ST AN2556 Application note

AN2556

Application note

Porting an application from the ST10F269Zx to the ST10F273Z4

Introduction

The ST10F273Z4 is a derivative of the STMicroelectronics ST10 family of 16-bit single-chip CMOS microcontrollers and is functionally upwardly compatible with the ST10F269Zx.

The goal of this document is to highlight the differences between the ST10F269Zx and the ST10F273Z4 devices. It is intended for hardware or software designers who are adapting an existing application based on the ST10F269Zx to the ST10F273Z4.

This document first presents the modified functionalities of the ST10F273Z4, and then presents the new functionalities before looking at the modified and the new registers. In each section of the document, differences with the ST10F269Zx that may have an impact are stressed and some advice is given on how best to handle these differences and impacts.

July 2007

Rev 1

1/35

www.st.com

Table of contents

AN2556

 

 

Table of contents

1

Modified features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

 

1.1

Pinout .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

 

 

1.1.1

Pinout modification summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

 

 

1.1.2

Pin 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

 

 

1.1.3

Pin 56 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

 

 

1.1.4

Pin 99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

 

 

1.1.5

Pins 143 and 144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

 

1.2

XRAM .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

 

 

1.2.1

Hardware impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

 

 

1.2.2

Software impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

 

1.3

Flash EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8

 

 

1.3.1

Hardware impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8

 

 

1.3.2

Software impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8

 

1.4

A/D converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

1.4.1 Hardware/software impacts: conversion timing control . . . . . . . . . . . . . 10 1.4.2 Hardware impacts: electrical characteristics . . . . . . . . . . . . . . . . . . . . . 11 1.4.3 Software impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5

Real time clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

 

1.5.1

Hardware impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

 

1.5.2

Software impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

1.6

CAN modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

 

1.6.1

Hardware impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

 

1.6.2

Software impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

1.7

Ports input control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

 

1.7.1

Hardware impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

 

1.7.2

Software impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

1.8

Ports output control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

 

1.8.1

Hardware impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

 

1.8.2

Software impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

1.9

PLL and on-chip main oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

 

1.9.1

Hardware impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

 

1.9.2

Software impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

2/35

ST AN2556 Application note

AN2556 Table of contents

2

New features

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

 

2.1

Additional XPeripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

 

 

2.1.1

Hardware impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

 

 

2.1.2

Software impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

 

2.2

Programmable divider on CLKOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

2.2.1 Hardware impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.2 Software impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 New multiplexer for X-Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Hardware impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.2 Software impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Additional ports input control: XPICON register . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Hardware impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4.2 Software impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3

Modified registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

 

3.1 XPERCON register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

3.1.1 Hardware impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.2 Software impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4

New registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

 

4.1 XADRS3 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

4.1.1 Hardware impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1.2 Software impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 XPEREMU register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Hardware impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2.2 Software impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3

Emulation dedicated registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

 

4.3.1

Hardware impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

 

4.3.2

Software impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

4.4 XMISC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.1 Hardware impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.4.2 Software impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30

 

5.1

DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30

5.1.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3/35

Table of contents

 

 

AN2556

 

 

 

 

 

 

 

5.1.2

Overview of the DC characteristics . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 30

 

5.2

AC characteristics at 40 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 31

 

 

5.2.1

External memory bus timings . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 31

 

 

5.2.2

Hi-speed synchronous serial interface (SSC) . . . . . . . . . . . . . . . .

. . . . 33

6

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 34

4/35

AN2556

Modified features

 

 

1 Modified features

1.1Pinout

1.1.1Pinout modification summary

Table 1 below summarizes the modifications made in the pinout.

Table 1.

.

 

 

 

 

 

 

Pinout modifications table

 

 

 

Pin

 

 

 

ST10F269Zx

 

 

 

ST10F273Z4

 

 

 

 

 

 

 

 

No.

Name

Function

 

Name

Function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Internal voltage regulator decoupling.

 

 

 

 

17

DC2

Connect to nearest VSS via a 330nF

 

VDD

5V power supply pin

 

 

 

 

capacitor.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Internal voltage regulator decoupling.

 

 

 

Internal voltage regulator decoupling.

56

DC1

Connect to nearest VSS via a 330nF

 

 

V18

Connect to nearest VSS via a 10 - 100nF

 

 

 

 

capacitor.

 

 

 

capacitor.

 

 

 

 

 

 

 

 

 

 

 

 

 

Selects code execution out of internal

 

 

 

Selects code execution out of internal

 

 

 

 

 

 

 

Flash or external memory according to

 

 

 

 

 

 

 

 

99

 

EA

Flash or external memory according

 

EA-VSTBY

 

 

level during reset. Power supply input for

 

 

 

 

to level during reset

 

 

 

standby mode.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input to the 32 kHz oscillator amplifier

 

 

 

 

 

 

 

 

circuit. If not used should be tied to

143

VSS

Ground pin

 

XTAL3

ground to avoid consumption. In addition,

 

 

 

 

 

 

 

 

bit OFF32 in RTCCON register should be

 

 

 

 

 

 

 

 

set.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output of the 32 kHz oscillator amplifier

144

VDD

5V power supply pin

 

XTAL4

circuit. If not used should be left open to

 

 

 

 

 

 

 

 

avoid spurious consumption.

 

 

 

 

 

 

 

 

 

1.1.2Pin 17

In the ST10F269Zx, a decoupling capacitor of 330nF minimum has to be connected between pin 17 (named DC2) and the nearest VSS pin.

This is no longer the case in the ST10F273Z4 device where pin 17 is a VDD pin.

Hardware impacts

PCB must be adapted.

Software impacts

None.

5/35

Modified features

AN2556

 

 

1.1.3Pin 56

In the ST10F269Zx, a decoupling capacitor of 330nF minimum has to be connected between pin 56 (named DC1) and the nearest VSS pin.

In the ST10F273Z4, pin 56 is named V18 and a capacitor with a value between 10nF minimum and 100nF maximum must be connected between it and the nearest VSS pin.

Hardware impacts

The capacitor value may need to be changed. As the value is much lower, the footprint of the capacitor might be smaller and thus a modification of the PCB may be needed.

Software impacts

None.

1.1.4Pin 99

In the ST10F269Zx, pin 99 is named EA and when it is reset it is used to select the start from internal Flash or external memory.

Pin 99 now has an additional function in the ST10F273Z4 which is to provide the 5V power supply to the device in standby mode (new power saving mode). It is therefore named EA- VSTBY.

Hardware impacts

Modification depends on the previous use of the ST10F269Zx and on the use or non-use of Standby mode.

For an application that does not use Standby mode, no change is required on the PCB. If the

new application uses the Standby mode, the EA-VSTBY pin must be separated from the common 5V and have a specific supply path.

Software impacts

None.

1.1.5Pins 143 and 144

These pins are a VSS-VDD pair in the ST10F269Zx. In the ST10F273Z4, they are now used as an XTAL3-XTAL4 pair for connection to an optional 32 kHz crystal to clock the Real Time Clock during Power-Down.

Hardware impacts

The PCB must be redesigned.

In case the optional 32 kHz is not used:

XTAL3 must be linked to Ground as was previously the case for ST10F269Zx.

XTAL4 can be left open or it may be connected to Ground via a capacitor to reduce the potential effect of RF noise which could be propagated inside the device if it is left floating.

6/35

AN2556

Modified features

 

 

Software impacts

If the optional 32 kHz is not used, but the RTC is used, bit OFF32 of the RTCCON register should be set. Prior to setting the OFF32 bit in RTCCON register, the RTC must be enabled by setting RTCEN, bit 4 of XPERCON, and XPEN, bit 2 of SYSCON.

1.2XRAM

The XRAM of the ST10F269Zx and ST10F273Z4 devices is not the same size. Each configuration is detailed below.

The ST10F269Zx has 10 Kbytes of extension RAM whereas the ST10F273Z4 has 34 Kbytes.

The XRAM of the ST10F269Zx is divided into two ranges, namely, XRAM1 with 2 Kbytes and XRAM2 with 8 Kbytes:

The XRAM1 address range is 00’E000h - 00’E7FFh if enabled.

The XRAM2 address range is 00’C000h - 00’DFFFh if enabled.

The XRAM of the ST10F273Z4 is divided into two ranges, namely, XRAM1 with 2 Kbytes (compatible with the ST10F269Zx) and XRAM2 with 32 Kbytes (which has a user reprogrammable address range):

The XRAM1 address range is 00’E000h - 00’E7FFh if enabled (XPEN set - bit 2 of SYSCON register - AND XRAM1EN set - bit 2 of XPERCON register).

The XRAM2 address range is 0F’0000h - 0F’7FFFh, by default (compatible with ST10F273Z4 superset) if enabled (XPEN set - bit 2 of SYSCON register - AND XRAM2EN set - bit 3 of XPERCON register).

1.2.1Hardware impacts

None.

1.2.2Software impacts

There is no change when enabling the XRAM blocks: The XPERCON register is still used to enable them via the XRAM1EN and XRAM2EN bits and the XPEN bit of SYSCON.

In the ST10 F273Z4 the memory mapping of the application is impacted by the difference in XRAM size and by the location of XRAM2 in segment 15. In the ST10F269Zx the whole XRAM is in page 3 of segment 0.

Variables and PEC transfers

For architectural reasons, the PEC destination and source pointers must be in segment 0. Therefore all RAM variables and arrays that will be PEC addressed must be located within either the DPRAM (00’F600h - 00’FDFFh) or the XRAM1 (00’E000h - 00’E7FFh).

About Toolchain memory model

A change in the Toolchain configuration is needed to take into account the new location of XRAM2. In the ST10F269Zx, all the XRAM is in page 3 which is then automatically addressed using DPP3 that points to page 3 (in order to access the DPRAM and the SFR/ESFR). In the ST10F273Z4, it is necessary to dedicate a DPP to access some of the XRAM2.

7/35

Modified features

AN2556

 

 

Example in case of Small Memory Model with Tasking toolchain:

The Small Memory Model allows a total code size from 16 Mbytes up to 64 Kbytes of fast accessible 'normal user data' in three different memory configurations with the possibility to access more data, if more than 64 Kbytes of data is needed.

The three memory configurations possible for this 64K of 'normal user data' are:

Default

Four DPP registers are assumed to contain their system startup value (0-3), providing one linear data area of 64 Kbytes in the first segment (00’0000h - 00’FFFFh).

Linear Address

DPP3 contains page number 3, allowing access to SYSTEM (extended) SFR registers and a bit-addressable memory. DPP0 - DPP2 provides a linear data area of 48 Kbytes anywhere in the memory.

Paged

DPP3 contains page number 3, allowing access to SYSTEM (extended) SFR registers and a bit-addressable memory. DPP0, DPP1 and DPP2 contain a page number of a data area of 16 Kbytes anywhere in the memory.

The Default configuration can no longer be used. The other configurations offer the following possibilities:

Using Linear Address configuration, nearly all the XRAM2 block is covered with DPPs but then access to constants must be made via EXTP instructions.

Paged configuration allows the user to assign up to two DPPs to XRAM2 and one DPP for constants.

1.3Flash EEPROM

Table 2.

Flash memories key characteristics

 

Characteristic

ST10F269Zx

ST10F273Z4

 

 

 

 

Flash size

 

256 Kbytes

512 Kbytes

 

 

 

Flash organization

7 blocks

10 blocks

 

 

 

Programming voltage

5 volts

5 volts

 

 

 

Programming method

Write/Erase Controller

Write/Erase Controller

 

 

 

Program/Erase cycles

100000

100000

 

 

 

 

Table 3: Flash memories mapping on page 9 shows the differences between the ST10F273Z4 and the ST10F269Zx.

1.3.1Hardware impacts

None.

1.3.2Software impacts

Mapping of the applications is impacted because in the ST10F273Z4 the first 32 Kbytes of Flash are divided into four sectors of 8 Kbytes each, whereas the ST10F269Zx has only three sectors.

8/35

AN2556

Modified features

 

 

Moreover, the Flash Write/Erase controller is different and therefore the programming routines must be updated.

When the XPEN bit of the SYSCON register and the XRAM2EN bit of XPERCON register are set, access to the address range 09’0000h - 0D’FFFFh is not redirected to the external memory. The linker-locator configuration of the toolchain should be checked in order to prevent use of this memory range.

Note:

This range can be redirected to the external memory by changing the value of the register

 

XADRS3. Refer to Section 4.1: XADRS3 register for more details.

 

Table 3.

.

 

 

 

 

Flash memories mapping

 

 

 

Segment

ST10F269Zx Flash mapping

ST10F273Z4 Flash mapping

number

 

 

 

 

 

 

 

 

 

 

 

14

0E’0000 - 0E’FFFF

 

0E’0000 - 0E’FFFF

 

Flash registers

 

 

 

 

 

 

13

 

 

 

 

 

 

 

 

 

 

 

12

 

 

 

 

 

 

 

 

 

 

 

11

 

 

09’0000 - 0D’FFFF

 

Reserved

 

 

 

 

 

 

10

 

External memory

 

 

 

 

 

 

 

 

9

05’0000 - 0D’FFFF

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

08’0000 - 08’FFFF

 

IBank 1, Block 1: 64 Kbytes

 

 

 

 

 

 

7

 

 

07’0000 - 07’FFFF

 

IBank 1, Block 0: 64 Kbytes

 

 

 

 

 

 

6

 

 

06’0000 - 06’FFFF

 

IBank 0, Block 9: 64 Kbytes

 

 

 

 

 

 

5

 

 

05’0000 - 05’FFFF

 

IBank 0, Block 8: 64 Kbytes

 

 

 

 

 

 

4

04’0000 - 04’FFFF

Block 6: 64 Kbytes

04’0000 - 04’FFFF

 

IBank 0, Block 7: 64 Kbytes

 

 

 

 

 

 

3

03’0000 - 03’FFFF

Block 5: 64 Kbytes

03’0000 - 03’FFFF

 

IBank 0, Block 6: 64 Kbytes

 

 

 

 

 

 

2

02’0000 - 02’FFFF

Block 4: 64 Kbytes

02’0000 - 02’FFFF

 

IBank 0, Block 5: 64 Kbytes

 

 

 

 

 

 

1

01’8000 - 01’FFFF

Block 3: 32 Kbytes

01’8000 - 01’FFFF

 

IBank 0, Block 4: 32 Kbytes

 

 

 

 

 

01’0000 - 01’7FFF

External memory

01’0000 - 01’7FFF

 

External memory

 

 

 

 

 

 

 

 

 

00’8000 - 00’FFFF

External memory

00’8000 -00’FFFF

 

External memory

 

Internal RAM

 

Internal RAM

 

 

 

 

 

 

 

 

 

 

 

00’6000 - 00’7FFF

Block 2: 8 Kbytes

00’6000 - 00’7FFF

 

IBank 0, Block 3: 8 Kbytes

0

 

 

 

 

 

00’4000 - 00’5FFF

Block 1: 8 Kbytes

00’4000 - 00’5FFF

 

IBank 0, Block 2: 8 Kbytes

 

 

 

 

 

 

 

 

 

00’0000 - 00’3FFF

Block 0: 16 Kbytes

00’2000 - 00’3FFF

 

IBank 0, Block 1: 8 Kbytes

 

 

 

 

 

00’0000 - 00’1FFF

 

IBank 0, Block 0: 8 Kbytes

 

 

 

 

 

 

 

 

 

 

1.4A/D converter

The Analog Digital converter has been redesigned in the ST10F273Z4. The ST10F273Z4 still provides an Analog/Digital converter with 10-bit resolution and a sample & hold circuit on-chip.

9/35

Modified features

AN2556

 

 

1.4.1Hardware/software impacts: conversion timing control

The A/D Converter is not fully compatible with the ST10F269Zx (timing and programming model). In the ST10F269Zx, the sample time (for loading the capacitors) and the conversion time is programmable and can be adjusted to the external circuitry. The total conversion time is compatible with the formula used for the ST10F269Zx, but the meaning of the field bits ADCTC and ADSTC are no longer compatible

Table 4.

ST10F273Z4 conversion timing table

 

 

ADCTC

ADSTC

Sample

Comparison

Extra

Total conversion

 

 

 

 

 

 

00

00

TCL * 120

TCL * 240

TCL * 28

TCL * 388

 

 

 

 

 

 

00

01

TCL * 140

TCL * 280

TCL * 16

TCL * 436

 

 

 

 

 

 

00

10

TCL * 200

TCL * 280

TCL * 52

TCL * 532

 

 

 

 

 

 

00

11

TCL * 400

TCL * 280

TCL * 44

TCL * 724

 

 

 

 

 

 

11

00

TCL * 240

TCL * 120

TCL * 52

TCL * 772

 

 

 

 

 

 

11

01

TCL * 280

TCL * 560

TCL * 28

TCL * 868

 

 

 

 

 

 

11

10

TCL * 400

TCL * 560

TCL * 100

TCL * 1060

 

 

 

 

 

 

11

11

TCL * 800

TCL * 560

TCL * 52

TCL * 1444

 

 

 

 

 

 

10

00

TCL * 480

TCL * 960

TCL * 100

TCL * 1540

 

 

 

 

 

 

10

01

TCL * 560

TCL * 1120

TCL * 52

TCL * 1732

 

 

 

 

 

 

10

10

TCL * 800

TCL * 1120

TCL * 196

TCL * 2116

 

 

 

 

 

 

10

11

TCL * 1600

TCL * 1120

TCL * 164

TCL * 2884

 

 

 

 

 

 

The user should take care of the sample time parameter: This is the time where the capacitances of the converter are loaded via the respective analog input pin. Table 5: ST10F273Z4 vs. ST10F269Zx sample time comparison table shows the differences in sample time.

Table 5.

ST10F273Z4 vs. ST10F269Zx sample time comparison table

 

 

 

ST10F269Zx

ST10F273Z4

Ratio

 

ADCTC

ADSTC

F273Z4_time /

ADCTC

sample time

sample time

 

 

F269_time

 

 

 

 

 

 

 

 

 

 

 

 

00

00

TCL * 48

TCL * 120

2.5

00

 

 

 

 

 

 

00

01

TCL * 96

TCL * 140

1.46

00

 

 

 

 

 

 

00

10

TCL * 192

TCL * 200

1.04

00

 

 

 

 

 

 

00

11

TCL * 384

TCL * 400

1.04

00

 

 

 

 

 

 

11

00

TCL * 96

TCL * 240

2.5

11

 

 

 

 

 

 

11

01

TCL * 192

TCL * 280

1.46

11

 

 

 

 

 

 

11

10

TCL * 384

TCL * 400

1.04

11

 

 

 

 

 

 

11

11

TCL * 768

TCL * 800

1.04

11

 

 

 

 

 

 

10

00

TCL * 192

TCL * 480

2.08

10

 

 

 

 

 

 

10

01

TCL * 384

TCL * 560

1.46

10

 

 

 

 

 

 

10/35

AN2556

 

 

 

Modified features

 

 

 

 

 

 

 

 

Table 5.

ST10F273Z4 vs. ST10F269Zx sample time comparison table (continued)

 

 

 

 

 

 

 

 

 

 

ST10F269Zx

ST10F273Z4

Ratio

 

 

ADCTC

ADSTC

F273Z4_time /

ADCTC

 

sample time

sample time

 

 

 

F269_time

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

10

TCL * 768

TCL * 800

1.04

10

 

 

 

 

 

 

 

 

10

11

TCL * 1536

TCL * 1600

1.04

10

 

 

 

 

 

 

 

In the default configuration, the sample time of the ST10F273Z4 is 2.5 times longer compared to the ST10F269Zx. This has an impact on the frequency of the input signal that can be applied to the ST10F273Z4.

1.4.2Hardware impacts: electrical characteristics

Table 6: ADC differences lists the differences in the DC characteristics of the two devices.

Table 6.

ADC differences

 

 

 

 

 

 

 

 

Limit values for

Limit values for

 

Parameter

Symbol

ST10F269Zx

ST10F273Z4

Unit

 

 

 

 

 

 

 

Min

Max

Min

Max

 

 

 

 

 

 

 

 

 

Analog reference voltage

(1)

4.0

VDD + 0.1

4.5

VDD

V

VAREF

Analog input voltage

VAIN

VAGND

VAREF

VAGND

VAREF

V

ADC input capacitance

 

 

 

 

CP1 + CP2 +CS

 

Port5, not sampling

 

-

10

-

7

 

 

 

CAIN

 

 

 

 

 

Port5, sampling

-

15

-

10.5

pF

 

 

 

 

 

 

 

 

Port1, not sampling

 

-

N.A.

-

9

 

 

 

 

 

 

 

 

Port1, sampling

 

-

N.A.

-

12.5

 

 

 

 

 

 

 

 

 

Sample time

 

tS

48TCL

1536TCL

1µs

1600TCL

 

 

120TCL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conversion time

tC

388TCL

2884TCL

388TCL

2884TCL

 

Total unadjusted error

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Port5

 

TUE

-2.0

+2.0

-2.0

+2.0

LSB

 

 

 

 

 

 

Port1 - no overload

-

-

-5.0

+5.0

 

 

 

 

 

 

 

 

 

Port1 - overload

 

-

-

-7.0

+7.0

 

 

 

 

 

 

 

 

Internal resistance of

RASRC

 

tS[ns]/150 - 0.25

 

 

kΩ

analog source

 

 

 

 

 

RSW

 

 

 

 

 

Analog switch resistance

Port5

N.A.

N.A.

-

600

 

 

 

Port1

-

1000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RAD

 

 

-

1300

 

11/35

Loading...
+ 24 hidden pages