ST AN2650 Application note

AN2650
Application note
L9942 stepper motor driver for bipolar stepper motors

Introduction

The L9942 is an integrated stepper motor driver for bipolar stepper motors. The device is designed for automotive applications, such as headlamp leveling, steerable lights and adaptive front lighting. Other applications, such as ventilation and air conditioning flap and throttle positioning are also possible uses for the L9942.
The device drives bipolar stepper motors with high-efficiency and smooth operation. Micro­stepping is the preferred mode to provide low-noise operation since this technique eliminates the effects of mechanical resonances, which can lower the motor torque.
A motor stall detection capability allows position alignment without an external sensor, while its step counter is addressable via an SPI as well as by a separate input, to prevent the SPI overloading when running multiple motors simultaneously.
November 2007 Rev 1 1/24
www.st.com
Contents AN2560
Contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1 Typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1 Calculation of the buffer capacitor Cbuffer . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Low drop reverse polarity protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Shorted coil detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Fault bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 SPI communication monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Decay modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1 Slow decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Fast Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Advanced decay modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3.1 Mixed decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3.2 Auto decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5 Stall detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1 Internal functionality (simplified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 How to determine the stall threshold at bench test . . . . . . . . . . . . . . . . . 17
6 Duty cycle for current regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.1 Minimum duty cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2 Maximum duty cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7 Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.1 Static ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.2 Static freewheeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.3 Dynamic slew rate power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.4 Power dissipation for one PWM phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2/24
AN2560 Contents
8 PCB footprint proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3/24
List of tables AN2560
List of tables
Table 1. Phase counter values for fast decay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 2. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4/24
AN2560 List of figures
List of figures
Figure 1. Application schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. Low drop reverse polarity protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 3. Stepping modes (Auto decay mode, fast decay without delay time) . . . . . . . . . . . . . . . . . . 9
Figure 4. Auto decay, fast decay without delay time at phase 0 and 8 . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 5. SPI transfer timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 6. Slow decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 7. Fast decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 8. Mixed decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 9. Auto decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 10. Stall detection function overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 11. Cross current protection time and slew rate for maximum DC . . . . . . . . . . . . . . . . . . . . . . 18
Figure 12. Current flow and voltage drop during fast decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 13. Power SSO24 solder mask layout (all values in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 14. Power SSO24 solder mask opening (all values in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5/24
Typical application schematic AN2560

1 Typical application schematic

Figure 1. Application schematic diagram

V
bat
Vs
10
121
Vs
22
Vs
QA 1 2
QA 2
QB 1 11
QB 2
13 24
PGNDGND
C
buffer
23
2n2
2n2
14
2n2
2n2
SM
5V
V
reg
100n
out
out
in
µC
in
out
out
out
6k8
100n
19
16 15
Vcc
CP
STEP9
EN
21
PWM8
DO7
DI5
CLK4
CSN6
RREF
20
TEST
GND
1817
3
L9942
PGND PGND
The L9942 is driven by a microcontroller via the SPI (DO, DI, CLK, and CSN), STEP and EN pins. Additional information is provided from the PWM pin.
The stepper motor driver is supplied from a 5 V voltage regulator and the reverse polarity protected Vs. It is necessary to use a stabilization capacitor (with a minimum value of minimum 100 nF) as close as possible at the Vcc pin. For the stabilization of the Vs supply pin and to absorb motor energy, an electrolytic capacitor C
, with a minimum value as
buffer
calculated in Section 1.1, must be used.
Because the motor currents are supplied via the Vs-pins, all Vs-pins must have a low ohmic connection to the supply voltage Vs. For the same reason, all GND and PGND pins must have a low ohmic connection to the system ground. A star ground concept with separate lines for GND and PGND is recommended.
At the charge pump pin, a capacitor with 100 nF to Vs is recommended.
To improve the EMI behavior, it is recommended to have 2.2 nF capacitors as close as possible to the motor output pins, Qxy. Short motor connection wires also improve the EMI behavior.
The internally-used reference voltage depends upon the value of the reference resistor, positioned between the pin RREF and GND. Consequently, the precision of the L9942 depends upon the value of the reference resistor. One possible value for this resistor is
6.8 kΩ.
6/24
AN2560 Typical application schematic
Due to the structure of the BCD process, the slug of the device is connected internally to PGND and must also be connected externally to PGND.
1.1 Calculation of the buffer capacitor C
The stepper motor driver L9942 is usually designed in an environment similar to that shown in Figure 1.
During motor operation, electrical energy is stored in the motor coils. If the motor shuts down, this energy is fed back to the supply voltage Vs. Thus, there is a voltage increase at Vs, which may cause an electrical overstress of the L9942. To avoid damage to the L9942, the value of the buffer capacitor C
The energy balance can be calculated from:
motor
buffer
2
V
s1
2
+ V
L
------------------ -
C
1
---
C
⋅⋅
bufferVs1
2
L
2
------------------ -
V
s1
C
V
s2
1
-- -
2
2
I
motor
motor
buffer
L
motorImotor
=
+=
I
2
2 s2
2 motor
From this equation, it is possible to conclude:
the voltage Vs2 must not exceed the maximum rating of the L9942
if an over voltage shut down must be avoided, the voltage Vs2 must not exceed the
minimum over voltage threshold.
must be chosen carefully.
buffer
1
-- -
⋅⋅⋅⋅+
C
bufferVs2
2
2
buffer
Note: As a general recommendation, STMicroelectronics recommend a minimum buffer capacitor
of 47 µF. The ripple at Vs during normal motor operation should be between 5% and 10%.
7/24
Typical application schematic AN2560

1.2 Low drop reverse polarity protection

Figure 2. Low drop reverse polarity protection

V
bat
100k
STD17NF03LT4
100k
Vs
100n
310 2216 15
VsCP Vs
C
buffer
L9942 Vreg
L9942
As shown in Figure 2 the charge pump pin can be used for a low drop reverse polarity protection. The charge pump pin can also be used for other devices in the same application. Because of the additional gate capacity, the charge pump ramps up more slowly than without the additional MOSFET gate.
8/24
Loading...
+ 16 hidden pages