ST AN2512 Application note

AN2512

Application note

Three-phase meter based STPM01, VIPer12A

Introduction

This application note describes how to design a three-phase meter using STPM01 as the measuring device and a VIPer12A based SMPS (Switch Mode Power Supply).

STPM01 is a metering ASSP implemented in an advanced 0.35 µm BCD6 technology. It is designed for the effective measurement of active, reactive and apparent energies, Vrms, Irms, instantaneous voltage and current, frequency in power line systems that use the current transformer, Rogowski coil and/or shunt principle.

This device can be used as a standalone on-board metering device in single-phase energy meter applications or as a peripheral in a microprocessor based singleor three-phase meter.

In a standalone configuration STPM01 outputs a pulse train signal having a frequency proportional to the active power used, while in peripheral mode STPM01 is used in a microprocessor based application. In this case, measured data are read at a fixed time interval from the device internal registers by means of SPI interface processed by a microcontroller.

In the following paragraphs a circuit description is explained, with particular focus on the power supply section, the three-phase design, and the clock management network. Then, the power calculation algorithm is discussed and finally some layout hints and experimental results are shown.

This application note should be used in conjunction with the STPM01 and VIPer12A datasheet.

Three phase block diagram

April 2007

Rev 1

1/38

www.st.com

Contents

AN2512

 

 

Contents

1

Application description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

 

1.1

Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

 

1.2

Circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

 

1.3

Power supply circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

 

1.4

Phase circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8

1.4.1 Current sensing circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4.2 Anti-aliasing filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4.3 Voltage sensing circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4.4 Crosstalk cancellation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Clock management network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2

Communication with microprocessor . . . . . . . . . . . . . . . . . . . . . . . . . .

11

3

Power calculation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

 

3.1

STPM01 SPI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

 

3.2

STPM01 Initialization (latching) and reading (shifting) . . . . . . . . . . . . . . .

14

 

3.3

Data record structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

 

3.4

Data integrity checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

 

3.5

Unpacking of data records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

 

3.6

Processing of phase energy values . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

 

3.7

Three-phase energy calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

 

3.8

Pulse generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

4

Layout rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

5

Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

22

 

5.1

Phase one results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

22

 

5.2

Phase two results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

 

5.3

Phase three results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

 

5.4

Voltage and frequency influence on phase three . . . . . . . . . . . . . . . . . . .

24

6

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

37

2/38

AN2512

List of figures

 

 

List of figures

Figure 1. Top layer circuit schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Figure 2. SMPS circuit schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 3. Phase circuit schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 4. Clock management network schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 5. Connectors schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 6. Flow chart of phase reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 7. Timing for data records reading in 3 phase system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 8. Data records reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 9. STPM01 data register structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 10. Typical profile of output of an energy integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 11. Graph of experimental results of phase n.1 tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 12. Graph of experimental results of phase n.2 tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 13. Graph of experimental results of phase n.3 tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 14. Graph of voltage and frequency influence on phase n.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 15. Instantaneous voltage (or current) in one voltage cycle of a three-phase system . . . . . . . 25 Figure 16. Per-phase powers in (a) delta-connected load and (b) wye-connected load . . . . . . . . . . . 26 Figure 17. Two-wattmeter method in staror delta-connected load. . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 18. The wattmeter connections in the three-phase four-wire loads . . . . . . . . . . . . . . . . . . . . . 28

3/38

Application description

AN2512

 

 

1 Application description

Three-phase meters (which derive as particular cases from poly-phase systems), are most commonly used in practical industrial applications, and in a few cases also for domestic use.

This three-phase meter can be used as a reference board to build a Class 0,5 three-phase microprocessor based meter for power line systems 3-Wire DELTA service, 4-Wires DELTA and WYE service. It uses a multi-chip topology, in which each phase is monitored using a single-phase device.

In this way, three STPM01 have been used with a common clock network. The power supply is implemented in fly-back topology using a VIPer12A.

The meter cannot be used in standalone mode and a management/supervisory board must be used for energy integration and data displaying. Such a control board should be plugged in the connector J2 (referring to board schematics below), while the connector J1 is used for calibration purposes in association (or conjunction) with the STPMxx parallel programmer/reader released with the application.

1.1Operating conditions

Table 1.

Operating conditions

 

 

 

Value

Min

Max

Unit

 

 

 

 

 

 

VNOM

80

480

VRMS

INOM/IMAX

5

30

ARMS

 

fLIN

45

65

Hz

 

TAMB

- 40

+85

°C

1.2Circuit description

The meter consists of one board divided into the following sections:

Power supply management circuit

Phase circuit

Clock management network

Connectors.

The schematic of the board is shown in Figure 1.

4/38

AN2512

Application description

 

 

Figure 1. Top layer circuit schematic

 

 

 

 

 

 

 

 

 

 

 

5V

J2

 

 

 

 

 

 

 

 

 

 

 

SCL

 

 

1

 

 

 

 

 

 

 

PHASE_1

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

SDA

 

 

 

 

 

 

 

 

 

 

 

 

 

SYN

 

 

3

 

 

 

 

 

 

P1

 

 

VOTPL1

 

SCSL1

 

 

4

 

 

 

 

 

 

P

VOTP

 

 

 

5

 

 

 

 

 

 

N

 

 

SCSL2

 

 

 

 

 

 

 

 

N

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

SCSL3

 

 

 

 

 

 

 

 

 

 

 

SDA

 

LEDL1

 

 

7

 

 

 

 

 

VDD

 

 

SDA

SCSL1

 

LEDL2

 

 

8

 

 

 

 

 

 

VDD

SCS

 

 

 

9

 

 

 

 

 

 

 

SCL

 

LEDL3

 

 

 

 

 

 

 

 

 

GND

SCL

 

 

 

10

 

 

 

 

 

 

 

LEDL1

 

 

 

 

 

 

 

 

 

 

 

 

LED

SYN

 

 

 

 

11

 

 

 

 

 

 

 

 

SYN

 

 

 

VDD

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13

 

 

 

 

 

CLKIN

 

 

 

 

 

 

 

 

14

 

 

 

 

 

 

 

CLKIN

CLKOUT

 

 

 

 

 

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16

 

 

 

 

 

 

 

PHASE

 

 

 

 

 

 

17

 

 

 

 

 

 

 

 

 

 

 

 

 

18

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CON20

 

 

 

 

 

 

 

 

 

 

 

 

J14

 

 

 

 

 

 

 

 

 

 

 

 

VOTPL1

1

 

2

 

 

 

 

 

 

 

 

 

 

 

VOTPL2

3

 

4

 

 

 

 

 

 

 

 

PHASE_2

 

 

VOTPL3

5

 

6

 

J1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P2

P

VOTP

VOTPL2

 

 

 

 

VOTP

1

 

 

 

 

 

N

 

 

 

JUMPER3

 

 

 

 

 

 

 

N

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

J13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

SDA

SCSL1

1

 

2

SDA

 

 

 

 

 

 

 

SDA

 

4

 

 

 

 

VDD

 

 

SCSL2

SCSL2

3

 

4

SCS

 

 

 

 

 

 

VDD

SCS

SCL

SCSL3

5

 

6

SCL

5

 

 

 

 

 

 

GND

SCL

 

6

 

 

 

U8A

 

 

LEDL2

 

 

 

 

 

 

 

 

 

 

 

LED

 

 

 

 

 

7

 

 

 

74HC14A/SO

 

 

SYN

 

 

 

 

SYN

 

 

 

 

 

SYN

 

 

 

 

8

 

 

 

 

 

 

 

 

 

SCSJUMPER

 

 

 

C1

4.194304MHz

 

 

 

 

 

 

 

 

 

 

VDD

9

 

 

 

1

2

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

CLKIN

CLKOUT

 

 

 

 

 

 

 

 

15pF

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PHASE

 

 

 

 

 

 

 

 

 

 

R1

U8B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y1

74HC14A/SO

 

 

 

 

 

 

 

 

 

 

 

 

 

1M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SMPS

 

5V

 

C2

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PHASE_3

 

 

J7

1

 

 

 

1

J11

 

 

 

 

 

 

 

 

 

 

P1

 

 

5V

 

15pF

 

 

P3

 

 

 

VOTPL3

 

 

 

P1

 

 

 

 

 

 

P

VOTP

 

 

 

 

 

VDD

 

 

 

 

N

 

 

J8

1

P2

P2

 

 

 

 

 

 

 

N

 

 

 

 

 

 

1

J12

 

 

 

 

 

 

 

SDA

 

 

P3

 

 

3.3V

 

 

 

 

VDD

 

 

SDA

SCSL3

J9

1

 

P3

 

 

 

 

 

 

 

VDD

SCS

 

 

 

 

 

 

 

 

 

 

SCL

 

 

N

 

 

 

 

 

 

 

 

 

GND

SCL

LEDL3

 

 

 

N

 

1

J5

 

 

 

 

 

 

LED

SYN

J10

1

 

 

 

GND

 

 

 

 

 

 

 

SYN

 

 

 

 

 

 

 

 

 

 

 

 

 

CLKIN

CLKOUT

 

 

 

 

SMPS

 

 

 

 

 

 

 

 

PHASE

 

 

 

 

 

 

 

 

 

1.3Power supply circuit

A 3-phase 4-wire bridge is used for mains rectification because the neutral rectification is needed to ensure proper operation in case of missing neutral connection or neutral misswiring.

A varistor is connected between each line and neutral to guarantee pulse voltage test immunity according to the EN62052-11 standard.

The input EMI filter is a simple, undamped LC-filter for both differential and common mode noise suppression.

The circuit for input voltage limiting is connected between the input EMI filter and the bulk capacitor C4. Such a circuitry includes a Power MOSFET and a self driven control section. The MOSFET Q1 is a standard N-Channel 500 V 3.3 Ω in D-PAK package, mounted on a small copper area to improve thermal performance. The self driven control section consists of a voltage divider and zener diodes. The resistors R1, R2 and R3 ensure the gate-source charge for the switch, while the zener diodes D3 and D4 set the maximum voltage value (360 V) across the bulk capacitor.

An NTC limits the inrush current and ensures Q1 operation inside its safe operating area.

The Flyback converter is based on VIPer12A, a product in the VIPerX2A family, which combines a dedicated current mode off-line PWM controller with a high voltage power MOSFET on the same silicon chip. The switching frequency is fixed at 60 kHz by the IC internal oscillator in order to optimize the transformer size and cost. The transformer reflected voltage has been set to 60 V, providing enough margin for the leakage inductance voltage spike and no snubber circuit is needed which allows consequent cost savings.

As soon as the voltage is applied on the input of the converter, the high voltage start-up current source connected to the drain pin is activated and starts to charge the Vdd capacitor C8 through a constant current of 1 mA. When the voltage across this capacitor reaches the Vddon threshold (about 14 V), the VIPer12A starts to switch. During normal operation the

5/38

Application description

AN2512

 

 

smart power IC is powered by the auxiliary winding of the transformer via the diode D7. No spike killer for the auxiliary voltage fluctuations is needed thanks to the wide range of the Vdd pin (9-38 V). The primary current is measured using the integrated current sensing for current mode operation.

The output rectifier D6 has been chosen in accordance with the maximum reverse voltage and power dissipation. In particular a 0.5A-80 V Schottky diode, type TMBAT49, has been selected.

The output voltage regulation is performed by secondary feedback on the 5 V output dedicated to the display, while the 3.3 V output, dedicated to the logic part and the microcontroller, is linearly post-regulated from the 5 V output. This operation is performed by a very low drop voltage regulator, L4931ABD33, in SO-8 package. The voltage regulator delivers up to 100 mA, ensuring good reliability with no heat sink. The feedback network ensures the required insulation between the primary and secondary sections. The optotransistor directly drives the VIPer12A feedback pin which controls the IC operation.

A small LC filter has been added to the 5 V output in order reduce the high frequency ripple with reasonable output capacitors value.

The Flyback transformer is a layer type based on E13 core and N27 ferrite, manufactured by Pulse Eldor, and ensures safety insulation in accordance with the EN60950.

For more info on the power supply, please refer to AN2264, "Three-Phase SMPS for low power applications with VIPer12A". The schematic of the power supply section is shown in

Figure 2.

6/38

ST AN2512 Application note

description

P1

R61

22E 1W

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7/38

 

 

 

 

 

 

L2

 

 

 

 

 

 

C22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NTC1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1mH

 

Q1

 

STD5nk40Z

 

 

2nF/2kV (Y1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

3

 

 

 

 

 

 

 

 

 

 

 

 

Application

 

 

RV1

 

 

 

D3

 

 

120E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SO5K275/275V

 

 

 

 

 

R58

 

 

 

 

 

T1

 

D5

L3

 

 

 

 

 

5V

 

 

 

 

 

 

 

 

 

330k

 

 

 

 

 

 

 

 

TMBAT49

10uH 125mA SMD

5V@10mA

 

 

 

 

 

 

 

 

 

 

 

 

D4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

10

 

 

 

 

 

 

 

 

 

 

 

 

RV2

4

-

+

3

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SO5K275/275V

 

 

2

 

C16

 

 

ZMM 15/SOD-80

 

 

 

 

C14 +

C15

+

C17

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

330uF 25V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R59

 

 

 

 

 

2

6

 

 

22uF 16V

100nF SMD

 

 

 

 

 

R62

22E 1W

 

 

 

220nF 630V

330k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P2

 

 

BRIDGE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C18

2.2uF450V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P3

R63

22E 1W

 

 

 

 

 

R60

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

C19

 

 

 

 

 

4

 

 

 

U2

L4931ABD33

 

 

 

 

 

 

 

 

 

 

330k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3V@100mA

 

 

 

 

 

 

 

 

 

220nF 630V

 

 

 

 

 

 

 

 

 

 

8

 

 

VOUT

 

1

 

 

 

 

 

4

-

+

3

 

 

 

 

 

 

 

 

 

 

 

VIN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RV3

 

 

 

 

 

D7

 

 

 

R20

5

 

 

 

GND

GND

GND

GND

INHIB

 

 

 

 

 

SO5K275/275V

 

 

 

 

 

180V

 

 

 

10E SMD

 

 

 

 

 

C20

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

R64

22E 1W

 

 

BRIDGE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1000uF 50V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D10

 

 

R23

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

D9

 

 

 

 

R21

R22

2

3

6

7

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LL4148

4.7K 1% SMD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

180V

 

 

 

 

 

220E SMD

1K SMD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U3

 

 

 

 

 

 

 

 

 

 

 

circuit schematic

 

 

 

 

 

 

 

 

 

 

 

 

 

R24

PC817

 

 

 

 

 

 

 

 

GND

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C21

 

 

 

 

 

5.6K

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10uF 50V

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U5

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

5 6 7 8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D D D D

 

 

 

C23

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U4

 

100nF 50V SMD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

TS2431

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FB

VIPer12AS/SO-8

 

3 112

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vdd

S S

 

 

R25

 

 

 

 

 

 

 

 

 

SMPS

 

 

 

 

 

 

 

 

 

 

 

 

2 1

 

 

 

4.7K 1% SMD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C24

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.

 

 

 

 

 

 

 

 

 

 

 

 

 

47nF 50V SMD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AN2512

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Application description

AN2512

 

 

1.4Phase circuit

This paragraph explains the implementation of the phase network which performs the power calculation.

The three phases are identical. Figure 3 shows the implementation of the STPM01 used for energy calculation of each phase.

The schematic can be divided into the following subsets:

Current sensing circuit (1)

Anti-aliasing Filter (2)

Voltage Sensing Circuit (3)

Crosstalk Cancellation Network (4).

Figure 3. Phase circuit schematic

 

LED VOTP GND SDA SCS SCL

SYN

 

VDD

 

 

 

CLKIN

CLKOUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LED

VOTP GND

SDA SCS

SCL

SYN

 

 

VDD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R7

150K

R10

2,2K

 

C12

33nF

470

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R13

0

C11

4.7u

R17

 

 

 

 

 

 

19

18

3

15

17

16

14

13

12

11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sda

Scl

Scs

Syn

CLKout

CLKin

Vin

Vip

Iln2

Ilp2

STPM01 TSSOP20

 

 

 

2.2M

 

 

 

 

 

 

 

 

 

 

U1

led

MON

MOP

Vddd

Vss

Vcc

Vdda

Votp

Ilp1

Iln1

 

 

R9

4

 

 

R15 R16

270K 200K

 

 

 

 

 

20

1 2 4 5 6 8 7 9

10

 

 

 

 

 

LED

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R14

270K

R2 750

1

 

 

C8

1MY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

D1

 

 

 

C7

1nF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C9

 

10nF

 

 

 

 

 

P

 

2

 

 

C6

1nF

 

 

D2

 

LL4148

 

VDD

 

 

 

R5 1k

 

 

 

R8 1k

 

 

 

 

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R6

3.4

 

 

 

 

 

3

 

 

 

 

 

C5

1MY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L1

CT

 

 

 

 

 

 

 

 

 

C4

1nF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C3

1nF

 

 

 

 

 

 

 

 

 

VOTP

 

 

1

 

 

 

 

 

 

 

 

 

8/38

AN2512

Application description

 

 

1.4.1Current sensing circuit

The STPM01 has two external current sensing circuits, primary and secondary current channels.

Normally, the second current circuit is used in single-phase meter implementation when the anti-tamper feature is required. In this way it is possible to read also the current flowing into the neutral wire to have a comparison with the current flowing into the line wire and detect possible tampers.

In this application only the primary channel has been used. As a consequence, the configuration of STPM01 is:

PST= 2 if a current transformer is used (this is the case of this meter);

PST= 0 (or 1) if a Rogowski coil is used

in the latter case ADDG bit can be used to have a further gain of x8.

The current channel uses a current transformer to sense mains current. The burden resistor is used to produce a voltage between VIN1 and VIP1 proportional to the current measured.

1.4.2Anti-aliasing filter

The anti-aliasing filter is a low-pass filter. It has a negligible influence on the voltage drop between IIN1 and IIP1. Its aim is to reduce the distortion caused by the sampling, also called aliasing, by removing the out-of-band frequencies of the input signal before sampling it with the analog-to-digital converter.

Filtering is easily implemented with a resistor-capacitor (RC) single-pole circuit which obtains an attenuation of -20dB/dec.

1.4.3Voltage sensing circuit

A resistor divider is used as voltage sensor.

The 740 kΩ resistor is separated into three, 2x270 kΩ and 1x200 kΩ, in-series resistors, which ensure that a high voltage transient does not bypass the resistor. This also reduces the potential across the resistors, thereby decreasing the possibility of arcing. The following resistors are used to implement resistor divider:

R=R14+R15+R16=740 KΩ,

R5=470 Ω.

Capacitor C11 and resistance (R19+ R15) create a filter which prevents Electromagnetic Interference (EMI).

1.4.4Crosstalk cancellation network

The voltage front-end handles voltages of considerable amplitude, which makes it a potential source of noise. Disturbances are readily emitted into current measurement circuitry where they interfere with the actual signal to be measured. Typically, this produces a non-linear error at small signal amplitudes and non-unity power factors. At unity power factor, voltage and current signals are in phase and crosstalk between voltage and current channels merely appears as a gain error, which can be calibrated. When voltage and current are not in phase, crosstalk has a non-linear effect on the measurements, which cannot be calibrated.

9/38

Application description

AN2512

 

 

Crosstalk is minimized by means of good PCB planning and the proper use of filter components in the crosstalk network. Recommended filter components are shown in Figure 3. The network subtracts a signal proportional to the voltage input from the current input. This prevents cross talking within the STPM01.

1.5Clock management network

4.194 MHz quartz is used to supply the clock to the three STPM01 devices. Figure 4 shows the schematic of the enhanced clock network which prevents EMI influences.

A discrete inverter network is used to change the impedance of the common node of the three blocks. The output of the inverter prevents the second order antenna effect of the node.

The CLKOUT pins are grounded to guarantee the current loop.

To select the measurement frequency range, MDIV must be set to 0 in the configuration register of STPM01. If an 8 MHz quartz is used, this bit must be changed to 1.

Figure 4. Clock management network schematic

 

 

 

 

 

PHASE_1

 

 

 

 

 

 

P1

P

VOTP

VOTPL1

 

 

 

 

N

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SDA

SDA

 

 

 

VDD

 

 

SCSL1

 

 

 

 

VDD

SCS

 

 

 

 

 

SCL

 

 

 

 

 

GND

SCL

 

 

 

 

 

LEDL1

 

 

 

 

 

 

LED

 

 

 

 

 

 

SYN

 

 

 

 

 

 

SYN

 

 

 

 

 

 

 

 

 

 

CLKIN

 

CLKIN

CLKOUT

 

 

 

 

 

 

 

 

 

 

 

 

PHASE

 

 

 

 

 

 

 

PHASE_2

 

 

 

 

 

 

P2

P

VOTP

VOTPL2

 

 

 

 

N

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SDA

SDA

 

 

 

VDD

 

 

SCSL2

 

 

 

 

VDD

SCS

 

 

 

 

 

SCL

 

 

 

 

 

GND

SCL

 

 

U8A

 

 

LEDL2

 

 

 

 

 

LED

 

 

74HC14A/SO

 

 

SYN

 

 

 

 

SYN

 

 

 

 

 

 

 

C1

4.194304MHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

 

CLKIN

CLKOUT

 

 

 

 

 

 

 

15pF

 

3

 

 

 

 

 

 

 

 

 

PHASE

 

 

 

R1

U8B

 

 

 

 

 

 

 

 

 

 

 

Y1

74HC14A/SO

 

 

 

 

 

 

1M

 

 

 

 

 

 

C2

 

4

 

 

 

 

 

 

 

 

 

 

PHASE_3

 

 

15pF

 

 

P3

 

P

VOTP

VOTPL3

 

 

 

N

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SDA

SDA

 

 

 

VDD

 

 

SCSL3

 

 

 

 

VDD

SCS

 

 

 

 

 

SCL

 

 

 

 

 

GND

SCL

 

 

 

 

 

LEDL3

 

 

 

 

 

 

LED

 

 

 

 

 

 

SYN

 

 

 

 

 

 

SYN

 

 

 

 

 

 

 

 

 

 

 

 

CLKIN

CLKOUT

 

 

 

 

 

 

PHASE

 

 

10/38

AN2512

Communication with microprocessor

 

 

2 Communication with microprocessor

A control board with embedded microprocessor should be connected to connector J2 of module using 20-wire flat cable. Table 2 below describes the pin-out of the connector.

Each STPM01 has an SPI communication port implemented by four multi-purpose pins. Through the J2 connector, the control board can read data records or it can access the mode or configuration signals of each metering device by means of dedicated protocol.

Each pin can draw up to 4 mA at +3.0 V from the control module. The selection of the device to be read is done acting on one of the three SCSLx (STPM01 device select) pins.

By default, the STPM01 is configured in peripheral mode by setting configuration bits APL = 0.

This implies also the following output settings:

watchdog reset signal on MON pin;

zero-crossing (ZCR) on MOP pin;

a pulse train with frequency proportional to the power consumption on LED pin.

To display the information on the power consumption, it is either possible to feed three LEDs, each one showing the information on one phase, from the LED pins of the three measurement devices, or the control board can generate an LED signal to show the global power consumption by reading and manipulating energy information from the three STPM01 registers. In this case, the control board may also recalibrate any result read from the module through appropriate software.

Figure 5. Connectors schematic

 

 

 

5V

J2

 

 

 

 

 

 

 

SCL

 

 

1

 

 

 

 

2

 

 

SDA

 

 

 

 

 

 

3

 

 

SYN

 

 

 

 

 

 

4

 

 

SCSL1

 

 

 

 

 

 

5

 

 

SCSL2

 

 

 

 

 

 

6

 

 

SCSL3

 

 

 

 

 

 

7

 

 

LEDL1

 

 

 

 

 

 

8

 

 

LEDL2

 

 

 

 

 

 

9

 

 

LEDL3

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

11

 

 

VDD

 

 

12

 

 

 

 

 

13

 

 

 

 

 

14

 

 

 

 

 

15

 

 

 

 

 

16

 

 

 

 

 

17

 

 

 

 

 

18

 

 

 

 

 

19

 

 

 

 

 

20

 

 

 

 

 

CON20

 

 

J14

 

 

 

 

VOTPL1

1

2

 

 

 

VOTPL2

3

4

 

 

 

VOTPL3

5

6

 

 

J1

 

 

 

 

 

 

 

 

 

VOTP

1

 

JUMPER3

 

 

 

 

 

 

 

2

 

J13

 

 

 

 

 

 

 

3

SCSL1

1

2

 

SDA

 

4

SCSL2

3

4

 

SCS

 

5

SCSL3

5

6

 

SCL

 

6

 

 

 

 

 

 

 

 

 

SYN

7

 

 

 

 

8

 

SCSJUMPER

 

 

 

 

 

 

 

9

 

 

 

 

VDD

 

 

 

 

10

 

 

 

 

 

11/38

Communication with microprocessor

AN2512

 

 

 

 

 

 

Table 2.

J2 connector pin description

 

 

 

 

 

 

Pin No.

 

Pin name

Functional description

 

 

 

 

 

 

1.

 

5 V

Power out of +5.0 V

 

 

Up to 25 mA can be drawn from this pin

 

 

 

 

 

 

 

 

 

 

2.

 

SCL

SPI Interface Pin

 

 

 

 

 

 

3.

 

SDA

SPI Interface Data Pin

 

 

 

 

 

 

4.

 

SYN

SPI Interface Pin

 

 

 

 

 

 

5.

 

SCSL1

Phase n.1 SPI enable signal

 

 

 

 

 

 

6.

 

SCSL2

Phase n.2 SPI enable signal

 

 

 

 

 

 

7.

 

SCSL3

Phase n.3 SPI enable signal

 

 

 

 

 

 

8.

 

LEDL1

LED output of Phase n.1

 

 

 

 

 

 

9.

 

LEDL2

LED output of Phase n.2

 

 

 

 

 

 

10.

 

LEDL3

LED output of Phase n.3

 

 

 

 

 

 

11.

 

GND

Signal reference level 0 V and power supply return

 

 

 

 

 

 

12.

 

VDD

Power out of +3.3 V

 

 

Up to 100 mA can be drawn from this pin

 

 

 

 

 

 

 

 

 

 

13.

 

---

NC

 

 

 

 

 

 

14.

 

---

NC

 

 

 

 

 

 

15.

 

---

NC

 

 

 

 

 

 

16.

 

---

NC

 

 

 

 

 

 

17.

 

---

NC

 

 

 

 

 

 

18.

 

---

NC

 

 

 

 

 

 

19.

 

---

NC

 

 

 

 

 

 

20.

 

---

NC

 

 

 

 

 

A host system can communicate with each measurement module (actually, with the STPM01) using SPI interface, through connector J2. The STPM01 always acts as an SPI slave while the host system acts as an SPI master. An application control board or an external system can be considered as host.

Connector J1 is used in the evaluation phase to connect the measurement module to a PC through the STPM01 parallel Programmer/Reader hardware interface.

This allows the user to set temporarily or permanently the internal STPM01 registers using a dedicated GUI. Jumpers J13 and J14 select which of the three devices will be accessed.

The VOTP pin on the connector J1 is used when a host wants to permanently write some configuration bits in the metering device. In this case, a +15 V power level must be present on the VOTP. This level must be delivered from the host itself because the module does not have an on-board charge pump.

Table 3 shows the pin description of the connector J1.

12/38

Loading...
+ 26 hidden pages