ST AN2510 Application note

AN2510
Application note
Combo IC for PFC and ballast control
Introduction
A new control IC, the L6585D, has been designed to manage electronic ballasts for fluorescent lamps. It includes both Power Factor Correction and half-bridge sections and embeds a wide range of features to provide an energy saving and cost effective solution.
Particular care has been given to pre-heating and ignition phases prior to lamp start up in order to ensure the proper filament warming up and extend lamp life.
Innovative circuitry allows an improved control of the lamp voltage during ignition as well as protection against failures due to lamp aging.
The use of this new control IC simplifies the industrialization of electronic ballasts which increases application reliability and reduces its dimensions and cost.
March 2007 Rev 1 1/22
www.st.com
Contents AN2510
Contents
1 L6585 Integrated circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Device blocks description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Start-up and shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 PFC section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Error amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Over-voltage and feedback disconnection detection . . . . . . . . . . . . . . . . 6
2.2.3 Zero Current Detection and triggering block . . . . . . . . . . . . . . . . . . . . . . 7
2.2.4 Multiplier block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.5 Current comparator and choke saturation detection . . . . . . . . . . . . . . . . 8
2.2.6 Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Oscillator and pre-heating / ignition / run mode sequencing . . . . . . . . . . . 8
2.4 Half-bridge current sensing: lamp voltage / power control . . . . . . . . . . . . . 9
2.4.1 Controlled lamp voltage/current during ignition . . . . . . . . . . . . . . . . . . . . 9
2.4.2 Over-current protection during run mode . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 End of life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.1 End-of-life detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Re-lamp comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 L6585 Biasing circuitry (pin by pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 Pin1 OSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Pin2 RF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Pin3 EOI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Pin4 TCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Pin5 EOLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6 Pin6 EOLR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.7 Pin7 CTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.8 Pin8 MULT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.9 Pin9 COMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.10 Pin10 INV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.11 Pin11 ZCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.12 Pin12 PFCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2/22
AN2510 Contents
3.13 Pin13 PFG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.14 Pin14 HBCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.15 Pin15 GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.16 Pin16 LSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.17 Pin17 V
CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.18 Pin18 OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.19 Pin19 HSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.20 Pin20 BOOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3/22
L6585 Integrated circuit AN2510

1 L6585 Integrated circuit

Designed in High-voltage BCD Off-line technology, the L6585D embeds a PFC controller, a half-bridge controller, the relevant drivers, and the logic necessary to build an electronic ballast.
The advanced and precise logic circuitry, combined with the programmability of the End-of­Life windows comparator, makes the L6585D compliant with either "lamp-to-ground" or "block capacitor-to ground" configurations.
Another outstanding feature is the possibility of controlling the ignition lamp voltage.
The pre-heating and ignition durations are independently adjustable as well as the half­bridge switching frequencies for each operating phase (pre-heating, ignition and normal mode).
Other features (half-bridge over-current with frequency increase, PFC over-voltage) allow building a reliable and flexible solution with a reduced part count.
The PFC section achieves current mode control operating in Transition Mode. The highly linear multiplier includes a special circuit, able to reduce AC input current distortion, that allows wide-range mains operation with an extremely low THD, even over a large load range.
The PFC output voltage is controlled by a voltage-mode error amplifier and a precise internal voltage reference.
The driver of the PFC is able to provide 300 mA source and 600 mA sink and the drivers of the half-bridge provide 290 mA source and 480 mA sink.
Figure 1. Block diagram
COMP MULT PFCS Vcc
COMP MULT PFCS Vcc
2.5V
2.5V E/A
ZCD
ZCD
PFG
PFG
CTR
CTR
EOLR
EOLR
E/A
+
+ _
1.2V
1.2V
0.7V
0.7V
3.4V
3.4V
0.75V
0.75V
4.63V
4.63V
_
Vcc
Vcc
STARTER
STARTER
DIS
DIS
RELAMP
RELAMP
INV
INV
MULTIPLIER
MULTIPLIER
and THD
and THD
OPTIMIZER
OPTIMIZER
OL
OL
S
S
PFSTOP
PFSTOP
OL
OL
OVP
OVP
2V
2V
R
R
Q
Q
COMPARATOR
COMPARATOR
2V
2V
+
+
_
_
PWM
PWM COMP.
COMP.
WINDOW
WINDOW
& REF.
& REF.
LEB
LEB
+
+
EOL
EOL
VCO
VCO
1.7V
1.7V
_
_
CHOKE
CHOKE SAT.
SAT.
PFSTOP
PFSTOP
OVP
OVP
BOOT
Vcc
Vcc
0.9V
0.9V Vcc
Vcc
BOOT
HSD
HSD
OUT
OUT
LSD
LSD
GND
GND
HBCS
HBCS
17V
17V
UV
UV
SYNCHRONOUS
DEAD
DEAD
TIME
TIME
CONTROL
CONTROL
LOGIC
LOGIC
SYNCHRONOUS
BOOTSTRAP DIODE
BOOTSTRAP DIODE
DRIVING
DRIVING
LOGIC
LOGIC
HB STOP
HB STOP
MANAGEMENT
MANAGEMENT
DETECTION
DETECTION
LATCH
LATCH
DIS
DIS
1.9V
1.9V
TIMING
TIMING
HVG
HVG
DRIVER
DRIVER
LEVEL
LEVEL
SHIFTER
SHIFTER
LVG DRIVER
LVG DRIVER
4.6
4.6
1.5
1.5
1.6V
1.6V
EOLP
EOLP
4/22
OSC EOIRF
OSC EOIRF
Tch
Tch
AN2510 Device blocks description

2 Device blocks description

2.1 Start-up and shutdown

During start-up, the chip is supplied through a resistive path from the rectified AC Mains voltage whereas during normal operation, a charge pump or a self-supply winding (as well as an auxiliary converter) can provide the required current.
As the voltage at Vcc pin reaches the turn-on threshold (Vcc(ON)), the chip is enabled and (unless a lamp absence is detected) the oscillator starts switching at a frequency set by values of C
The Half-Bridge and the PFC sections start at almost the same time. As the synchronization signal at pin ZCD is not yet generated by the external ZCD circuit, an internal structure forces the PFC gate driver to switch for the first switching cycles. The pulses are generated at a typical frequency of 15 kHz.
OSC
and R
RUN
and R
PRE
.
At shutdown, when the V
decreases below the UVLO threshold (either in case of Mains
CC
removal or in case of fault), the following conditions are met:
all drivers are off;
EOI pin is discharged (the internal switch is on);
RF reference is disabled;
Tch is discharged.
Figure 2. Start-up and shutdown sequences
5/22
Device blocks description AN2510

2.2 PFC section

2.2.1 Error amplifier

The Error Amplifier (E/A) is used for frequency compensation. The inverting input (INV) is connected by an external divider to the output bus and compares a partition of the boosted output DC voltage, Vo, with the internal reference in order to maintain the pre-regulator output DC voltage constant.
The compensation network, placed between pins INV and COMP (E/A output), is usually done with a feedback capacitor. The E/A bandwidth will be extremely low because the output of the E/A must be constant over a line half-cycle to achieve high PF.
The dynamics of the E/A output is internally clamped so that it can swing between 2.25 V and 4.2 V in order to speed up the recovery after the E/A saturates low due to an over­voltage or saturates high because of an over-current.
Figure 3. Error amplifier, feedback divider and CTR
PFC OUTPUT
PFC OUTPUT
OVP
OVP
DISABLE
DISABLE
MULT
MULT
R1
R1
R2
R2
RHOVP
RHOVP
RLOVP
RLOVP
CTR
CTR
INV
INV
+
+ _
_
3.4V
3.4V
_
_ +
+
0.8V
0.8V
_
_
+
+
AMPLIFIER
NETWORK
NETWORK
AMPLIFIER
2.5V
2.5V
COMPENSATION
COMPENSATION
ERROR
ERROR
COMP
COMP
OPEN LOOP
OPEN LOOP DETECTION
DETECTION

2.2.2 Over-voltage and feedback disconnection detection

The device is provided with a double over-voltage protection (OVP).
In case of over-voltage, the output of the E/A will tend to saturate low, but the E/A response is very slow, so it will take a long time to go into saturation. On the other hand, an over­voltage must be corrected immediately.
A fast OVP detector, based on a different concept, is necessary.
The maximum voltage allowed for the PF output bus (VOVP) is defined by the resistive divider connected to the pin CTR (Figure 3):
6/22
AN2510 Device blocks description
Equation 1
R
HOVP
V
OVPVTH
⎛⎞
1
------------------+
= ⎝⎠
R
LOVP
where V
is the CTR internal comparator input reference (3.4 V typ.)
TH
Moreover if the over-voltage lasts so long that the output of E/A goes below 2.25 V, the PF gate driver is stopped until the E/A output goes back into its linear region.
If instead, the over-voltage is due to feedback disconnection (for example R1, Figure 3 fails open), these two structures work together. In fact if the V simultaneously the INV voltage falls below 1.2 V, typ. (due to the fact that the E/A source capability is limited) the IC stops in a latched condition.

2.2.3 Zero Current Detection and triggering block

The Zero Current Detection (ZCD) block switches on the external PFC MOSFET as the voltage across the boost inductor reverses, just after the current through the boost inductor has gone to zero. This feature allows TM operation.
As the circuit is running, the signal for ZCD is obtained with an auxiliary winding on the boost inductor. As at start-up no signal is coming from the ZCD, a circuit is needed that turns on the external MOSFET. This is done with an internal starter, which forces the driver to deliver a pulse to the gate of the MOSFET, producing also the signal for arming the ZCD circuit.
The repetition rate of the starter is greater than 15 kHz and this maximum frequency must be taken into account at design time.

2.2.4 Multiplier block

threshold is crossed and
OVP
The multiplier (see Figure 4) has two inputs. The first one takes a partition of the instantaneous rectified line voltage and the second one takes the output of the E/A. If this voltage is constant (over a given line half-cycle), the output of the multiplier will be shaped as a rectified sinusoid too. This is the reference signal for the current comparator, which sets the MOSFET peak current cycle by cycle.
Figure 4. Multiplier, current sense and choke saturation
7/22
Loading...
+ 15 hidden pages