ST AN2521 Application note

AN2521

Application note

19 V - 75 W laptop adapter with tracking boost PFC pre-regulator, using the L6563 and L6668

Introduction

This application note describes the characteristics and features of a 75 W wide range input mains and power-factor-corrected ac-dc adapter evaluation board. Its electrical specification is tailored to a typical high-end portable computer power adapter. The distinctive attributes of this design are the very low standby input consumption (< 0.3 W at 265 V), the excellent global efficiency (> 85%) for a two stage architecture and the low cost.

Figure 1. L6668 and L6563-75W adapter evaluation board (EVAL6668-75W)

October 2007

Rev 1

1/33

www.st.com

Contents

AN2521

 

 

Contents

1

Main characteristics and circuit description . . . . . . . . . . . . . . . . . . . .

. 4

2

Test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8

 

2.1

Efficiency measurements at full load, tracking boost option (TBO) . . . . . .

8

 

2.2

Harmonic content measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

3

Functional check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

 

3.1

Normal operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

 

3.2

Standby and no-load operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

 

3.3

Over current and short circuit protection . . . . . . . . . . . . . . . . . . . . . . . . .

16

 

3.4

Overvoltage and open loop protection . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

4

EVAL6668-75W: thermal map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

 

4.1

Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

 

4.2

Thermal map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

5

Conducted emission pre-compliance test . . . . . . . . . . . . . . . . . . . . . .

22

6

Bill of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

7

PFC coil specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

 

7.1

General description and characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .

28

 

7.2

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

 

7.3

Electrical schematic and winding characteristics . . . . . . . . . . . . . . . . . . .

28

 

7.4

Mechanical aspect and pin numbering . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

8

Transformer specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30

 

8.1

General description and characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .

30

 

8.2

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30

 

8.3

Electrical diagram and winding characteristics . . . . . . . . . . . . . . . . . . . . .

30

 

8.4

Mechanical aspect and pin numbering . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

9

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

32

2/33

AN2521

List of figures

 

 

List of figures

Figure 1. L6668 and L6563-75W adapter evaluation board (EVAL6668-75W) . . . . . . . . . . . . . . . . .

. 1

Figure 2.

Electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 7

Figure 3.

EVAL6668-75W global efficiency measurements at full load . . . . . . . . . . . . . . . . . . . . . . .

. 8

Figure 4.

L6563 tracking boost and voltage feed-forward blocks . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 9

Figure 5.

EVAL6668-75W PFC output voltage vs. ac input voltage . . . . . . . . . . . . . . . . . . . . . . . . .

10

Figure 6.

PFC efficiency with and without TBO function at full load . . . . . . . . . . . . . . . . . . . . . . . . .

10

Figure 7.

Flyback converter efficiency with and without TBO function at full load . . . . . . . . . . . . . . .

10

Figure 8.

Comparison between the global efficiency with and without TBO . . . . . . . . . . . . . . . . . . .

11

Figure 9.

EVAL6668-75W compliance to EN61000-3-2 standard @230 V, 50 Hz - full load . . . . . .

11

Figure 10.

EVAL6668-75W compliance to JEIDA-MITI standard @100 V, 60 Hz - full load . . . . . . . .

11

Figure 11.

EVAL6668-75W compliance to EN61000-3-2 standard @230 V, 50 Hz - half load . . . . .

12

Figure 12.

EVAL6668-75W compliance to JEIDAMITI standard @100 V, 60 Hz - half load . . . . . . .

12

Figure 13.

EVAL6668-75W input current waveform @100 V, 60 Hz - full load . . . . . . . . . . . . . . . . . .

12

Figure 14.

EVAL6668-75W input current waveform @230 V, 50 Hz - full load . . . . . . . . . . . . . . . . . .

12

Figure 15.

EVAL6668-75W flyback stage waveforms @115 V, 60 Hz-full load. . . . . . . . . . . . . . . . . .

13

Figure 16.

EVAL6668-75W flyback stage waveforms @230 V, 50 Hz-full load. . . . . . . . . . . . . . . . . .

13

Figure 17.

Adapter circuit primary side waveforms 265 V, 50 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

Figure 18.

EVAL6668-75 W no-load operation waveforms @90 V, 60 Hz . . . . . . . . . . . . . . . . . . . . .

14

Figure 19.

EVAL6668-75 W no-load operation waveforms @265 V, 50 Hz . . . . . . . . . . . . . . . . . . . .

14

Figure 20.

EVAL6668-75 W transition full load-to-no load at 265 V, 50 Hz . . . . . . . . . . . . . . . . . . . . .

15

Figure 21.

EVAL6668-75 W transition no load-to-full load at 265 V, 50 Hz . . . . . . . . . . . . . . . . . . . . .

15

Figure 22.

EVAL6668-75 W short circuit at full load & 230 Vac-50 Hz . . . . . . . . . . . . . . . . . . . . . . . .

17

Figure 23.

EVAL6668-75 W short circuit removal at full load & 230 Vac-50 Hz . . . . . . . . . . . . . . . . .

17

Figure 24.

EVAL6668-75 W short circuit at no-load & 230 Vac-50 Hz . . . . . . . . . . . . . . . . . . . . . . . .

18

Figure 25.

EVAL6668-75 W short circuit removal at no-load & 230 Vac-50 Hz. . . . . . . . . . . . . . . . . .

18

Figure 26.

EVAL6668-75W Open loop at 115 Vac-60 Hz - full load . . . . . . . . . . . . . . . . . . . . . . . . . .

19

Figure 27.

Thermal map at 115 Vac-60 Hz - full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

Figure 28.

Thermal map at 230 Vac-50 Hz - full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

Figure 29.

CE peak measure at 100 Vac and full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

22

Figure 30.

CE peak measure at 230 Vac and full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

22

Figure 31.

Electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

Figure 32.

Mechanical aspect and pin numbering of PFC coil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

Figure 33.

Electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30

Figure 34.

Winding position on coil former. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

Figure 35.

Mechanical aspect and pin numbering of flyback transformer . . . . . . . . . . . . . . . . . . . . . .

32

3/33

Main characteristics and circuit description

AN2521

 

 

1 Main characteristics and circuit description

The main characteristics of the SMPS are listed here below:

Universal input mains range: 90 - 264 Vac, 45 −65 Hz

Output voltages: 19 V @ 4 A continuous operation

Mains harmonics: in accordance with EN61000-3-2 class-D

Standby mains consumption: less than 0.3 W @ 265 Vac

Overall efficiency: greater than 85%

EMI: in accordance with EN55022-class B

Safety: in accordance with EN60950

PCB single layer: single side, 70 µm, CEM-1, 78 x 174 mm, mixed PTH/SMT

The circuit is made up of two stages: a front-end PFC using the L6563 and a flyback converter based on the L6668. The electrical schematic is shown in Figure 2.

The flyback stage works as the master stage and therefore is dedicated to controlling circuit operation, including standby and protection functions. Additionally, it switches the PFC stage on and off the by means of a dedicated pin on the control IC, thus helping to achieve good efficiency even at light load. The input EMI filter is a classic Pi-filter, 1-cell for differential and common mode noise. An NTC in series with the PFC output capacitor limits the inrush current produced by the charging of the capacitor at plug-in.

The purpose of the PFC stage is to reduce the harmonic content of the input current to be within the limits imposed by European norm EN61000-3-2. Additionally, it provides a regulated dc bus used by the downstream converter.

The PFC controller is the L6563 (U1), working in transition mode. It integrates all functions needed to control the PFC as well as an interface to the master converter. Its power stage topology is a conventional boost converter, connected to the output of the rectifier bridge. It includes the coil L2, the diode D3, the capacitor C6 and the power switch Q2, a power MOSFET.

The secondary winding of L2 (pins 8-3) provides the L6563 with information about the core demagnetization of the PFC coil, needed by the controller for TM (transition mode) operation. The divider R7, R12 and R18 provides the L6563 with the instantaneous input voltage information that is used to modulate the boost current, and to derive additional information such as the average value of the ac line, which is used by the VFF (voltage feedforward) function. The divider R2, R6, R8, R9 is dedicated to sensing the output voltage and feeds the information to the error amplifier, while the divider R3, R5, R11, R19, directly connected to the output voltage, is dedicated to protecting the circuit in case of voltage loop failure. To maximize overall efficiency, the PFC makes use of the so-called "tracking boost option" (TBO). With this function implemented the dc output voltage of the PFC changes proportionally with the mains voltage. The L6563 achieves this functionality by adding a resistor (R30) connected to the dedicated TBO pin (#6).

The PFC is switched on and off by a switch (Q1) on the VCC pin of the L6563, which is activated by the PFC-STOP pin of the L6668. The PFC-STOP pin is intended to stop the PFC controller at light load by cutting its supply. This happens when the COMP pin on the L6668 controller goes below 2.2V.

The downstream converter, acting as the master stage, is managed by the L6668 IC (U2), a current mode controller. The 65 kHz nominal switching frequency has been chosen to

4/33

AN2521

Main characteristics and circuit description

 

 

achieve a compromise between the transformer size and the harmonics of the switching frequency, thereby optimizing the input filter size and the total solution cost. The power MOSFET is a standard, inexpensive 800 V component housed in a TO-220FP package, requiring a small heat sink. The transformer is the layer type, using the standard ferrite core EER35. The transformer is manufactured by TDK and designed in accordance with EN60950. The reflected voltage is ~130 V, providing sufficient room for the leakage inductance voltage spike while maintaining a margin for the reliability of the power MOSFET. The rectifier D8 and the Transil D4 clamp the peak of the leakage inductance voltage spike at turn-off of the power MOSFET.

The controller L6668 offers maximum flexibility by integrating all the functionality needed for high performance SMPS control with a minimum component count. A new feature embedded in the device is a high voltage current source used at start-up which draws current directly from the dc bus and charges capacitor C33. After the voltage on C33 has reached the L6668 turn-on threshold and the circuit starts to operate, the controller is powered by the transformer via the auxiliary winding and diode D11. After start-up, the HV current source is deactivated, saving power during normal operation and allowing very good circuit efficiency during standby.

The L6668 utilizes a Current Mode control system, so the current flowing through the primary winding is sensed by R52 and R53 and is then fed into pin #12 (ISEN). Resistor R41 connected between pin #12 (ISEN) and pin #15 (S_COMP) provides the correct slope compensation to the current signal, necessary for correct loop stability in CCM mode at duty cycles greater than 50%. The circuit connected to pin #7 (DIS) provides over-voltage protection in case of feedback network failure, while the thermistor R58 provides for a thermal protection of the power MOSFET (Q5). This pin is also connected to the PWM_LATCH pin of the L6563 which is dedicated to stopping activity of the flyback converter in case of PFC loop failure that could be damaging to the circuit. To definitively latch this state, the internal circuitry of the L6668 monitors the VCC and periodically reactivates the HV current source to supply the IC. After OVP detection and L6668 Disable intervention, circuit operation can be resumed only after disconnection of the mains plug. The switching frequency is programmed by the RC connected to pin #16 (RCT) and in case of reduced load operation the controller can decrease the operating frequency via pin #13 (STBY) and resistor R42, proportionate with the load consumption. The resistor divider R60 and R61 connected to pin #9 (SKIPADJ) allows setting of the initial L6668 threshold to Burst Mode functionality when the power supply is lightly loaded. Additional functions embedded in the L6668 are the programmable soft-start and a 5 V reference, available externally.

Circuit regulation is achieved by modulating the voltage on the COMP pin (#10), by means of the optocoupler U3. Also connected to the COMP pin is the Q6, Q8, R44, R62, C42 and D13 network, which is dedicated to driving ISEN over its hiccup mode threshold in case of overload or short condition. In this case the device will be shut down and its consumption will decrease almost to pre-start-up level. The device will resume operation as soon as the VCC voltage has dropped below the VCC restart level. Thus a reliable hiccup mode is invoked until the short is removed. A short on-time and long off-time of the hiccup mode are obtained allowing the average current flowing in the secondary side components to be kept at a safe level, avoiding consequent catastrophic failures due to their overheating.

Output regulation is done by means of two loops, a voltage and a current loop working alternately. A dedicated control IC, the TSM1014, has been used. It integrates two operational amplifiers and a precise voltage reference. The output signal of the error amplifiers drives optocoupler SFH617A-4 to transfer the information to the primary side and achieve the required insulation of the secondary side. The output rectifier D7 is a dual common-cathode Schottky diode. The output rectifier has been selected according to the

5/33

Main characteristics and circuit description

AN2521

 

 

calculated maximum reverse voltage, forward voltage drop and power dissipation. The snubber, made up of R14, R66 and C8, damps the oscillation produced by the diode D7. A small LC filter has been added on the output in order to filter the high frequency ripple.

6/33

ST AN2521 Application note

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AN2521

 

 

 

 

 

 

 

 

 

 

 

D1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure

 

F1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J1

FUSE 4A

 

 

L1

 

D2

 

 

 

L2

1N4005

R1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INPUT CONN.

 

 

 

HF2826-253Y1R2-T01

GBU4J

 

 

 

SRW25CQ-T03H102

NTC 10R-S236

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

1

 

 

C1

 

 

~

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2N2

 

 

 

 

 

 

 

D3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

8

 

3

 

STTH2L06

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

3

C3

 

 

 

 

 

 

C5

 

 

 

C6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

470NF-X2

 

C2

 

 

 

_

470N-400V

 

 

 

 

 

 

100uF-450V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2N2

 

 

~

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

90-264Vac

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C4

 

 

 

 

 

 

 

 

 

 

R2

2M2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Electrical

 

 

 

 

 

470NF-X2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1M0-1%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

68K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2M2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1M0-1%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2N2 - Y2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2M2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R8

R9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

diagram

 

 

 

 

75K-1%

75K-1%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C8

R14

 

 

 

 

 

 

R7

 

 

 

 

 

 

 

 

 

 

 

 

R10

 

 

 

 

 

 

 

 

 

 

 

1N0-200V

3R9

 

 

 

 

 

 

3M3

 

 

 

 

 

 

 

 

 

 

 

 

RES

 

 

 

 

 

 

 

 

 

C10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R13

D4

 

 

 

 

 

 

 

 

 

C9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RES

RES

1.5KE250A

 

 

 

R66

L3

 

 

 

 

100N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D5

 

 

 

 

 

 

 

 

3R9

TSL0706 - 1R5-4R3

 

 

 

R12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BZV55-B30

 

 

 

2-3

15-16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3M3

R15

 

 

 

U1

 

 

 

 

 

 

 

Q1

 

 

 

 

 

 

 

 

 

 

 

D7

 

ZL

 

 

 

J2

 

 

RES

 

 

 

L6563

 

 

C14

C11

 

 

 

BC857C

 

R16

 

 

 

 

 

 

 

 

 

STPS20H100CFP

 

 

 

 

1

 

 

 

 

 

 

 

 

 

220N

RES

 

 

 

 

 

10K

 

 

 

 

 

 

 

 

 

 

C12

C16

R20

C13

C17

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R19

 

 

 

 

 

 

 

 

 

 

20K

 

100N

2

 

 

 

 

 

1

 

14

 

 

 

 

 

 

 

 

 

 

36K

 

 

 

 

 

D8

 

 

 

1000uF25V-

1000uF25VZL-

 

100uFYXF25V-

 

 

 

 

 

INV

 

VCC

 

D6

R21

 

 

 

 

 

 

 

 

 

 

 

 

 

STTH108A

 

 

 

CON2-IN

 

 

C15

R17

 

 

 

 

 

 

 

 

 

D9

 

 

 

 

 

 

 

 

10-11

 

 

 

 

 

2

 

13

 

RES

RES

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1uF

62K

 

 

 

 

 

 

 

 

 

BZV55-C8V2

 

 

 

 

 

 

 

 

 

 

 

 

R22

 

 

19V@4A

 

 

 

 

 

 

COMP

GD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5-6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q2

 

 

 

 

 

 

 

 

 

 

 

 

 

R015-1W - MSR1

 

 

 

 

 

 

 

 

3

 

12

 

 

 

 

 

 

STP9NK50ZFP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MULT

GND

 

R23

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R18

C19

 

 

 

 

 

 

27R

 

 

R24

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

51K

2N2

 

 

4

 

11

 

 

 

 

100K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CS

 

ZCD

 

 

R25

 

 

 

 

R28

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

470R

 

 

 

 

2K2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VFF

 

RUN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C20

 

 

R29

R27

 

 

 

 

 

 

 

 

 

 

 

C24

 

 

 

 

 

 

 

 

C21

 

 

 

6

 

9

 

10N

 

 

RES

0R33

 

C22

 

 

 

 

 

 

 

 

 

2N2 - Y2

 

 

 

 

 

 

 

 

470N

 

 

TBO

PWM-STOP

 

 

 

 

 

 

 

 

2u2-25V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C23

R30

PFC-OK PWM-LATCH

 

 

 

 

 

 

 

 

 

R31

R32

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RES

22K

 

 

 

 

 

 

 

 

 

 

 

 

4K7

RES

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Main

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SRW32EC-T01H114

 

 

 

 

 

 

 

 

R26

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R72

 

 

 

 

 

 

 

 

 

 

 

 

 

120K

 

C25

 

C26

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0R0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

220PF

 

22N

 

 

Q3

 

 

D10

 

 

 

 

 

 

 

 

 

 

D11

R35

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

characteristics

 

 

 

 

 

 

 

 

RES

 

 

LL4148

 

 

 

 

 

 

 

 

 

 

BAV103

2R7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R34

 

R33

 

 

 

 

 

 

 

 

 

 

 

 

 

RES

R71

R73

C27

 

 

 

 

 

 

 

 

 

 

 

270K

 

10K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RES

62K

47uF-50V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RES

C28

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RES

 

 

 

R40

R67

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R36

RES

6K2-1%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D15

 

 

 

 

 

 

1K8

 

R39

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U2

 

 

R37

 

 

RES

 

 

R38

 

 

 

 

 

56K-1%

R69

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L6668

 

 

10K-1%

 

 

 

 

 

RES

 

 

 

 

 

 

1K0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C29

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RES

R68

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

16

 

 

 

 

 

 

 

 

 

U3

 

 

 

120K-1%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HV

 

RCT

C30

 

 

D12

R43

 

 

 

 

SFH617A-4

 

 

R45

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2N2-5%

 

 

LL4148

4R7

 

 

 

 

3 4

2 1

 

2K2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HVS

 

S_COMP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q5

 

 

 

 

 

 

 

 

R55

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

14

 

R42

 

 

 

STP10NK80ZFP

 

 

 

R48

R49

 

 

22R

 

 

 

 

 

 

 

 

 

 

 

 

 

GND

PFC_STOP

R41

8K2

 

 

 

 

 

 

 

 

4K7-1%

24K-1%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

13

10K

 

 

R46

R47

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

47R

100K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OUT

 

STBY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R50

 

 

 

 

 

5

 

12

 

 

 

 

 

 

 

 

 

 

 

 

C31

 

U5

 

 

and

 

 

 

 

 

 

 

1K0

C32

 

 

 

 

VCC

 

ISEN

 

 

 

 

 

 

 

 

 

 

 

 

RES

 

 

C36

 

 

 

 

 

 

 

 

100N

 

 

 

 

 

 

 

 

C34

 

R51

R52

R53

 

 

 

 

 

 

 

 

1

8

100N

 

 

 

 

 

 

 

 

 

 

 

C33

 

6

 

11

 

100PF

 

2K2

0R39

0R39

 

 

 

 

 

 

 

 

V_REF

VCC

 

 

 

 

 

 

 

 

 

 

 

 

22uF-50V

 

N.C.

 

SS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

10

C37

 

 

 

 

 

 

 

 

 

 

 

 

C44

CC-

CC_OUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DIS

 

COMP

82N

 

 

 

 

 

 

 

 

 

 

R54

C35

100N

 

 

 

circuit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R57

 

 

 

 

 

 

 

 

 

47K

270N

 

3

6

 

 

 

 

 

 

 

 

R56

 

 

 

 

 

8

 

9

 

100R

 

 

 

 

 

 

 

 

 

 

 

 

CC+

GND

 

 

 

 

 

 

 

 

4K7-1%

 

C38

 

 

 

VREF

SKIP_ADJ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

470PF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

5

 

 

 

 

 

 

 

 

 

 

 

 

R58

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CV-

CV_OUT

 

 

 

 

 

 

 

 

 

 

 

 

M57703

 

 

 

 

 

D13

 

 

 

 

 

 

 

 

 

 

 

 

TSM1014

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C39

LL4148

R62

Q8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4N7

 

3K3

BC847C

Q6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OTP PROT

 

 

 

R60

 

 

 

 

 

 

BC857C

 

 

 

 

 

 

 

 

 

R65

C43

 

 

 

 

 

 

 

 

 

 

 

 

56K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22K

2N2

 

 

 

 

 

 

 

 

 

 

R59

 

C40

 

 

 

 

 

 

 

 

 

 

 

 

 

U4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24K

 

100N

R61

C41

 

 

 

 

 

 

 

 

 

 

 

TS3431IZ-RES

 

 

 

 

description

 

 

 

 

 

 

 

 

 

 

 

 

 

 

33K

10N

 

 

C42

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10uF-50V

 

R44

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

47K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R64

D14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

43K-1%

LL4148

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7/33

 

 

 

 

 

 

 

 

 

 

 

 

 

JP7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RES

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test results

AN2521

 

 

2 Test results

2.1Efficiency measurements at full load, tracking boost option (TBO)

The following table and diagrams show the single converter and overall efficiency measured at different input voltages. These measurements are performed with nominal load (4 A).

Table 1.

Efficiency measurements at full load using the TBO function

 

Vinac

 

Efficiency

 

 

 

 

 

 

 

 

PFC

dc-dc

Global

 

 

 

 

 

 

90 [V]

93.63%

89.83%

84.11%

 

 

 

 

 

 

115 [V]

95.62%

89.07%

85.17% (1)

 

230 [V]

97.84%

89.81%

87.87% (1)

 

265 [V]

97.53%

89.06%

86.86%

 

 

 

 

 

1.Compliant to CEC, EU-COC, regulation. In Table 1 and Figure 3 the single converter efficiency measurement is shown. Thanks to the very good efficiency of any single block the overall efficiency is very high too, especially if we compare this data with similar converters using a double stage and a flyback topology as downstream converter.

Figure 3. EVAL6668-75W global efficiency measurements at full load

 

90%

 

 

 

EFFICIENCY

89%

WITH TBO

 

 

 

 

 

88%

 

 

 

87%

 

 

 

86%

 

 

 

85%

 

 

 

OVERALL

 

 

 

84%

 

 

 

83%

 

 

 

82%

 

 

 

 

81%

 

 

 

 

80%

 

 

 

 

90

115

230

265

Vin [Vrms]

Table 2.

ENERGY STAR compliance

 

 

 

 

 

 

ENERGY STAR efficiency

 

 

 

 

 

 

 

 

Vinac

1 A

2 A

3 A

4 A

 

Average

115 [V]

85.26%

86.32%

86.28%

85.17%

 

85.75%

 

 

 

 

 

 

 

230 [V]

83.4%

85.2%

86.74%

87.87%

 

85.8%

 

 

 

 

 

 

 

In Table 2 the ENERGY STAR efficiency measurements are shown. The average of the two mains voltage inputs in four different load conditions is compliant with the target requirement (better than 84%).

8/33

AN2521

Test results

 

 

To achieve optimal efficiency the PFC stage implements the tracking boost function. It consists of a PFC output voltage that follows the input voltage. Typically, in traditional PFC stages, the dc output voltage is regulated at a fixed value (typically 400 volts) but in some applications, such as this one using a flyback as the downstream converter, it could be advantageous to regulate the PFC output voltage with the tracking boost or "follower boost" approach. In this way the circuit with the TBO function provides improved efficiency and, thanks to the lower differential voltage across the boost inductor, the value of L2 can be reduced as compared to the same circuit without the TBO function. In the present case a 400 µH inductor has been used, while with a fixed output voltage PFC working at a similar operating frequency, a 700 µH inductor is required.

To achieve the TBO function on the L6563, a dedicated input of the multiplier is available on TBO pin #6. This function can be implemented by simply connecting a resistor (RT) between the TBO pin and ground.

Figure 4. L6563 tracking boost and voltage feed-forward blocks

Vout

COM

Rectified mains

 

 

 

 

 

 

2

current

 

 

IR

R1

 

 

 

reference

 

 

 

 

2.5V

 

 

 

 

 

 

 

 

 

 

 

 

INV

1

+

E/A

MULTIPLIER

2

R5

 

 

 

-

1/V

 

 

 

 

 

 

 

 

9.5V

 

 

 

"ideal"

 

 

 

 

 

1:1

-

 

 

 

ITBO

 

diode

3

 

 

 

+

 

 

 

 

CURRENT

 

 

IR

R2

 

 

 

3V

 

MUL

 

 

 

 

9.5V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R6

 

6

5

 

TBO

VFF

ITBO

RT

CF

 

 

RF

The TBO pin presents a dc level equal to the peak of the MULT pin voltage and is then representative of the mains RMS voltage. The resistor defines the current, equal to V(TBO)/RT, which is internally mirrored 1:1 and sunk from the INV pin (pin 1) input of the error amplifier. In this way, when the mains voltage increases, the voltage at the TBO pin will increase as well, and so will the current flowing through the resistor connected between TBO and GND. A larger current will then be sunk by the INV pin and the output voltage of the PFC pre-regulator will be forced higher. Obviously, the output voltage will move in the opposite direction if the input voltage decreases.

To avoid an unwanted rise in output voltage should the mains voltage exceed the maximum specified value, the voltage at the TBO pin is clamped at 3 V. By properly selecting the multiplier bias it is possible to set the maximum input voltage above which input-to-output tracking ends and the output voltage becomes constant. If this function is not used, the pin should be left open; the device will regulate at a fixed output voltage.

9/33

Test results

AN2521

 

 

Figure 5. EVAL6668-75W PFC output voltage vs. ac input voltage

 

417

 

 

 

 

[V]

384

 

 

 

384

 

 

 

 

VOLTAGE

 

 

 

 

351

 

 

351

 

 

 

 

 

318

 

 

 

 

 

 

 

 

 

OUTPUT

285

 

 

 

 

252

 

 

 

 

 

242

 

 

 

PFC

219

218

 

 

 

 

 

 

 

 

 

 

 

 

 

186

 

 

 

 

 

80

130

180

230

280

Vin [Vrms]

In Figure 5 we can see that the PFC output voltage variation vs. the ac input voltage (i.e. the input voltage for the flyback stage) is dependent on the input mains voltage, but its range is narrower than a wide range input. Thus the design of the flyback converter is not completely optimized as with a standard PFC delivering a stable 400 V output, but its design is much simpler than that of a wide range flyback. Additionally, the PFC converter using the TBO, with its lower differential voltage across the inductor and lower current ripple, will have lower RMS current and therefore better efficiency at low mains, where normally the efficiency of typical PFCs is lower. The result is a global efficiency of the circuit that will be higher than that of a fixed output voltage one circuit, especially at lower mains. Most of the power dissipation will not be concentrated on the PFC only but will be shared with the flyback. Therefore, there will not be thermal hotspots and the reliability of the circuit will be improved.

This is confirmed in the diagram in Figure 6, where the efficiency of the PFC has been measured both with the active TBO function and without it. As shown, at low input mains the circuit has an efficiency improvement better than 2 percent. As the input mains voltage increases the switching losses become more significant and the fixed output voltage PFC appears more efficient.

Figure 6. PFC efficiency with and without

Figure 7. Flyback converter efficiency with

TBO function at full load

and without TBO function at full

 

load

 

100%

 

 

 

 

95%

 

 

 

 

99%

WITHOUT TBO

 

 

FLYBACK STAGE EFFICIENCY

94%

400 Vdc FIXED I/P VOLTAGE

 

 

 

 

 

 

 

 

 

PFC STAGE EFFICIENCY

98%

WITH TBO

 

 

93%

WITH TBO

 

 

 

 

 

 

 

 

97%

 

 

 

92%

 

 

 

 

 

 

 

 

 

 

96%

 

 

 

91%

 

 

 

 

 

 

 

 

 

 

95%

 

 

 

90%

 

 

 

 

 

 

 

 

 

 

94%

 

 

 

89%

 

 

 

 

 

 

 

 

 

 

93%

 

 

 

88%

 

 

 

 

 

 

 

 

 

 

92%

 

 

 

87%

 

 

 

 

 

 

 

 

 

 

91%

 

 

 

86%

 

 

 

 

 

 

 

 

 

 

90%

 

 

 

85%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

90

115

230

265

90

115

230

265

 

 

 

 

 

 

 

 

 

 

Vin [Vrms]

 

 

 

Vin [Vrms]

 

Using the TBO function even the flyback converter efficiency is very good, as shown in Figure 7 where it is compared with the efficiency of the same converter powered by a fixed

10/33

Loading...
+ 23 hidden pages