ST AN2454 APPLICATION NOTE

AN2454
Application note
Universal input voltage power supply for ESBT based
breaker and metering applications
Introduction
This document describes how to design a 3-phase power supply with the UC3845B PWM driver and the new STC04IE170 ESBT as main switch. It is associated with the release of the STEVAL-IPB001V1 demo board (see figure below). The design is a complete solution for the 2 W single output SMPS, which is widely used as a power supply in breaker applications. However, the design method can also be applied to an SMPS suitable for 3­phase power metering applications, as it can easily be upgraded for higher output power.
In this report particular attention has been paid to the ESBT base driving circuit, where some useful methods have been investigated to better optimize power dissipation (see
Section 6: Base driving circuit design).
The influence of the parasitic capacitances of the transformer on the ESBT is also explained in detail (see Section 3: Parasitic capacitances and related issues). In addition, an active start-up circuit has been implemented on the demo board to optimize the converter efficiency, is also described (see Section 7: Active start-up circuit). A dedicated active component (the Darlington Q3) has been developed to support the very high voltage required (see Figure 1).
Finally, the most important waveforms and thermal results are given in Section 8:
Experimental results: waveforms and Section 9: Experimental results: efficiency and special considerations. They demonstrate the benefits of using this solution with the start-up circuit.
Refer to AN1889 for the overall design of an auxiliary power supply using an ESBT.
STEVAL-IPB001V1 demo board
December 2006 Rev 1 1/24
www.st.com
Contents AN2454
Contents
1 Design specifications and schematic diagram . . . . . . . . . . . . . . . . . . . 4
2 Flyback stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Parasitic capacitances and related issues . . . . . . . . . . . . . . . . . . . . . . . 8
4 Fine tuning of the application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5 Transformer design characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6 Base driving circuit design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
7 Active start-up circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
8 Experimental results: waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
9 Experimental results: efficiency and special considerations . . . . . . 19
10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2/24
AN2454 List of figures
List of figures
Figure 1. Schematic diagram of the SMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Small signal equivalent circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 3. Current sense circuit (a) and waveform of sense resistor ( b) . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 4. The normal operation waveforms of output pulse and current spike . . . . . . . . . . . . . . . . . 10
Figure 5. ESBT driving circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 6. h
Figure 7. Start-up circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 8. Minimum input voltage: storage highlighted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 9. Minimum input voltage: switch-on highlighted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 10. Minimum input voltage 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 11. Minimum input voltage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 12. Minimum input voltage: switch-off highlighted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 13. 560V input voltage 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 14. 560V input voltage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 15. 560V input voltage: switch-on highlighted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 16. 560V input voltage: switch-off highlighted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 17. 1050V input voltage 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 18. 1050V input voltage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 19. 1050V input voltage: switch-off highlighted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 20. 1050V input voltage: switch-on highlighted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 21. 110 Vac envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 22. 220 Vac envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 23. 420 Vac envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 24. 480 Vac envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 25. 600 Vac envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 26. 760 Vac envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 27. Top view of the STEVAL-IPB001V1 demo board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 28. Bottom view of the STEVAL-IPB001V1 demo board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
curve from datasheet STC04IE170HP, section 2.1, figure 3 . . . . . . . . . . . . . . . . . . . . 12
FE
3/24
Design specifications and schematic diagram AN2454

1 Design specifications and schematic diagram

Ta bl e 1 lists the converter specifications and main parameters of the STEVAL-IPB001V1
demo board.
Table 1. Converter specifications and main parameters of the STEVAL-IPB001V1
demo board
Symbol Description Values
V
inmin
V
inmax
V
P
out max
P
out min
out
Rectified minimum input voltage 150
Rectified maximum input voltage 1200
Output voltage 24V/83mA
Maximum output power 2W
Minimum output power 0.2W
η Converter efficiency 60%
F Switching frequency 50kHz
V
V
fl
spike
Max over voltage limited by clamping circuit 150V
Reflected flyback voltage 150V
A schematic diagram of the SMPS is given in Figure 1 The most relevant components are:
HV ESBT main switch and simple driving circuit (see Section 6: Base driving circuit
design).
Active start-up circuit with HV bipolar Darlington (see Section 7: Active start-up circuit) .
A specially constructed transformer, with very low parasitic capacitance.
4/24
AN2454 Design specifications and schematic diagram
Figure 1. Schematic diagram of the SMPS
J1
CON3
7
8 2
1
R22 10k
D1
STTH110
D2
STTH110
R26 10
C7 10nF
+
R3 1
4 2
4
R17 22 R19 1k
C9 820pF
T1
5
R15 3.3k
D4
STTH110
1 2 3
R14 18k
R20 100k
C2
+
33uF450V
C5
+
33uF 450V
C6
+
33uF 450V
C8 100p
R16 150k
R21
3.9K
R1 1M 1/8W
R4 1M 1/8W
R7 1M 1/8W
R9 1M 1/8W
R18 2.2k
R11
1M 1/8W
C10 12nF
R12
1M 1/8W
2
R13 680k
31
Q2
PN2222A
U1
2
VFB
1
COMP
8
VREF
4
RT/CT
UC3845B
7
VCC
SENSE
GND
5
OUT
1
100nF
C11
6 3
R2 10k 1/4W
R5 10k 1/4W
R8 10k 1/4W
R10 10k 1/4W
R24 10k 1/4W
R25 10k 1/4W
23
Q3 STP03D200
C1 220uF 35V
R6 10k
13
Q4
STC04IE170HP
R23
6.8
CON2
2 1
J2
C4
+
47uF 25V
D3
1N4148
+
C3 330uF 25V
D5 20V
5/24
Flyback stage AN2454

2 Flyback stage

In this section, only the main steps of the flyback stage are given. For more detailed guidelines on Discontinuous Conduction Mode (DCM) flyback converter design, refer to AN1889.
First, the transformer turn ratio, N
, must be calculated. NP and NS are the respective
P/NS
number of primary and secondary windings. Calculation of the turn ratio is correlated to the maximum voltage rating of the transistor which is used as the primary switch. The voltage of the power switch collector, V
, for flyback operation is given by:
T
Equation 1
N
P
-------
N
+() Vfl==
V
oVFdiode,
+()V
V
oVF diode,
S
where
minarg+++=
spike
the flyback voltage
where V
VTV
is the over voltage limited by the clamp network. It must be chosen so that the
spike
N
-------
N
dcmax
P
S
total voltage across the power switch does not exceed the maximum breakdown voltage of the power switch device (see Equation 1).
Once the V
voltage is fixed, the designer must choose the flyback voltage taking
spike
account of various voltage capabilities available from standard transistors. The higher the flyback voltage the higher the exploitable maximum duty cycle i.e. a higher duty cycle at fixed output power leads to a lower I
current. This improves overall efficiency of the
RMS
primary side, leading to easier design of wide input range voltage converters.
ESBTs, which have breakdown voltage capabilities as high as 2200V, offer designers a valuable tool to simplify projects from an early stage.
For the STEVAL-IPB001V1 demo board using the STC04IE170HP switch, the following parameters must be set:
Margin = 200V.
V
From Equation 1, the flyback vlotage (V
spike
= 150V.
) gives a result of 150 V. The transformer turn ratio
fl
may then be calculated using Equation 2.
Equation 2
V
BV V
N
P
--------------------------------------------------------------------------------- -
-------
N
S
6/24
dcmax
V
oVFdiode,
minarg
spike
+
1700 1200 150 200
---------------------------------------------------------------- 6=== 24 1+
AN2454 Flyback stage
Once the turn ratio is calculated, the system must be stabilized to ensure that the converter operates in discontinuous mode. Equation 3 guarantees that the energy on the primary coil will be completely transferred to the secondary coil before the next cycle occurs.
Equation 3
N
P
V
dcminTonmax
-------
N
V
S
+()T
oVF diode,
==
resetVflTreset
A safety margin of 20% is recommended to guarantee the complete demagnetization of the primary side (see Equation 4).
Equation 4
T
0.8T
onmaxTreset
=
S
where T transformer inductance, and T
Combining Equation 3 and Equation 4 , T
is the maximum power-on time, T
onmax
the switching time.
S
the time needed to demagnetize the
reset
, may be calculated using Equation 5:
onmax
Equation 5
Vfl0.8T
T
onmax
------------------------------ -=
V
S
+
dcminVfl
Once output power has been set to 2 W and the desired efficiency to 60%, the operating switching frequency must be chosen. To do this, a value of 50 kHz should be selected. It is then necessary to calculate the primary inductance (L
6, input power (P
) may be calculated to give an approximate value which does not account
IN
) of the transformer. Using Equation
P
for losses due to the power switch, the input bridge and the rectified network.
Equation 6
Using Equation 7, L
1
-- -
2
P
1.66P
IN
may be calculated as follows:
P
OUT
------------------------
2
LPI
T
1
-- -
V
P
2
------------------------- -===
S
onmax
LPT
2
S
Equation 7
V
dcmin
------------------------------------------ -
L
P
3.33TSP
2
T
onmax
2
11m H=
OUT
Peak current, (I
) on the primary side may be calculated using Equation 8.
P
Equation 8
V
dcminTonmax
-------------------------------------
I
P
L
P
110mA=
It is also important to determine the maximum primary current, I and maximum secondary current, I
rms(secondary)
, (see Equation 10) to obtain correct
dimensions for the wire size of the primary windings.
rms(primary)
, (see Equation 9)
7/24
Parasitic capacitances and related issues AN2454
)
)
Equation 9
I
T
P
onmax
I
rms primary()
-------
------------------ - 40m A=
T
3
S
Equation 10
I
T
S
reset
I
rms ondarysec()
-------
--------------- 240mA=
T
3
S

3 Parasitic capacitances and related issues

In a flyback converter stage it is important to take into account the parasitic capacitances since their influence may affect the correct operation of the converter itself. Figure 1 shows the main schematic diagram of a flyback converter and Figure 2 shows the small signal equivalent model.
The parasitic capacitances between the ESBT collector and ground are mainly due to three components (see Figure 2):
C
C
C
Usually transistors are mounted on a heat-sink by interposing an insulation layer. The heat­sink has to be grounded either for safety reasons, or to minimize the RFI so that C are in the same range as C C power dissipation. Large parasitic capacitances may produce noise problems (origin ringing). Parasitic capacitance are worse at higher input voltages, like those observed in 3­phase power supply.
, the primary inter-winding capacitance;
1
, the intrinsic capacitance of the ESBT between its collector and source;
2
, the parasitic capacitance between the collector of the ESBT and the heat-sink.
3
results
and C2. The resulting total parasitic capacitance (C) is equal to
+ C2 + C3. C may be large enough to produce additional and non-negligible switch-on
1
1
3
Figure 2. Small signal equivalent circuit
T
I nsula ion Pad
Heatsink
ESBT
+
Cbus
ESBT
a
The flyback converter of the demo is operated in DCM, thus, before the end of the off-time the secondary of the transformer has discharged all energy stored in the primary inductance during the previous cycle.
8/24
C1
C3
C2
T
Ic1
T
C1
Heatsink
ESBT
Ic
b
Ic2 Ic3
C2
C3
Loading...
+ 16 hidden pages