ST AN2650 Application note

November 2007 Rev 1 1/24
AN2650
Application note
L9942 stepper motor driver for bipolar stepper motors

Introduction

The L9942 is an integrated stepper motor driver for bipolar stepper motors. The device is
designed for automotive applications, such as headlamp leveling, steerable lights and
adaptive front lighting. Other applications, such as ventilation and air conditioning flap and
The device drives bipolar stepper motors with high-efficiency and smooth operation. Micro-
stepping is the preferred mode to provide low-noise operation since this technique
eliminates the effects of mechanical resonances, which can lower the motor torque.
A motor stall detection capability allows position alignment without an external sensor, while
its step counter is addressable via an SPI as well as by a separate input, to prevent the SPI
overloading when running multiple motors simultaneously.
www.st.com
Contents AN2560
2/24
Contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1 Typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1 Calculation of the buffer capacitor Cbuffer . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Low drop reverse polarity protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Shorted coil detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Fault bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 SPI communication monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Decay modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1 Slow decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Fast Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Advanced decay modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3.1 Mixed decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3.2 Auto decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5 Stall detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1 Internal functionality (simplified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 How to determine the stall threshold at bench test . . . . . . . . . . . . . . . . . 17
6 Duty cycle for current regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.1 Minimum duty cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2 Maximum duty cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7 Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.1 Static ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.2 Static freewheeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.3 Dynamic slew rate power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.4 Power dissipation for one PWM phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
AN2560 Contents
3/24
8 PCB footprint proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
List of tables AN2560
4/24
List of tables
Table 1. Phase counter values for fast decay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 2. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
AN2560 List of figures
5/24
List of figures
Figure 1. Application schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. Low drop reverse polarity protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 3. Stepping modes (Auto decay mode, fast decay without delay time) . . . . . . . . . . . . . . . . . . 9
Figure 4. Auto decay, fast decay without delay time at phase 0 and 8 . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 5. SPI transfer timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 6. Slow decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 7. Fast decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 8. Mixed decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 9. Auto decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 10. Stall detection function overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 11. Cross current protection time and slew rate for maximum DC . . . . . . . . . . . . . . . . . . . . . . 18
Figure 12. Current flow and voltage drop during fast decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 13. Power SSO24 solder mask layout (all values in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 14. Power SSO24 solder mask opening (all values in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Typical application schematic AN2560
6/24

1 Typical application schematic

Figure 1. Application schematic diagram

The L9942 is driven by a microcontroller via the SPI (DO, DI, CLK, and CSN), STEP and EN
pins. Additional information is provided from the PWM pin.
The stepper motor driver is supplied from a 5 V voltage regulator and the reverse polarity
protected Vs. It is necessary to use a stabilization capacitor (with a minimum value of
minimum 100 nF) as close as possible at the Vcc pin. For the stabilization of the Vs supply
pin and to absorb motor energy, an electrolytic capacitor C
buffer
, with a minimum value as
calculated in Section 1.1, must be used.
Because the motor currents are supplied via the Vs-pins, all Vs-pins must have a low ohmic
connection to the supply voltage Vs. For the same reason, all GND and PGND pins must
have a low ohmic connection to the system ground. A star ground concept with separate
lines for GND and PGND is recommended.
At the charge pump pin, a capacitor with 100 nF to Vs is recommended.
To improve the EMI behavior, it is recommended to have 2.2 nF capacitors as close as
possible to the motor output pins, Qxy. Short motor connection wires also improve the EMI
behavior.
The internally-used reference voltage depends upon the value of the reference resistor,
positioned between the pin RREF and GND. Consequently, the precision of the L9942
depends upon the value of the reference resistor. One possible value for this resistor is
6.8 kΩ.
100n
PGNDGND
C
buffer
SM
2n2
2n2
2n2
2n2
6k8
V
bat
100n
121
QA 1 2
3
CLK4
DI5
CSN6
DO7
PWM8
STEP9
10
QB 1 11
13 24
23
22
21
20
19
1817
16 15
14
QA 2
Vs
EN
RREF
Vcc
TEST
GND
CP
QB 2
PGND PGND
Vs
L9942
µC
out
out
out
out
out
in
in
5V
V
reg
Vs
AN2560 Typical application schematic
7/24
Due to the structure of the BCD process, the slug of the device is connected internally to
PGND and must also be connected externally to PGND.
1.1 Calculation of the buffer capacitor C
buffer
The stepper motor driver L9942 is usually designed in an environment similar to that shown
in Figure 1.
During motor operation, electrical energy is stored in the motor coils. If the motor shuts
down, this energy is fed back to the supply voltage Vs. Thus, there is a voltage increase at
Vs, which may cause an electrical overstress of the L9942. To avoid damage to the L9942,
the value of the buffer capacitor C
buffer
must be chosen carefully.
The energy balance can be calculated from:
From this equation, it is possible to conclude:
the voltage Vs2 must not exceed the maximum rating of the L9942
if an over voltage shut down must be avoided, the voltage Vs2 must not exceed the
minimum over voltage threshold.
Note: As a general recommendation, STMicroelectronics recommend a minimum buffer capacitor
of 47 µF. The ripple at Vs during normal motor operation should be between 5% and 10%.
1
2
---
C
buffer
V
s1
2
⋅⋅
1
2
-- -
L
motor
I
motor
2
1
2
-- -
C
buffer
V
s2
2
⋅⋅⋅⋅+
V
s1
2
L
motor
C
buffer
------------------ -
I
motor
2
+ V
s2
2
=
V
s2
V
s1
2
L
motor
C
buffer
------------------ -
I
motor
2
+=
Typical application schematic AN2560
8/24

1.2 Low drop reverse polarity protection

Figure 2. Low drop reverse polarity protection

As shown in Figure 2 the charge pump pin can be used for a low drop reverse polarity
protection. The charge pump pin can also be used for other devices in the same application.
Because of the additional gate capacity, the charge pump ramps up more slowly than
without the additional MOSFET gate.
V
bat
100n
C
buffer
310 2216 15
VsCP Vs
Vs
L9942
STD17NF03LT4
100k
100k
L9942 Vreg
Loading...
+ 16 hidden pages