ST AN2528 APPLICATION NOTE

ST AN2528 APPLICATION NOTE

AN2528

Application note

Very wide input voltage range 6 W SMPS for metering

Introduction

This document presents the design of a universal input power supply for metering applications. The design is mainly based on the following ST parts: an L6565 PWM driver and STC04IE170HP as the main switch. It is linked with the release of the STEVALIP001Vxx demo board (see Figure 1 below). The design is a complete solution for a 5 W single output SMPS, which is widely used as a power supply in metering applications. However the design method can be applied to an SMPS suitable for other applications working on a three-phase mains and it can easily be upgraded for higher output power.

The ESBT base driving circuit as well as guidelines for the optimization of the power dissipation are given.

The influence of parasitic capacitances of the transformer on the ESBT is also explained in detail.

Finally, the most important waveforms and thermal results are given in Section 5 and Section 6. They demonstrate the benefits of using a QR flyback with ESBT.

Refer to AN1889 and AN2254 for the overall design of an auxiliary power supply using ESBT in flyback QR with L6565, while refer to AN2454 for the small signal power switch model with all parasitic components.

Figure 1. STEVAL-ISA030V1

July 2007

Rev 1

1/21

www.st.com

Contents

AN2528

 

 

Contents

1

Design specifications and schematic diagram . . . . . . . . . . . . . . . . . .

. 4

2

Flyback stage design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 6

3

Parasitic capacitances and related issues . . . . . . . . . . . . . . . . . . . . . . .

8

4

Base drive circuit design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

5

Experimental results: waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

6

Experimental results: efficiency and further considerations . . . . . . .

15

7

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

8

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

2/21

AN2528

List of figures

 

 

List of figures

Figure 1. STEVAL-ISA030V1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 2. Complete schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Figure 3. The small signal equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 4. ESBT base driving network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 5. DC current gain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 6. Dynamic collector-source saturation voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 7. 110 Vac input voltage overall1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 8. 110 Vac input voltage overall2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 9. 110 Vac input voltagestorage highlight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 10. 110 Vac input voltage turn-off highlight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 11. 380 Vac input voltage overall1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 12. 380 Vac input voltage overall2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 13. 380 Vac input voltage storage time highlight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 14. 380 Vac input voltage - turn-on highlight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 15. 600 Vac input voltage overall1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 16. 600 Vac input voltage overall2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 17. 600 Vac input voltage turn-off highlight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 18. 600 Vac input voltage turn-on highlight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 19. Vcomp vs TBlank (minimum OFF-time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 20. 110 Vac input voltage, max load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 21. 380 Vac input, max load: frequency reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 22. 600 Vac input, max load: further frequency reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 23. 600 Vac input, max load: increased OFFtime highlight . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 24. PCB picture top view (components and copper) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 25. PCB picture top view components and bottom layer copper . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 26. PCB picture top view components and bottom layer copper . . . . . . . . . . . . . . . . . . . . . . . 20

3/21

Design specifications and schematic diagram

AN2528

 

 

1 Design specifications and schematic diagram

The table below lists the converter specification data and the main parameters fixed for the demo board.

Table 1.

Converter specification and preliminary choices

 

Symbol

Description

Values

 

 

 

 

Vinmin

 

Rectified minimum input voltage

150

Vin

 

Rectified maximum input voltage

850

Vout

 

Output voltage

14 V/430 mA

Pout

 

Maximum output power

6 W

η

 

Converter efficiency @ max load

> 80%

 

 

 

 

F

 

Minimum switching frequency

30 kHz

 

 

 

 

Vfl

 

Reflected flyback voltage

250 V

Vspike

 

Max over voltage limited by clamping circuit

150 V

A schematic diagram of the SMPS is given in Figure 2. The most relevant components are:

1.HV ESBT main switch and simple driving circuit

2.L6565 QR PWM driver to get the best efficiency

3.Special transformer construction with very low parasitic capacitance

4/21

 

F1

L1

D1

STTH112U

1

2

A

C

TR5FUSE M600X

C

D2 STTH112U

 

J1

A

 

 

 

 

3

 

D4 STTH112U

R1

2

 

A

C

100K /1206

1

 

 

Phoenix 3 pin

 

D5

 

 

 

 

 

C

A

33uF/450V

+

 

 

 

 

STTH112U

C2

R2

 

 

 

 

100K/ 1206

 

 

 

 

 

 

 

D6

 

 

 

 

 

 

 

 

 

 

 

 

LL4148

R4

R5

 

33uF/450V+

R3

C

A

 

 

 

 

 

1M

1M

 

C3

100K/ 1206

 

 

 

 

 

 

C4

 

 

R7

 

 

 

 

 

 

100K/ 1206

+

 

 

 

33uF/450V

R9

R10

D7

 

 

C A

 

 

100K/ 1206

100K/1206

LL4148

 

 

U1

 

 

R24

 

 

 

 

 

 

 

L6565

 

 

2.2K/ 1206

 

 

 

 

 

 

1

 

 

8

R13

 

INV

Vcc

 

 

2

 

 

7

22/ 1206

 

COMP

GD

 

 

3

Vff

GND

6

 

R18

4

CS

ZCD

5

 

 

 

 

22K

 

 

 

 

 

 

 

 

 

 

 

R22

330

 

 

C8

C9

 

+ C10

+ C11

 

3.3nF

4.7nF

47uF/25V

22uF/25V

5/21

 

 

T1

 

 

 

 

 

 

 

CSM 2010-104

 

 

 

STPS3L60U

 

 

 

 

 

 

 

1

1

7

7

A

D3

C

 

 

 

 

 

 

 

 

 

 

 

35T

 

+ C1

 

48T

 

6 6

 

 

330uF/25V

 

2

2

 

 

 

 

 

R6

3

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

1/ 1/8W

27T

 

 

 

9T

 

 

 

4

 

 

 

 

 

 

4

 

 

 

 

 

R8

 

 

 

 

 

 

 

47k/ 1/8W

 

 

 

 

 

 

 

 

 

C5

 

 

 

 

 

 

 

.0022uF

 

 

 

 

 

 

 

Y1 cap

 

 

 

 

 

R12

1

 

 

ISO1

 

R11

 

 

 

 

 

Q1

 

 

H11A817

 

1.5K/ 1/8W

10/ 1206

 

 

 

 

 

 

4

 

 

 

 

 

 

 

STC04IE170HP

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

4

1

R15

C6

3

 

 

 

 

 

1.2K/ 1/8W

10nF

3

2

 

 

R17

C7 10nF

 

 

 

 

 

 

 

 

 

C

 

 

4.7K/ 1/8W

 

 

 

 

 

 

 

 

 

 

 

R

 

 

A

 

U2

 

 

 

 

TL431_ARC

 

 

 

 

 

 

 

 

 

 

 

 

 

R23 4.7/ 1/4W

14V @ 0.43A

J2

1

2

Phoenix 2 pin

R14

11K/ 1/8W

R21 2.4K/ 1/8W

 

AN2528

.2 Figure

 

diagram schematic Complete

Design

 

diagram schematic and specifications

Flyback stage design

AN2528

 

 

2 Flyback stage design

Well known to all SMPS designers, the voltage stress on the device (power switch) is given by:

Equation 1

Voff = Vinmax Vfl Vspike

where Vfl = flyback voltage = (Vout + VF, diode) * Np/Ns and Vspike is the over-voltage on the collector due caused by leakage inductance. This over-voltage is not limited by any

clamping network in order to minimize as much as possible the solution cost using also the very large margin available which has been fixed to 200 V. Np is the number of turns on the primary side while Ns is the number of turns on the main output secondary winding.

Now, taking into account a 300 V margin, the maximum flyback voltage that can be chosen is:

Equation 2

Vfl = BV Vinmax Vspike Vm argin= 1700 850 200 300= 350V

After the calculation of the flyback voltage, we can proceed with the next step in the converter design. The turns ratio between primary and secondary side is calculated with the following formula:

Equation 3

Np

=

Vfl

=

350

=

23.3

------Ns

V----------------------------------------out + VF, diode

14---------------

+ 1

 

 

 

 

As a first approximation, since the turn-on of the device occurs immediately after the energy stored on the primary side, inductance is completely transferred to the secondary side:

Equation 4

Vdcmin Tonmax = Vfl Treset

and

Equation 5

Tonmax Treset = TS

Where Tonmax is the maximum on time, Treset is the time needed to demagnetize the transformer inductance and TS is the switching time. Combining the two previous formulas

Tonmax results in:

Equation 6

Tonmax

=

Vfl

TS

14

s

V------------------------------dcmin + Vfl

 

 

 

 

The next step is to calculate the peak current. The output power is set to 6 W and the desired transformer efficiency must be set by the designer (at least 80% in this case). Excluding the energy losses on the input diode bridge, on the power switch and on the secondary side rectifier, the following approximate formula can be used:

6/21

AN2528

 

 

 

 

 

 

 

 

 

 

 

 

Flyback stage design

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equation 7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

LP I

2

1

V

2

2

 

 

= 1.25 P

 

 

 

--

P

--

dcmin T

onmax

P

IN

OUT

= -----------------------------2

Ts

-=

----------------------------------------------------------2

 

LP TS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hence

 

 

 

 

 

 

 

 

 

 

 

 

 

Equation 8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LP =

V2dcmin T2onmax

=

14.7mH

 

 

 

------------------------------------------------2.5

TS POUT

 

 

 

 

 

 

 

 

 

 

 

From here we can now calculate the peak current on primary.

Equation 9

Vdcmin

Tonmax

143mA

IP = ------------------------------------------

LP -

 

 

To keep the transformer size very small and to get a very effective cost solution, we prefer to slightly increase the minimum working frequency in order to decrease the primary inductance.

In order to have a 15 mH inductance and to keep an EF20 core, a lot of turns are needed on the primary side. This can generate either not enough space on the EF20 core to accomodate such a high number of windings or the remaining space is not large enough to ensure good design. These considerations might induce designing a smaller primary inductance value accepting a higher switching frequency.

There is no contraindication in using a smaller primary inductance which leads to a higher minimum switching frequency and theoretically also to a higher maximum frequency. However the maximum switching frequency is then limited not only by the inductance value, but also by the L6565 PWM driver. When using an L6565, the internal blanking time limits the minimum off-time and, in turn, the maximum switching frequency. To better understand this phenomenon, please refer to the L6565 datasheet and to the next paragraphs.

After bench tests and fine tuning we used a transformer with the following specs:

Equation 10

LP = 7.5mH

Equation 11

Np

Np

------= 23.8

------------= 18.87

Ns

Naux

The part number of the transformer is CSM 2010-104 from Cramer.

In the next Section 3, we see from bench verification that the real minimum working frequency is 50 kHz even if the inductance is 7.5 mH but with a peak current of about 250 mA.

7/21

Loading...
+ 14 hidden pages