU
TH
U
TH
⋅⋅=
KT
--------------=
TH
q
To describe both reg io ns, a new gate voltage can be defined as in Equation 4.
Equation 4
⎧ ⎪
V
VTH2XNUTHe
=
gg
⎪ ⎩
⋅⋅+
V
gs
VgsVR
------------------------------------ -
2XNU
TH
5/18
Model description and parameter extraction AN2657
Equation 5
KP KP0
T ° K()
⎛⎞
--------------------------- -
=
⎝⎠
T
NOM
DTKP
° K()
-
Another important parameter to define is the gain factor with zero bias . Referring to
Equation 5, 6 and 7, the gain factor degrades according to the V
voltage (mobility
gs
degradation). Equation 8 and 9, which define the drain satu ration voltage, complete the set of equations needed to define the generator current (Equation 10 and 11).
Equation 6
FV
()
gst
⎧ ⎪ ⎪
=
1TV
⎪ ⎪ ⎩
vgT
gst
1
9
++
I2=
TIV
I
gst
0
V
gst
0>
V
gst
Equation 7
KP
EFF
------------------- -=
()
FV
gst
KP
Equation 8
Equation 9
Equation 10
I
DS
Equation 11
AL0
B
CKEL
δ∆∆VG Vgg+= D
1
D
2
KP
EFF
=
⎨ ⎪ ⎩
IDSS KP
2L2
=
L
-- -
L02⋅=
δ
3
=
BA()Vgg VTH–()C1δ()=
2
D
4C VggV
1
VDSAT
Vds V( gg VTH– 0.05 Vds 1 +())⋅⋅
IDSS 1 A
⎛⎞
⎝⎠
VDSAT Vgg VTH– 0.5 VDSAT 1 ∆+()⋅⋅()⋅⋅=
EFF
δ∆∆VG Vgg+=
()1 δ+()0.5 A B()⋅⋅ =
TH
D
----------------------------------------------------- -=
1 δ+()2BA()
Vds VDSAT
------------------------------------------ -
+
BVDSATC+
2D1
+
VDSAT<
V
DS
V
VDSAT
DS
The automatic ADS optimizer was used to extract the parameters for the current gener ator. The threshold voltage and the gain f a ctor ha v e been e xt racted from th e input char acteristics with Vds at a low voltage level. Concerning mobility degradation, the transconductance parameter was used varying Vds and with Vgs at a high voltage level. The sub-threshold voltage was extracted from the input characteristics with a gate voltage lev el below the threshold voltage level.
6/18
Loading...
+ 12 hidden pages