ST AN2555 Application note

AN2555

Application note

Porting an application from the ST10F269Zx to the ST10F276Z5

Introduction

The ST10F276Z5 is a member of the STMicroelectronics ST10 family of 16-bit single-chip CMOS microcontrollers. It is functionally upward compatible with the ST10F269Zx.

The goal of this document is to highlight the differences between ST10F269Zx and ST10F276Z5 devices. It is intended for hardware or software designers who are adapting an existing application based on the ST10F269Zx to the ST10F276Z5.

This document presents the ST10F276Z5’s modified functionalities and the new ones then it describes the modified registers and the new registers. For each part, the differences with the ST10F269Zx that may have an impact when replacing the ST10F269Zx by the ST10F276Z5 are stressed and some advice is given on the way they can be handled.

This document applies from the second silicon version of the ST10F276Z5, that is from the BA step where a new sectorization of the Flash memory was introduced. The silicon version can be verified by reading the IDCHIP register at location 00’F07Ch. The values for these silicon versions are 114Xh with X > 1.

July 2007

Rev 1

1/33

www.st.com

AN2555 - Application note

Contents

 

 

Contents

1

Modified features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 3

1.1

Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

1.2

XRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

1.3

Flash EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

1.4

A/D converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

1.5

Real Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

1.6

CAN modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

1.7

Port input control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

1.8

Port output control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

1.9

PLL and main on-chip oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

2

New features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

2.1

Additional XPeripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

2.2

New multiplexer for X-Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

2.3

Programmable divider on CLKOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

2.4

Additional port input control: XPICON register . . . . . . . . . . . . . . . . . . . . . . . . .

21

3

Modified registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

22

3.1

XPERCON register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

22

3.2

IDCHIP register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

4

New registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25

4.1

XADRS3 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25

4.2

XPEREMU register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

4.3

Emulation-dedicated registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

4.4

XMISC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27

5

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

5.1

DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

5.2

AC characteristics at 40 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

6

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

32

2/33

AN2555 - Application note

Modified features

 

 

1 Modified features

1.1Pinout

1.1.1Pinout modification summary

Table 1 summarizes the modifications made in the pinout.

Table 1.

Pinout modifications

 

 

Pin number

 

 

 

ST10F269Zx name and function

 

 

ST10F276Z5 name and function

 

 

 

 

 

 

 

 

 

 

DC: Internal voltage regulator decoupling.

 

 

 

17

 

 

Connect to nearest VSS via a 330 nF

 

VDD: 5 V power supply pin

 

 

 

capacitor.

 

 

 

 

 

 

 

 

 

 

 

 

DC1: Internal voltage regulator

 

V18: Internal voltage regulator

56

 

 

decoupling. Connect to nearest VSS via a

 

decoupling. Connect to nearest VSS via a

 

 

 

330nF capacitor.

 

10-100nF capacitor.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-VSTBY: Selects code execution out of

 

 

 

 

 

 

EA

 

 

 

EA: Selects code execution out of internal

 

99

 

 

 

internal Flash memory or external

 

 

Flash memory or external memory

 

memory according to level during reset.

 

 

 

according to level during reset.

 

 

 

 

 

Power supply input for standby mode.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XTAL3: Input to the 32 kHz oscillator

 

 

 

 

 

 

amplifier circuit. When not used shall be

143

 

 

VSS: Ground pin

 

tied to ground to avoid consumption.

 

 

 

 

 

 

Besides, bit OFF32 in RTCCON register

 

 

 

 

 

 

must be set.

 

 

 

 

 

 

 

 

 

 

 

 

 

XTAL4: Output of the 32 kHz oscillator

144

 

 

VDD: 5V power supply pin

 

amplifier circuit. When not used must be

 

 

 

 

 

 

left open to avoid spurious consumption.

 

 

 

 

 

 

 

 

1.1.2Pin 17

On the ST10F269Zx, a decoupling capacitor of 330nF minimum has to be connected between the pin 17 (named DC2) and the nearest VSS pin.

This is no longer the case for the ST10F276Z5 device where pin 17 is a VDD pin.

Hardware impact

PCB must be adapted.

Software impact

None.

3/33

ST AN2555 Application note

AN2555 - Application note

Modified features

 

 

1.1.3Pin 56

On the ST10F269Zx, a decoupling capacitor of 330nF minimum has to be connected between the pin 56 (named DC1) and the nearest VSS pin.

On the ST10F276Z5, pin 56 is named V18 and a capacitor of value between 10nF minimum to 100nF maximum must be connected between it and the nearest VSS pin.

Hardware impact

Change on the capacitor value. As the value is much lower, the footprint of the capacitor might be smaller and a modification of the PCB might be needed.

Software impact

None.

1.1.4Pin 99

On the ST10F269Zx, pin 99 is EA and used upon reset to select the start from the internal Flash memory or the external memory.

On the ST10F276Z5, pin 99 has the additional function of providing the 5V power supply to the device in standby mode (new power-saving mode), it is called EA-VSTBY.

Hardware impact

The modification depends on the previous use of the ST10F269Zx and on whether the Standby mode is used or not.

For an application where the Standby mode is not used, no change to the PCB is required. If the new

application uses the Standby mode, the EA-VSTBY pin must be separated from the common 5V and have a specific supply path.

Software impact

None.

1.1.5Pins 143 and 144

These pins are VSS and VDD, respectively, in the ST10F269Zx. On the ST10F276Z5 they are used as XTAL3 and XTAL4 for connection to an optional 32 kHz crystal to clock the Real Time Clock during power-down.

Hardware impact

PCB must be redesigned.

If the optional 32 kHz is not used:

pin 143 (XTAL3) must be linked to ground like on the ST10F269Zx

pin 144 (XTAL4) must be left open. It can also be connected to ground via a capacitor to reduce the potential RF noise that might be propagated inside the device if the pin is left floating.

4/33

AN2555 - Application note

Modified features

 

 

Software impact

In case the optional 32 kHz is not used, the OFF32 bit of the RTCCON register must be set. Prior to setting the OFF32 bit in RTCCON register, the RTC must be enabled by setting RTCEN, bit 4 of XPERCON, and XPEN, bit 3 of SYSCON.

1.2XRAM

The ST10F269Zx has 10 Kbytes of extension RAM whereas the ST10F276Z5 has 66 Kbytes.

The XRAM of the ST10F269Zx is divided into 2 ranges, XRAM1 of 2 Kbytes and XRAM2 of 8 Kbytes:

The XRAM1 address range is 00’E000h - 00’E7FFh if enabled (XPEN and XRAM1EN, bit 2 of SYSCON register and of XPERCON register, respectively, must both be set).

The XRAM2 address range is 00’C000h - 00’DFFFh if enabled (XPEN and XRAM2EN, bit 2 of SYSCON register and bit 3 of XPERCON register, respectively, must both be set).

The XRAM of the ST10F276Z5 is divided into 2 ranges, XRAM1 of 2 Kbytes and XRAM2 of 64 Kbytes:

The XRAM1 address range is 00’E000h - 00’E7FFh if enabled (XPEN and XRAM1EN, bit 2 of SYSCON register and bit 2 of XPERCON register, respectively, must both be set).

The XRAM2 address range is 0F’0000h - 0F’FFFFh if enabled (XPEN and XRAM2EN, bit 2 of SYSCON register and bit 3 of XPERCON register, respectively, must both be set).

1.2.1Hardware impacts

None.

1.2.2Software impacts

There is no change in the enabling of the XRAM blocks: XPERCON register bits, XRAM1EN and XRAM2EN, and SYSCON register bit, XPEN, are used to enable them.

The memory mapping of the application is impacted by the different XRAM size and the different location of XRAM2 in segment 15. In the ST10F269Zx the whole XRAM is in page 3 of segment 0.

Variables and PEC transfers

For architecture reasons, the PEC destination and source pointers must be in segment 0. Therefore all RAM variables and arrays that will be PEC addressed must be located within either the DPRAM (00’F600h - 00’FDFFh) or XRAM1 (00’E000h - 00’E7FFh).

About Toolchain memory model

A change in the Toolchain configuration is needed to take into account the new XRAM2 location. In the ST10F269Zx, the entire XRAM is in page 3 and is then automatically addressed using DPP3 that points to page 3 (in order to access the DPRAM and the SFR/ESFR). For the ST10F276Z5, it is necessary to dedicate a DPP to access some of XRAM2.

Example in case of Small Memory Model with Tasking toolchain

The Small memory model makes it possible to have a total code size up to 16 Mbytes, up to 64 Kbytes of fast accessible 'normal user data' in three different memory configurations and the possibility to access far/huge data, if more than 64 Kbytes of data is needed.

5/33

AN2555 - Application note

Modified features

 

 

The three memory configurations possible for this 64 Kbytes of 'normal user data' are:

Default

The four DPP registers are assumed to contain their system startup value (0-3), providing one linear data area of 64 Kbytes in the first segment (00’0000h - 00’FFFFh).

Addresses Linear

DPP3 contains page number 3, allowing access to ST10 registers and bit-addressable memory. DPP0 - DPP2 provide a linear data area of 48 Kbytes anywhere in memory.

Paged

DPP3 contains page number 3, allowing access to ST10 registers and bit-addressable memory. DPP0, DPP1 and DPP2 contain the page numbers of data areas of 16 Kbytes anywhere in memory.

The Default configuration can no longer be used. The other configurations offer the following possibilities:

with the Addresses Linear configuration the XRAM2 block is almost entirely covered with DPPs but then accesses to constants must be made via EXTP instructions.

In the Paged configuration up to two DPPs can be assigned to XRAM2 and one DPP for constants.

1.3Flash EEPROM

Table 2.

Flash memory key characteristics

 

 

 

ST10F269Zx

ST10F276Z5

 

 

 

 

Flash Size

 

256 Kbytes

832 KBytes

 

 

 

Flash Organization

7 blocks

4 banks, 17 blocks

 

 

 

Programming voltage

5 Volts

5 Volts

 

 

 

Programming method

Write/Erase Controller

Write/Erase Controller

 

 

 

Program/Erase cycles

100000 cycles

100000 cycles

 

 

 

 

Table 3: Flash memory mapping shows the Flash memory address ranges of the 2 devices.

6/33

AN2555 - Application note

 

 

Modified features

 

 

 

 

 

 

Table 3.

Flash memory mapping

 

 

 

 

 

 

 

 

 

Segment

ST10F269Zx Flash mapping

ST10F276Z5 Flash mapping

 

number

 

 

 

 

 

 

 

 

 

 

 

 

14

 

 

0E’0000 - 0E’FFFF

Flash registers

 

 

 

 

 

 

 

13

 

 

0D’0000 - 0D’FFFF

X-Bank3, Block1: 64KB

 

 

 

 

 

 

 

12

 

 

0C’0000 - 0C’FFFF

X-Bank3, Block0: 64KB

 

 

 

 

 

 

 

11

 

 

0B’0000 - 0B’FFFF

X-Bank2, Block2: 64KB

 

 

 

 

 

 

 

10

05’0000 - 0E’FFFF

External memory

0A’0000 - 0A’FFFF

X-Bank2, Block1: 64KB

 

 

 

 

 

 

9

 

09’0000 - 09’FFFF

X-Bank2, Block0: 64KB

 

 

 

 

 

 

 

 

 

 

8

 

 

08’0000 - 08’FFFF

I-Bank1, Block1: 64KB

 

 

 

 

 

 

 

7

 

 

07’0000 - 07’FFFF

I-Bank1, Block0: 64KB

 

 

 

 

 

 

 

6

 

 

06’0000 - 06’FFFF

I-Bank0, Block9: 64KB

 

 

 

 

 

 

 

5

 

 

05’0000 - 05’FFFF

I-Bank0, Block8: 64KB

 

 

 

 

 

 

 

4

04’0000 - 04’FFFF

Block6: 64KB

04’0000 - 04’FFFF

I-Bank0, Block7: 64KB

 

 

 

 

 

 

 

3

03’0000 - 03’FFFF

Block 5: 64KB

03’0000 - 03’FFFF

I-Bank0, Block6: 64KB

 

 

 

 

 

 

 

2

02’0000 - 02’FFFF

Block 4: 64KB

02’0000 - 02’FFFF

I-Bank0, Block5: 64KB

 

 

 

 

 

 

 

 

01’8000 - 01’FFFF

Block 3: 32KB

01’8000 - 01’FFFF

I-Bank0, Block4: 32KB

 

 

 

 

 

 

 

1

01’0000 - 01’7FFF

External memory

01’0000 - 01’7FFF

External memory

 

 

 

 

 

 

00’8000 - 00’FFFF

External memory

00’8000 - 00’FFFF

External memory

 

 

 

 

Internal RAM

Internal RAM

 

 

 

 

 

 

 

 

 

 

 

 

00’6000 - 00’7FFF

Block 2: 8KB

00’6000 - 00’7FFF

I-Bank0, Block3: 8KB

 

 

 

 

 

 

 

0

00’4000 - 00’5FFF

Block 1: 8KB

00’4000 - 00’5FFF

I-Bank0, Block2: 8KB

 

 

 

 

 

 

00’0000 - 00’3FFF

Block 0: 16KB

00’2000 - 00’3FFF

I-Bank0, Block1:8KB

 

 

 

 

 

 

 

 

00’0000 - 00’1FFF

I-Bank0, Block0: 8KB

 

 

 

 

 

 

 

 

 

 

 

1.3.1Hardware impacts

None.

1.3.2Software impacts

The mapping of the application, the programming and erasing routines are impacted.

1.4A/D converter

In the ST10F276Z5, the Analog Digital converter has been re-designed (compared to the A/D converter in the ST10F269Zx). The ST10F276Z5 still provides an Analog / Digital Converter with 10-bit resolution and an on-chip sample & hold circuit.

1.4.1Hardware / Software impact: conversion timing control

The A/D Converter in the ST10F276Z5 is not fully compatible to that in the ST10F269Zx (timing and programming model).

7/33

AN2555 - Application note

Modified features

 

 

In the ST10F269Zx, the sample time (to charge the capacitors) and the conversion time are programmable and can be adjusted to the external circuitry. The total conversion time is compatible with the formula used for ST10F269Zx, while the meanings of the ADCTC and ADSTC bit fields are no longer compatible.

Table 4.

ST10F276Z5 conversion timing table

 

 

ADCTC

ADSTC

Sample

Comparison

Extra

Total Conversion

 

 

 

 

 

 

00

00

TCL * 120

TCL * 240

TCL * 28

TCL * 388

 

 

 

 

 

 

00

01

TCL * 140

TCL * 280

TCL * 16

TCL * 436

 

 

 

 

 

 

00

10

TCL * 200

TCL * 280

TCL * 52

TCL * 532

 

 

 

 

 

 

00

11

TCL * 400

TCL * 280

TCL * 44

TCL * 724

 

 

 

 

 

 

11

00

TCL * 240

TCL * 120

TCL * 52

TCL * 772

 

 

 

 

 

 

11

01

TCL * 280

TCL * 560

TCL * 28

TCL * 868

 

 

 

 

 

 

11

10

TCL * 400

TCL * 560

TCL * 100

TCL * 1060

 

 

 

 

 

 

11

11

TCL * 800

TCL * 560

TCL * 52

TCL * 1444

 

 

 

 

 

 

10

00

TCL * 480

TCL * 960

TCL * 100

TCL * 1540

 

 

 

 

 

 

10

01

TCL * 560

TCL * 1120

TCL * 52

TCL * 1732

 

 

 

 

 

 

10

10

TCL * 800

TCL * 1120

TCL * 196

TCL * 2116

 

 

 

 

 

 

10

11

TCL * 1600

TCL * 1120

TCL * 164

TCL * 2884

 

 

 

 

 

 

The parameter to take care of is the Sample time: This is the time during which the capacitances of the converter are charged via the respective analog input pins. Table 5: ST10F276Z5 vs. ST10F269Zx sample time comparison table shows the respective sample times of the 2 devices.

8/33

AN2555 - Application note

 

Modified features

 

 

 

 

 

 

Table 5.

ST10F276Z5 vs. ST10F269Zx sample time comparison table

 

 

 

 

 

 

ADCTC

ADSTC

ST10F269Zx Sample

ST10F276Z5 Sample

Ratio F276Z5 / F269Zx

 

Time

Time

 

 

 

 

 

 

 

 

 

 

 

00

00

TCL * 48

TCL * 120

2.5

 

 

 

 

 

 

 

00

01

TCL * 96

TCL * 140

1.46

 

 

 

 

 

 

 

00

10

TCL * 192

TCL * 200

1.04

 

 

 

 

 

 

 

00

11

TCL * 384

TCL * 400

1.04

 

 

 

 

 

 

 

11

00

TCL * 96

TCL * 240

2.5

 

 

 

 

 

 

 

11

01

TCL * 192

TCL * 280

1.46

 

 

 

 

 

 

 

11

10

TCL * 384

TCL * 400

1.04

 

 

 

 

 

 

 

11

11

TCL * 768

TCL * 800

1.04

 

 

 

 

 

 

 

10

00

TCL * 192

TCL * 480

2.08

 

 

 

 

 

 

 

10

01

TCL * 384

TCL * 560

1.46

 

 

 

 

 

 

 

10

10

TCL * 768

TCL * 800

1.04

 

 

 

 

 

 

 

10

11

TCL * 1538

TCL * 1600

1.04

 

 

 

 

 

 

 

In the default configuration the sample time of the ST10F276Z5 is 2.5 times longer compared to that of the ST10F269Zx. This has an impact on the frequency of the input signal that can be applied to the ST10F276Z5.

1.4.2Hardware impacts

Electrical characteristics

Table 6 lists the differences in the DC characteristics of the two devices. The main points are:

IAREF is 10 times higher on the ST10F276Z5. The VAREF pad must therefore be directly connected to the power supply: Connecting a resistor would create a voltage shift in the analog reference.

CAIN, input pin capacitances are different.

DNL, INL and OFS are different: the ADC conversion curves for the 2 devices are different.

9/33

AN2555 - Application note

 

 

 

 

Modified features

 

 

 

 

 

 

 

 

 

Table 6.

ADC differences

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Limit values for

Limit values for

 

 

Parameter

Symbol

ST10F269Zx

ST10F276Z5

Unit

 

 

 

 

 

 

 

 

 

min.

max.

min.

max.

 

 

 

 

 

 

 

 

 

 

Analog Reference

VAREF

4.0

VDD + 0.1

4.5

VDD

V

 

voltage

 

 

Analog Input Voltage

VAIN

VAGND

VAREF

VAGND

VAREF

V

 

ADC Input capacitance

 

 

 

 

CP1 + CP2 +CS

 

 

Port5, Not sampling

 

-

10

-

7

 

 

Port5, Sampling

CAIN

-

15

-

10.5

pF

 

Port1, Not Sampling

 

-

N.A.

-

9

 

 

Port1, sampling

 

-

N.A.

-

12.5

 

 

 

 

 

 

 

 

 

 

 

Sample time

 

tS

48TCL

1536TCL

1µs

1600TCL

 

 

 

120TCL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conversion time

tC

388TCL

2884TCL

388TCL

2884TCL

 

 

Total Unadjusted Error

 

 

 

 

 

 

 

Port5

 

TUE

-2.0

+2.0

-2.0

+2.0

LSB

 

Port1 - No overload

-

-

-5.0

+5.0

 

 

 

 

Port1 - Overload

 

-

-

-7.0

+7.0

 

 

 

 

 

 

 

 

 

 

Internal resistance of

RASRC

 

tS[ns]/150 - 0.25

 

 

kΩ

 

analog source

 

 

 

 

 

 

RSW

 

 

 

 

 

Analog switch

Port5

N.A.

N.A.

-

600

 

Port1

 

 

-

1000

 

 

resistance

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RAD

N.A.

N.A.

-

1300

 

Reference supply

 

 

 

 

 

 

 

current

 

IAREF

-

500

-

5000

µA

 

running mode

 

power-down mode

 

-

1

-

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Differential Nonlinearity

DNL

-0.5

+0.5

1

1

LSB

 

 

 

 

 

 

 

 

 

Integral Nonlinearity

INL

-1.5

+1.5

-1.5

1.5

LSB

 

 

 

 

 

 

 

 

 

 

Offset Error

 

OFS

-1.0

+1.0

-1.5

1.5

LSB

 

 

 

 

 

 

 

 

 

 

Note:

The VAREF pin is also used as a supply pin for the ADC module. As there is a higher current

sink on this pin on the ST10F276Z5 compared to the ST10F269Zx, it is recommended not to connect a resistor (for example because of an RC filter), to prevent creating an offset in the reference.

1.4.3Software impacts

Self-calibration and ADC initialization routine

An automatic self-calibration adjusts the ADC module to process parameter variations at each reset event. After reset, the busy flag (read-only) ADBSY is set because the self-calibration is ongoing. The

10/33

Loading...
+ 23 hidden pages