ST AN2549 Application note

AN2549

Application note

Porting an application from the ST10F269Zx to the ST10F272Z2

Introduction

The ST10F272Z2 is a new member of the STMicroelectronics ST10 family of 16-bit singlechip CMOS microcontrollers. It is functionally upward compatible with the ST10F269Zx.

The goal of this document is to highlight the differences between ST10F269Zx and ST10F272Z2 devices. It is intended for hardware or software designers who are adapting an existing application based on the ST10F269Zx to the ST10F272Z2.

This document presents the ST10F272Z2’s modified functionalities and the new ones, and goes on to describe the modified and the new registers. For each part, the differences with the ST10F269Zx that may have an impact when replacing the ST10F269Zx by the ST10F272Z2 are stressed and some advice is given on the way they can be handled.

July 2007

Rev 1

1/33

www.st.com

AN2549

Contents

 

 

Contents

1

Modified features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 3

 

1.1

Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

 

1.2

XRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

 

1.3

Flash EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

 

1.4

A/D converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

 

1.5

Real time clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10

 

1.6

CAN modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

 

1.7

Port input control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

 

1.8

Ports output control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

 

1.9

PLL and main on-chip oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

2

New features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

 

2.1

Additional XPeripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

 

2.2

Programmable divider on CLKOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

 

2.3

New multiplexer for X-Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

 

2.4

Additional ports input control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

3

Modified registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

 

3.1

XPERCON register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

4

New registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

 

4.1

XADRS3 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

 

4.2

XPEREMU register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25

 

4.3

Emulation-dedicated registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

 

4.4

XMISC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

5

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

 

5.1

DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

 

5.2

AC characteristics at 40 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

6

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

32

2/33

AN2549

Modified features

 

 

1 Modified features

1.1Pinout

1.1.1Pinout modification summary

Table 1 summarizes the modifications made to the pinout.

Table 1.

Pinout modifications

 

 

 

Pin

 

ST10F269Zx

 

 

 

ST10F272Z2

 

 

 

 

 

 

number

Name

Function

 

Name

Function

 

 

 

 

 

 

 

 

 

 

 

Internal voltage regulator decoupling.

 

 

 

 

17

DC2

Connect to nearest VSS via a 330nF

 

VDD

5V power supply pin

 

 

capacitor.

 

 

 

 

 

 

 

 

 

 

 

 

 

Internal voltage regulator decoupling.

 

 

 

Internal voltage regulator decoupling.

56

DC1

Connect to nearest VSS via a 330nF

 

 

V18

Connect to nearest VSS via a

 

 

capacitor.

 

 

 

10 - 100nF capacitor.

 

 

 

 

 

 

 

 

 

Selects code execution out of internal

 

 

 

Selects code execution out of internal

 

 

 

 

 

Flash memory or external memory

 

 

 

 

 

 

99

EA

Flash memory or external memory

 

EA-VSTBY

 

according to level during reset. Power

 

 

according to level during reset.

 

 

 

supply input for the standby mode.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input to the 32 kHz oscillator amplifier

 

 

 

 

 

 

circuit. When not used, must be tied to

143

VSS

Ground pin

 

XTAL3

ground to avoid consumption.

 

 

 

 

 

 

Additionally, bit OFF32 in RTCCON

 

 

 

 

 

 

register must be set.

 

 

 

 

 

 

 

 

 

 

 

 

 

Output of the 32 kHz oscillator

144

VDD

5V power supply pin

 

XTAL4

amplifier circuit. When not used, must

 

be left open to avoid spurious

 

 

 

 

 

 

consumption.

 

 

 

 

 

 

 

1.1.2Pin 17

On the ST10F269Zx, a decoupling capacitor of 330nF minimum has to be connected between the pin 17 (named DC2) and the nearest VSS pin.

This is no longer the case for the ST10F272Z2 device where pin 17 is a VDD pin.

Hardware impact

PCB must be adapted.

Software impact

None.

3/33

ST AN2549 Application note

AN2549

Modified features

 

 

1.1.3Pin 56

On the ST10F269Zx, a decoupling capacitor of 330nF minimum has to be connected between the pin 56 (named DC1) and the nearest VSS pin.

On the ST10F272Z2, pin 56 is named V18 and a capacitor of value between 10nF minimum and 100nF maximum must be connected between it and the nearest VSS pin.

Hardware impact

Change on the capacitor value. As the value is much lower, the footprint of the capacitor might be smaller and then a modification of the PCB is needed.

Software impact

None.

1.1.4Pin 99

On the ST10F269Zx, pin 99 is EA and used upon reset to select the start from the internal Flash memory or the external memory.

On the ST10F272Z2, pin 99 has the additional function of providing the 5V power supply to the device in standby mode (new power-saving mode), it is called EA-VSTBY.

Hardware impact

The modification depends on the previous use of the ST10F269Zx and on whether the Standby mode is used or not.

For an application where the Standby mode is not used, no change to the PCB is required. If

the new application uses the Standby mode, the EA-VSTBY pin must be separated from the common 5V and have a specific supply path.

Software impact

None.

1.1.5Pins 143 and 144

These pins are VSS and VDD, respectively, in the ST10F269Zx. On the ST10F272Z2 they are used as XTAL3 and XTAL4 for connection to an optional 32 kHz crystal to clock the Real Time Clock during power-down.

Hardware impact

PCB must be redesigned.

If the optional 32 kHz is not used:

Pin 143 (XTAL3) must be linked to ground like on the ST10F269Zx

Pin 144 (XTAL4) must be left open. It can also be connected to ground via a capacitor to reduce the potential RF noise that might be propagated inside the device if the pin is left floating.

4/33

AN2549

Modified features

 

 

Software impact

In case the optional 32 kHz is not used, the OFF32 bit of the RTCCON register must be set. Prior to setting the OFF32 bit in the RTCCON register, the RTC must be enabled by setting RTCEN, bit 4 of XPERCON, and XPEN, bit 2 of SYSCON.

1.2XRAM

The ST10F269Zx has 10 Kbytes of extension RAM whereas the ST10F272Z2 has 18 Kbytes.

The XRAM of the ST10F269Zx is divided into two ranges being XRAM1 of 2 Kbytes and XRAM2 of 8 Kbytes:

The XRAM1 address range is 00’E000h - 00’E7FFh if enabled.

The XRAM2 address range is 00’C000h - 00’DFFFh if enabled.

The XRAM of the ST10F272Z2 is divided into two ranges being XRAM1 of 2 Kbytes (compatible with the ST10F269Zx) and XRAM2 of 16 Kbytes with a user reprogrammable address range:

The XRAM1 address range is 00’E000h - 00’E7FFh if enabled (XPEN and XRAM1EN, bit 2 of SYSCON register and bit 2 of XPERCON register, respectively, must be set).

The XRAM2 address range is 09’0000h - 09’3FFFh, by default (mirrored every

16 Kbytes in the range 09’0000h -0F’FFFFh), if enabled (XPEN and XRAM2EN, bit 2 of SYSCON register and bit 3 of XPERCON register, respectively, must be set).

Hardware impact

None.

Software impact

There is no change in the enabling of the XRAM blocks: XPERCON register bits, XRAM1EN and XRAM2EN, and SYSCON register bit, XPEN, are used to enable them.

The memory mapping of the application is impacted by the difference in XRAM size and by the location of XRAM2. A new register has been created in order to allow the user to remap the XRAM2 (please refer to Section 4.1: XADRS3 register on page 23 for details).

1.3Flash EEPROM

Table 2.

Flash memory key characteristics

 

 

Characteristic

ST10F269Zx

ST10F272Z2

 

 

 

Flash size

256 Kbytes

256 Kbytes

 

 

 

Flash organization

7 blocks

8 blocks

 

 

 

Programming voltage

5 volts

5 volts

 

 

 

Programming method

Write/Erase Controller

Write/Erase Controller

 

 

 

Program / Erase cycles

100000 cycles

100000 cycles

 

 

 

 

5/33

AN2549

 

 

 

Modified features

 

 

 

 

 

 

 

Table 3.

Flash memory mapping

 

 

 

 

 

 

 

 

 

Segment

ST10F269Zx Flash mapping

ST10F272 Flash mapping

 

 

 

 

 

 

 

8

08’0000-08’FFFF

External memory

08’0000-08’FFFF

Flash registers

 

 

 

 

 

 

 

7..5

05’0000-07’FFFF

External memory

05’0000-07’FFFF

Reserved

 

 

 

 

 

 

 

4

04’0000-04’FFFF

Block6: 64 Kbytes

04’0000-04’FFFF

Block7: 64 Kbytes

 

 

 

 

 

 

 

3

03’0000-03’FFFF

Block5: 64 Kbytes

03’0000-03’FFFF

Block6: 64 Kbytes

 

 

 

 

 

 

 

2

02’0000-02’FFFF

Block4: 64 Kbytes

02’0000-02’FFFF

Block5: 64 Kbytes

 

 

 

 

 

 

 

 

01’8000-01’FFFF

Block3: 32 Kbytes

01’8000-01’FFFF

Block4: 32 Kbytes

 

1

 

 

 

 

 

01’0000-01’7FFF

External memory or

01’0000-01’7FFF

External memory or

 

 

 

 

 

remap of Blocks 0-2

 

remap of Blocks 0-3

 

 

 

External memory

 

External memory

 

 

00’8000 - 00’FFFF

Internal RAM

00’8000 - 00’FFFF

Internal RAM

 

 

 

and Registers

 

and Registers

 

 

 

 

 

 

 

0

00’6000 - 00’7FFF

Block 2: 8 Kbytes

00’6000 - 00’7FFF

Block3: 8 Kbytes

 

 

 

 

 

 

 

00’4000 - 00’5FFF

Block 1: 8 Kbytes

00’4000 - 00’5FFF

Block2: 8 Kbytes

 

 

 

 

 

 

 

 

00’0000 - 00’3FFF

Block 0: 16 Kbytes

00’2000 - 00’3FFF

Block1: 8 Kbytes

 

 

 

 

 

 

00’0000 - 00’1FFF

Block0: 8 Kbytes

 

 

 

 

 

 

 

 

 

 

1.3.1Hardware impact

None.

1.3.2Software impact

As the first 32 Kbytes of Flash memory are now divided into four sectors of 8 Kbytes each in the ST10F272Z2 whereas the ST10F269Zx had only three sectors, the mapping of the application is impacted.

Moreover, the Flash memory Write/Erase controller is different and therefore the programming routines must be updated.

When the bit ROMEN of the SYSCON register is set, that is, when the internal Flash memory is enabled, accesses to the address range 05’0000h - 07’FFFFh are not redirected to external memory. The linker-locator configuration of the toolchain should be checked in order to prevent any use of this memory range.

6/33

AN2549

Modified features

 

 

1.4A/D converter

In the ST10F272Z2, the analog/digital converter has been redesigned (compared to the A/D converter in the ST10F269Zx). The ST10F272Z2 still provides an analog/digital converter with 10-bit resolution and an on-chip sample and hold circuit.

1.4.1Hardware / Software impact: conversion timing control

The A/D converter in the ST10F272Z2 is not fully compatible with that of the ST10F269Zx (timing and programming model).

In the ST10F269Zx, the sample time (to charge the capacitors) and the conversion time are programmable and can be adjusted to the external circuitry. The total conversion time is compatible with the formula used for ST10F269Zx, whereas the meanings of the ADCTC and ADSTC bit fields are no longer compatible.

Table 4.

ST10F272Z2 conversion timing table

 

 

ADCTC

ADSTC

Sample

Comparison

Extra

Total conversion

 

 

 

 

 

 

00

00

TCL * 120

TCL * 240

TCL * 28

TCL * 388

 

 

 

 

 

 

00

01

TCL * 140

TCL * 280

TCL * 16

TCL * 436

 

 

 

 

 

 

00

10

TCL * 200

TCL * 280

TCL * 52

TCL * 532

 

 

 

 

 

 

00

11

TCL * 400

TCL * 280

TCL * 44

TCL * 724

 

 

 

 

 

 

11

00

TCL * 240

TCL * 120

TCL * 52

TCL * 772

 

 

 

 

 

 

11

01

TCL * 280

TCL * 560

TCL * 28

TCL * 868

 

 

 

 

 

 

11

10

TCL * 400

TCL * 560

TCL * 100

TCL * 1060

 

 

 

 

 

 

11

11

TCL * 800

TCL * 560

TCL * 52

TCL * 1444

 

 

 

 

 

 

10

00

TCL * 480

TCL * 960

TCL * 100

TCL * 1540

 

 

 

 

 

 

10

01

TCL * 560

TCL * 1120

TCL * 52

TCL * 1732

 

 

 

 

 

 

10

10

TCL * 800

TCL * 1120

TCL * 196

TCL * 2116

 

 

 

 

 

 

10

11

TCL * 1600

TCL * 1120

TCL * 164

TCL * 2884

 

 

 

 

 

 

The user should take care of the Sample time parameter: This is the time during which the capacitances of the converter are charged via the respective analog input pins. Table 5 shows the differences in sample time.

7/33

AN2549

 

 

 

Modified features

 

 

 

 

 

 

 

Table 5.

ST10F272Z2 vs ST10F269Zx sample time comparison table

 

 

 

 

 

 

 

ADCTC

ADSTC

ST10F269Zx

ST10F272Z2

Ratio

 

Sample time

Sample time

F272Z2_time / F269_time

 

 

 

 

 

 

 

 

 

 

00

00

TCL * 48

TCL * 120

2.5

 

 

 

 

 

 

 

00

01

TCL * 96

TCL * 140

1.46

 

 

 

 

 

 

 

00

10

TCL * 192

TCL * 200

1.04

 

 

 

 

 

 

 

00

11

TCL * 384

TCL * 400

1.04

 

 

 

 

 

 

 

11

00

TCL * 96

TCL * 240

2.5

 

 

 

 

 

 

 

11

01

TCL * 192

TCL * 280

1.46

 

 

 

 

 

 

 

11

10

TCL * 384

TCL * 400

1.04

 

 

 

 

 

 

 

11

11

TCL * 768

TCL * 800

1.04

 

 

 

 

 

 

 

10

00

TCL * 192

TCL * 480

2.08

 

 

 

 

 

 

 

10

01

TCL * 384

TCL * 560

1.46

 

 

 

 

 

 

 

10

10

TCL * 768

TCL * 800

1.04

 

 

 

 

 

 

 

10

11

TCL * 1536

TCL * 1600

1.04

 

 

 

 

 

 

In the default configuration the sample time of the ST10F272Z2 is 2.5 times longer compared to that of the ST10F269Zx. This has an impact on the frequency of the input signal that can be applied to the ST10F272Z2.

1.4.2Hardware impact: electrical characteristics

Table 6 lists the differences in the DC characteristics of the two devices.

Table 6.

ADC differences

 

 

 

 

 

Symbol

Parameter

Limit values for ST10F269Zx

Limit values for ST10F272Z2

Unit

 

 

 

 

Min

Max

Min

Max

 

 

 

 

 

 

 

 

 

 

VAREF

Analog reference

4.0

VDD + 0.1

4.5

VDD

V

voltage

VAIN

Analog input voltage

VAGND

VAREF

VAGND

VAREF

V

 

ADC input capacitance

 

 

 

CP1 + CP2 + CS

 

CAIN

(Port 5)

 

 

 

 

pF

Not sampling

-

10

-

7

 

Sampling

-

15

-

10.5

 

 

 

 

 

 

 

 

tS

Sample time

48TCL

1536TCL

1µs

1600TCL

 

120TCL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tC

Conversion time

388TCL

2884TCL

388TCL

2884TCL

 

TUE

Total Unadjusted Error

-2.0

+2.0

-2.0

+2.0

LSB

(Port5)

 

 

 

 

 

 

 

 

 

 

 

 

 

RASRC

Internal resistance of

 

tS[ns] / 150 - 0.25

 

 

kΩ

analog source

 

 

 

8/33

AN2549

 

 

 

 

Modified features

 

 

 

 

 

 

 

Table 6.

ADC differences (continued)

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

Limit values for ST10F269Zx

Limit values for ST10F272Z2

Unit

 

 

 

 

Min

Max

Min

Max

 

 

 

 

 

 

 

 

 

 

 

Reference supply

 

 

 

 

 

IAREF

current

 

 

 

 

 

Running mode

-

500

-

5000

µA

 

Power-down mode

-

1

-

1

µA

 

 

 

 

 

 

 

DNL

Differential nonlinearity

-0.5

+0.5

-1

+1

LSB

 

 

 

 

 

 

 

INL

Integral nonlinearity

-1.5

+1.5

-1.5

+1.5

LSB

 

 

 

 

 

 

 

OFS

Offset error

-1.0

+1.0

-1.5

+1.5

LSB

 

 

 

 

 

 

 

Note:

The VAREF pin is also used as a supply pin for the ADC module. As there is a higher current

sink on this pin on the ST10F272Z2 compared to the ST10F269Zx, it is recommended not to connect a resistor (for example, because of an RC filter), to prevent creating an offset in the reference.

1.4.3Software impact

Self-calibration and ADC initialization routine

An automatic self-calibration adjusts the ADC module to process parameter variations at each reset event. After reset, the busy flag (read-only) ADBSY is set because the selfcalibration is ongoing. The duration of self-calibration depends on the CPU clock: It may take up to 40.629 ± 1 clock pulses. The user must poll this bit to know when self-calibration is complete in order to initialize the ADC module.

This self-calibration is seen by the ST10F272Z2 as a conversion and thus bit ADCIR is set. The software should perform a dummy read of the ADDAT register and clear the ADCIR and ADCEIR flags before configuring the ADC module and starting the first conversion.

New bit ADOFF, bit 6 of ADCON register

ADCON (FFA0h / A0h)

 

 

 

 

 

SFR

 

 

 

 

Reset value: 0000h

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADCTC

ADSTC

AD

AD

AD

AD

AD

AD

 

ADM

 

 

ADCH

 

CRQ

CIN

WR

BSY

ST

OFF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R/W

R/W

 

R/W

R/W

R/W

RO

R/W

R/W

 

R/W

 

 

R/W

 

Table 7.

ADCON register description

 

Bit

Function

Comment

 

 

 

 

ADC Disable

New bit valid only for the

ADOFF

0: Analog circuitry of A/D converter is on

ST10F272Z2.

 

1: Analog circuitry of A/D converter is turned off

Reserved on ST10F269Zx.

 

 

 

The bit 6 of the ADCON register, reserved in previous ST10 devices, is now used to enable and disable the ADC. By default this bit is cleared and the ST10F272Z2 is compatible with the ST10F269Zx. Therefore, there is no impact on the software, provided that this bit is not written to.

9/33

AN2549

Modified features

 

 

Additional channels on Port1

A new multiplexer selects one out of up to 16 + 8 analog input channels (alternate functions of Port 5 and Port1). The selection of Port1 or Port5 as the input of the ADC is made via bit ADCMUX, bit 0 of the XMISC register. By default the multiplexer selects Port5, so there is no impact on the software as compared to an ST10F269Zx implementation. Note that XMISCEN, bit 10 of the XPERCON register, must be set to have access to the XMISC register.

XMISC (EB46h)

 

 

 

 

 

 

XREG

 

 

 

 

Reset value: --00h

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reserved

 

 

 

 

 

VREG

CAN

CAN

ADC

 

 

 

 

 

 

 

 

 

 

OFF

CK2

PAR

MUX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-

 

 

 

 

 

R/W

R/W

R/W

R/W

Table 8.

XMISC register description

Bit

 

Function

 

 

 

 

 

ADC Multiplexer

ADCMUX

0: Default configuration, analog inputs on port P5.y can be converted

1: Analog inputs on port P1.z can be converted, only 8 channels can be

 

 

 

 

managed

 

 

 

1.5Real time clock

The RTC module can be clocked by two different sources: the main oscillator (pins XTAL1 and XTAL2) or the 32 kHz oscillator (pins XTAL3 and XTAL4). The selection of the clocking can be made via an additional bit in the RTCCON register.

1.5.1Hardware impact

Check the usage of pins XTAL3 and XTAL4 (pins 143 and 144, respectively).

1.5.2Software impact

The address range of the RTC registers has been modified from 00’EC00h - 00’ECFFh on the ST10F269Zx, to 00’ED00h - 00’EDFFh on the ST10F272Z2. This relocation has no impact if the software uses register names defined by the toolchain and if the CPU selection is changed to ST10F272Z2. If the software was directly using the address of the RTC register, it must be modified according to the new mapping.

ST10F269Zx: RTCCON (F1C4h / E2h)

 

 

 

ESFR

 

 

 

 

Reset value: --00h

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reserved

 

 

 

RTC

 

Reserved

 

RTC

RTC

RTC

RTC

 

 

 

 

 

 

OFF

 

 

AEN

AIR

SEN

SIR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-

 

 

 

R/W

 

-

 

R/W

R/W

R/W

R/W

ST10F272Z2: RTCCON (F1C4h / E2h)

 

 

 

ESFR

 

 

 

 

Reset value: 0000h

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10/33

Loading...
+ 23 hidden pages