ST AN2549 Application note

AN2549
Application note
Porting an application from the ST10F269Zx to the ST10F272Z2
Introduction
The ST10F272Z2 is a new member of the STMicroelectronics ST10 family of 16-bit single­chip CMOS microcontrollers. It is functionally upward compatible with the ST10F269Zx.
The goal of this document is to highlight the differences between ST10F269Zx and ST10F272Z2 devices. It is intended for hardware or software designers who are adapting an existing application based on the ST10F269Zx to the ST10F272Z2.
This document presents the ST10F272Z2’s modified functionalities and the new ones, and goes on to describe the modified and the new registers. For each part, the differences with the ST10F269Zx that may have an impact when replacing the ST10F269Zx by the ST10F272Z2 are stressed and some advice is given on the way they can be handled.
July 2007 Rev 1 1/33
www.st.com
AN2549 Contents
Contents
1 Modified features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 XRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Flash EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 A/D converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Real time clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 CAN modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 Port input control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.8 Ports output control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.9 PLL and main on-chip oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2 New features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1 Additional XPeripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Programmable divider on CLKOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 New multiplexer for X-Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Additional ports input control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3 Modified registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1 XPERCON register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4 New registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1 XADRS3 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 XPEREMU register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Emulation-dedicated registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 XMISC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1 DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 AC characteristics at 40 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2/33
AN2549 Modified features

1 Modified features

1.1 Pinout

1.1.1 Pinout modification summary

Ta bl e 1 summarizes the modifications made to the pinout.
Table 1. Pinout modifications
Pin
number
17 DC2
56 DC1
99 EA
143 V
144 V
ST10F269Zx ST10F272Z2
Name Function Name Function
Internal voltage regulator decoupling.
SS
DD
Connect to nearest V capacitor.
Internal voltage regulator decoupling. Connect to nearest VSS via a 330nF capacitor.
Selects code execution out of internal Flash memory or external memory according to level during reset.
Ground pin XTAL3
5V power supply pin XTAL4
via a 330nF
SS
V
V
EA-V
DD
18
STBY
5V power supply pin
Internal voltage regulator decoupling. Connect to nearest V 10 - 100nF capacitor.
Selects code execution out of internal Flash memory or external memory according to level during reset. Power supply input for the standby mode.
Input to the 32 kHz oscillator amplifier circuit. When not used, must be tied to ground to avoid consumption. Additionally, bit OFF32 in RTCCON register must be set.
Output of the 32 kHz oscillator amplifier circuit. When not used, must be left open to avoid spurious consumption.
SS
via a

1.1.2 Pin 17

On the ST10F269Zx, a decoupling capacitor of 330nF minimum has to be connected between the pin 17 (named DC2) and the nearest V
This is no longer the case for the ST10F272Z2 device where pin 17 is a V
Hardware impact
PCB must be adapted.
Software impact
None.
pin.
SS
pin.
DD
3/33
AN2549 Modified features

1.1.3 Pin 56

On the ST10F269Zx, a decoupling capacitor of 330nF minimum has to be connected between the pin 56 (named DC1) and the nearest V
On the ST10F272Z2, pin 56 is named V
and a capacitor of value between 10nF minimum
18
and 100nF maximum must be connected between it and the nearest V
SS
pin.
SS
pin.
Hardware impact
Change on the capacitor value. As the value is much lower, the footprint of the capacitor might be smaller and then a modification of the PCB is needed.
Software impact
None.

1.1.4 Pin 99

On the ST10F269Zx, pin 99 is EA and used upon reset to select the start from the internal Flash memory or the external memory.
On the ST10F272Z2, pin 99 has the additional function of providing the 5V power supply to the device in standby mode (new power-saving mode), it is called EA
-V
STBY
.
Hardware impact
The modification depends on the previous use of the ST10F269Zx and on whether the Standby mode is used or not.
For an application where the Standby mode is not used, no change to the PCB is required. If the new application uses the Standby mode, the EA common 5V and have a specific supply path.
Software impact
None.

1.1.5 Pins 143 and 144

These pins are VSS and VDD, respectively, in the ST10F269Zx. On the ST10F272Z2 they are used as XTAL3 and XTAL4 for connection to an optional 32 kHz crystal to clock the Real Time Clock during power-down.
Hardware impact
PCB must be redesigned.
If the optional 32 kHz is not used:
Pin 143 (XTAL3) must be linked to ground like on the ST10F269Zx
Pin 144 (XTAL4) must be left open. It can also be connected to ground via a capacitor
to reduce the potential RF noise that might be propagated inside the device if the pin is left floating.
-V
pin must be separated from the
STBY
4/33
AN2549 Modified features
Software impact
In case the optional 32 kHz is not used, the OFF32 bit of the RTCCON register must be set. Prior to setting the OFF32 bit in the RTCCON register, the RTC must be enabled by setting RTCEN, bit 4 of XPERCON, and XPEN, bit 2 of SYSCON.

1.2 XRAM

The ST10F269Zx has 10 Kbytes of extension RAM whereas the ST10F272Z2 has 18 Kbytes.
The XRAM of the ST10F269Zx is divided into two ranges being XRAM1 of 2 Kbytes and XRAM2 of 8 Kbytes:
The XRAM1 address range is 00’E000h - 00’E7FFh if enabled.
The XRAM2 address range is 00’C000h - 00’DFFFh if enabled.
The XRAM of the ST10F272Z2 is divided into two ranges being XRAM1 of 2 Kbytes (compatible with the ST10F269Zx) and XRAM2 of 16 Kbytes with a user reprogrammable address range:
The XRAM1 address range is 00’E000h - 00’E7FFh if enabled (XPEN and XRAM1EN,
bit 2 of SYSCON register and bit 2 of XPERCON register, respectively, must be set).
The XRAM2 address range is 09’0000h - 09’3FFFh, by default (mirrored every
16 Kbytes in the range 09’0000h -0F’FFFFh), if enabled (XPEN and XRAM2EN, bit 2 of SYSCON register and bit 3 of XPERCON register, respectively, must be set).
Hardware impact
None.
Software impact
There is no change in the enabling of the XRAM blocks: XPERCON register bits, XRAM1EN and XRAM2EN, and SYSCON register bit, XPEN, are used to enable them.
The memory mapping of the application is impacted by the difference in XRAM size and by the location of XRAM2. A new register has been created in order to allow the user to remap the XRAM2 (please refer to Section 4.1: XADRS3 register on page 23 for details).

1.3 Flash EEPROM

Table 2. Flash memory key characteristics

Characteristic ST10F269Zx ST10F272Z2
Flash size 256 Kbytes 256 Kbytes
Flash organization 7 blocks 8 blocks
Programming voltage 5 volts 5 volts
Programming method Write/Erase Controller Write/Erase Controller
Program / Erase cycles 100000 cycles 100000 cycles
5/33
AN2549 Modified features

Table 3. Flash memory mapping

Segment ST10F269Zx Flash mapping ST10F272 Flash mapping
8 08’0000-08’FFFF External memory 08’0000-08’FFFF Flash registers
7..5 05’0000-07’FFFF External memory 05’0000-07’FFFF Reserved
4 04’0000-04’FFFF Block6: 64 Kbytes 04’0000-04’FFFF Block7: 64 Kbytes
3 03’0000-03’FFFF Block5: 64 Kbytes 03’0000-03’FFFF Block6: 64 Kbytes
2 02’0000-02’FFFF Block4: 64 Kbytes 02’0000-02’FFFF Block5: 64 Kbytes
01’8000-01’FFFF Block3: 32 Kbytes 01’8000-01’FFFF Block4: 32 Kbytes
1
0
01’0000-01’7FFF
00’8000 - 00’FFFF
00’6000 - 00’7FFF Block 2: 8 Kbytes 00’6000 - 00’7FFF Block3: 8 Kbytes
00’4000 - 00’5FFF Block 1: 8 Kbytes 00’4000 - 00’5FFF Block2: 8 Kbytes
00’0000 - 00’3FFF Block 0: 16 Kbytes
External memory or remap of Blocks 0-2
External memory Internal RAM and Registers
01’0000-01’7FFF
00’8000 - 00’FFFF
00’2000 - 00’3FFF Block1: 8 Kbytes
00’0000 - 00’1FFF Block0: 8 Kbytes
External memory or remap of Blocks 0-3
External memory Internal RAM and Registers

1.3.1 Hardware impact

None.

1.3.2 Software impact

As the first 32 Kbytes of Flash memory are now divided into four sectors of 8 Kbytes each in the ST10F272Z2 whereas the ST10F269Zx had only three sectors, the mapping of the application is impacted.
Moreover, the Flash memory Write/Erase controller is different and therefore the programming routines must be updated.
When the bit ROMEN of the SYSCON register is set, that is, when the internal Flash memory is enabled, accesses to the address range 05’0000h - 07’FFFFh are not redirected to external memory. The linker-locator configuration of the toolchain should be checked in order to prevent any use of this memory range.
6/33
AN2549 Modified features

1.4 A/D converter

In the ST10F272Z2, the analog/digital converter has been redesigned (compared to the A/D converter in the ST10F269Zx). The ST10F272Z2 still provides an analog/digital converter with 10-bit resolution and an on-chip sample and hold circuit.

1.4.1 Hardware / Software impact: conversion timing control

The A/D converter in the ST10F272Z2 is not fully compatible with that of the ST10F269Zx (timing and programming model).
In the ST10F269Zx, the sample time (to charge the capacitors) and the conversion time are programmable and can be adjusted to the external circuitry. The total conversion time is compatible with the formula used for ST10F269Zx, whereas the meanings of the ADCTC and ADSTC bit fields are no longer compatible.
Table 4. ST10F272Z2 conversion timing table
ADCTC ADSTC Sample Comparison Extra Total conversion
00 00 TCL * 120 TCL * 240 TCL * 28 TCL * 388
00 01 TCL * 140 TCL * 280 TCL * 16 TCL * 436
00 10 TCL * 200 TCL * 280 TCL * 52 TCL * 532
00 11 TCL * 400 TCL * 280 TCL * 44 TCL * 724
11 00 TCL * 240 TCL * 120 TCL * 52 TCL * 772
11 01 TCL * 280 TCL * 560 TCL * 28 TCL * 868
11 10 TCL * 400 TCL * 560 TCL * 100 TCL * 1060
11 11 TCL * 800 TCL * 560 TCL * 52 TCL * 1444
10 00 TCL * 480 TCL * 960 TCL * 100 TCL * 1540
10 01 TCL * 560 TCL * 1120 TCL * 52 TCL * 1732
10 10 TCL * 800 TCL * 1120 TCL * 196 TCL * 2116
10 11 TCL * 1600 TCL * 1120 TCL * 164 TCL * 2884
The user should take care of the Sample time parameter: This is the time during which the capacitances of the converter are charged via the respective analog input pins. Ta bl e 5 shows the differences in sample time.
7/33
AN2549 Modified features
Table 5. ST10F272Z2 vs ST10F269Zx sample time comparison table
ADCTC ADSTC
ST10F269Zx Sample time
ST10F272Z2 Sample time
00 00 TCL * 48 TCL * 120 2.5
00 01 TCL * 96 TCL * 140 1.46
00 10 TCL * 192 TCL * 200 1.04
00 11 TCL * 384 TCL * 400 1.04
11 00 TCL * 96 TCL * 240 2.5
11 01 TCL * 192 TCL * 280 1.46
11 10 TCL * 384 TCL * 400 1.04
11 11 TCL * 768 TCL * 800 1.04
10 00 TCL * 192 TCL * 480 2.08
10 01 TCL * 384 TCL * 560 1.46
10 10 TCL * 768 TCL * 800 1.04
10 11 TCL * 1536 TCL * 1600 1.04
In the default configuration the sample time of the ST10F272Z2 is 2.5 times longer compared to that of the ST10F269Zx. This has an impact on the frequency of the input signal that can be applied to the ST10F272Z2.

1.4.2 Hardware impact: electrical characteristics

Ratio
F272Z2_time / F269_time
Ta bl e 6 lists the differences in the DC characteristics of the two devices.
Table 6. ADC differences
Symbol Parameter
V
AREF
V
AIN
C
AIN
t
S
t
C
TUE
R
ASRC
Analog reference voltage
Analog input voltage V
ADC input capacitance (Port 5)
Not sampling Sampling
Sample time 48TCL 1536TCL
Conversion time 388TCL 2884TCL 388TCL 2884TCL
Total Unadjusted Error (Port5)
Internal resistance of analog source
Limit values for ST10F269Zx Limit values for ST10F272Z2
Min Max Min Max
4.0 V
AGND
-
-
+ 0.1 4.5 V
DD
V
AREF
10 15
V
AGND
-
-
1µs
120TCL
V
+ CP2 +C
C
P1
1600TCL
DD
AREF
7
10.5
-2.0 +2.0 -2.0 +2.0 LSB
[ns]/150-0.25 k
t
S
Unit
V
V
S
pF
8/33
AN2549 Modified features
Table 6. ADC differences (continued)
Limit values for ST10F269Zx Limit values for ST10F272Z2
Symbol Parameter
Min Max Min Max
Reference supply
I
AREF
current Running mode Power-down mode
-
-
500
1
-
-
5000
1
DNL Differential nonlinearity -0.5 +0.5 -1 +1 LSB
INL Integral nonlinearity -1.5 +1.5 -1.5 +1.5 LSB
OFS Offset error -1.0 +1.0 -1.5 +1.5 LSB
Unit
µA µA
Note: The V
pin is also used as a supply pin for the ADC module. As there is a higher current
AREF
sink on this pin on the ST10F272Z2 compared to the ST10F269Zx, it is recommended not to connect a resistor (for example, because of an RC filter), to prevent creating an offset in the reference.

1.4.3 Software impact

Self-calibration and ADC initialization routine
An automatic self-calibration adjusts the ADC module to process parameter variations at each reset event. After reset, the busy flag (read-only) ADBSY is set because the self­calibration is ongoing. The duration of self-calibration depends on the CPU clock: It may take up to 40.629 ± 1 clock pulses. The user must poll this bit to know when self-calibration is complete in order to initialize the ADC module.
This self-calibration is seen by the ST10F272Z2 as a conversion and thus bit ADCIR is set. The software should perform a dummy read of the ADDAT register and clear the ADCIR and ADCEIR flags before configuring the ADC module and starting the first conversion.
New bit ADOFF, bit 6 of ADCON register
ADCON (FFA0h / A0h) SFR Reset value: 0000h
15 14 13 12 11 10 9 8 76543210
ADCTC ADSTC
R/W R/W R/W R/W R/W RO R/W R/W R/W R/W
Table 7. ADCON register description
AD
CRQADCINADWRADBSYADSTADOFF
ADM ADCH
Bit Function Comment
ADOFF
ADC Disable
0: Analog circuitry of A/D converter is on 1: Analog circuitry of A/D converter is turned off
New bit valid only for the ST10F272Z2. Reserved on ST10F269Zx.
The bit 6 of the ADCON register, reserved in previous ST10 devices, is now used to enable and disable the ADC. By default this bit is cleared and the ST10F272Z2 is compatible with the ST10F269Zx. Therefore, there is no impact on the software, provided that this bit is not written to.
9/33
AN2549 Modified features
Additional channels on Port1
A new multiplexer selects one out of up to 16 + 8 analog input channels (alternate functions of Port 5 and Port1). The selection of Port1 or Port5 as the input of the ADC is made via bit ADCMUX, bit 0 of the XMISC register. By default the multiplexer selects Port5, so there is no impact on the software as compared to an ST10F269Zx implementation. Note that XMISCEN, bit 10 of the XPERCON register, must be set to have access to the XMISC register.
XMISC (EB46h) XREG Reset value: --00h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VREG
CAN
CAN
Reserved
- R/W R/W R/W R/W
Table 8. XMISC register description
Bit Function
ADC Multiplexer
ADCMUX
0: Default configuration, analog inputs on port P5.y can be converted 1: Analog inputs on port P1.z can be converted, only 8 channels can be managed
OFF
CK2
PA R
ADC MUX

1.5 Real time clock

The RTC module can be clocked by two different sources: the main oscillator (pins XTAL1 and XTAL2) or the 32 kHz oscillator (pins XTAL3 and XTAL4). The selection of the clocking can be made via an additional bit in the RTCCON register.

1.5.1 Hardware impact

Check the usage of pins XTAL3 and XTAL4 (pins 143 and 144, respectively).

1.5.2 Software impact

The address range of the RTC registers has been modified from 00’EC00h - 00’ECFFh on the ST10F269Zx, to 00’ED00h - 00’EDFFh on the ST10F272Z2. This relocation has no impact if the software uses register names defined by the toolchain and if the CPU selection is changed to ST10F272Z2. If the software was directly using the address of the RTC register, it must be modified according to the new mapping.
ST10F269Zx: RTCCON (F1C4h / E2h) ESFR Reset value: --00h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved
ST10F272Z2: RTCCON (F1C4h / E2h) ESFR Reset value: 0000h
15 14 13 12 11 10 9 8 7654 3 2 1 0
RTC OFF
- R/W - R/W R/W R/W R/W
Reserved
RTC AEN
RTC
AIR
RTC SEN
RTC
SIR
10/33
Loading...
+ 23 hidden pages