ST AN2451 APPLICATION NOTE

AN2451
Application note
ST7540 FSK powerline transceiver
design guide for AMR
Introduction
The ST7540 reference design has been developed as a useful tool to demonstrate how a small, high-performance powerline node can be built using the ST7540 FSK transceiver.
The ST7540 reference design may be considered to be composed of three main sections:
Power supply section, specifically tailored to match powerline coupling requirements
and to operate within a wide range of the input mains voltage
Modem and crystal oscillator section
Line coupling interface section
The coupling interface is designed to allow the ST7540 FSK transceiver to transmit and receive on the mains using 72 kHz carrier frequencies, within the European CENELEC standard A-band specified for automatic meter reading.

Figure 1. ST7540 reference design board with outline dimensions

52 mm
76 mm
As it can be seen from the picture above, a special effort has been made to obtain a very compact reference design board, while keeping the focus on transmission and receiving performances.
Note: The information provided in this application note refers to EVALST7540-2 reference design
board.
January 2010 Doc ID 12791 Rev 3 1/55
www.st.com
Contents AN2451
Contents
1 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Safety precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 ST7540 FSK powerline transceiver description . . . . . . . . . . . . . . . . . . 10
4 Evaluation tools description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5 Board description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1 Coupling interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1.1 Tx active filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1.2 Tx passive filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1.3 Rx passive filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.4 Input impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Conducted disturbances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.1 Conducted emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.2 Noise immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 Thermal design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 Oscillator section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.5 Surge and burst protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.6 50-pin connector for the EVALCOMMBOARD . . . . . . . . . . . . . . . . . . . . . 35
5.7 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6 Performance and ping tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7 Application ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.1 Three-phase architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.2 Zero crossing detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.3 Received Signal Strength Indicator (RSSI) . . . . . . . . . . . . . . . . . . . . . . . 44
7.4 Non-isolated coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.5 DC powerline applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.6 110 and 132.5 kHz coupling circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2/55 Doc ID 12791 Rev 3
AN2451 Contents
Appendix A Board layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
List of normative references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Doc ID 12791 Rev 3 3/55
List of figures AN2451
List of figures
Figure 1. ST7540 reference design board with outline dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 2. Typical curve for output current limit vs. RCL value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 3. ST7540 Transceiver block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 4. Complete evaluation system including a PC, an EVALCOMMBOARD and the EVALST7540-
2 board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 5. ST7540 powerline modem demonstration kit with control register window . . . . . . . . . . . . 12
Figure 6. Positioning of the various sections of the board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 7. Modem and coupling interface schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 8. Power supply schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 9. Schematic of Rx and Tx filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 10. Measured frequency response of the Tx active filter (typical curve) . . . . . . . . . . . . . . . . . . 20
Figure 11. Simulated frequency response of the Tx active filter with components tolerance effect. . . 20 Figure 12. Measured frequency response of the Tx active + passive filters connected to the CISPR net-
work (typical curve) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 13. Simulated frequency response of the Tx active + passive filters connected to the CISPR net­work with the components tolerance effect22
Figure 14. Measured frequency response of the Rx passive filter (typical curve) . . . . . . . . . . . . . . . . 23
Figure 15. Simulated frequency response of the Rx passive filter with components tolerance effect . 24 Figure 16. Measured input impedance magnitude of coupling interface in Tx mode (typical curve) . . 25 Figure 17. Measured input impedance magnitude of coupling interface in Rx mode (typical curve). . 25
Figure 18. Conducted emissions test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 19. Output spectrum (typical) at 72 kHz, 2400 baud, deviation 1, mains 220Vac . . . . . . . . . . 26
Figure 20. Narrow-band conducted interference test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 21. Measured BER vs. SNR curve (typical), white noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 22. SNR vs. frequency curve (typical) at BER = 10-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 23. PCB copper dissipating area for ST7540 reference design board . . . . . . . . . . . . . . . . . . . 29
Figure 24. Packet-fragmented transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 25. Equivalent model of the thermal impedance qJA of the HTSSOP28 package with exposed
pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 26. Output current vs. supply current typical curve for ST7540 in Tx mode . . . . . . . . . . . . . . . 31
Figure 27. Dissipated power vs. load impedance modulus typical curve for ST7540 reference design
board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 28. A recommended oscillator section layout for noise shielding . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 29. Common mode disturbances protection - positive disturbance . . . . . . . . . . . . . . . . . . . . . 33
Figure 30. Common mode disturbances protection - negative disturbance . . . . . . . . . . . . . . . . . . . . . 34
Figure 31. Differential mode disturbances protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 32. Scheme of the connector for the EVALCOMMBOARD . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 33. Typical waveforms at 230 Vac: open load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 34. Typical waveforms at 230 Vac: full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 35. Typical waveforms at 265 Vac: short-circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 36. Typical waveforms at 265 Vac: startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 37. Load regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 38. SMPS efficiency curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 39. ST7540 powerline modem demonstration kit window for the master board . . . . . . . . . . . . 41
Figure 40. Scheme of principle for three-phase architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 41. Schematic of a zero crossing detection circuit for non-isolated coupling . . . . . . . . . . . . . . 43
Figure 42. Schematic of a zero crossing detection circuit for isolated coupling. . . . . . . . . . . . . . . . . . 44
Figure 43. ZC_OUT vs. AC mains waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4/55 Doc ID 12791 Rev 3
AN2451 List of figures
Figure 44. Peak detector electrical schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 45. Measured DC_OUT Vs. AC_IN peak detector response . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 46. Example schematic for non-isolated solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 47. Line coupling interface for 110 kHz channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 48. Line coupling interface for 132.5 kHz channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 49. PCB layout - component placing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 50. PCB layout - top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 51. PCB layout - bottom view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Doc ID 12791 Rev 3 5/55
List of tables AN2451
List of tables
Table 1. Electrical characteristics of the ST7540 reference design . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 2. Output voltage level setting through Vsense partitioning - typical values . . . . . . . . . . . . . . . 8
Table 3. Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 4. ST parts on the ST7540 reference design board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 5. Line coupling transformer specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 6. Noise immunity test settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 7. 50-pin connector digital signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 8. 50-pin connector analog signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 9. 50-pin connector power connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 10. SMPS specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 11. SMPS transformer specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 12. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6/55 Doc ID 12791 Rev 3
AN2451 Electrical characteristics

1 Electrical characteristics

Table 1. Electrical characteristics of the ST7540 reference design

Val ue
Parameter Test conditions
Min Typ Max
Operating conditions
If ST7540 junction temperature
Ambient operating temperature
Transceiver section transmitting specifications (Tx mode)
Selected channel frequency FSK carrier 72 kHz
Transmitting output voltage level at mains output
Transmitting output current limit R6=1.1k – See Figure 2 500 mA rms
nd
2
harmonic distortion
at mains output
3rd harmonic distortion at mains output
exceeds 180 °C device shuts down
R7 = 47k, R8 = 15k – See Table 2
Loaded with CISPR 16-1 network
Loaded with CISPR 16-1 network
85 °C
22.25 V rms
-55
-61
Unit
dB
C
50Hz attenuation 100 dB
Receiving specifications (Rx mode)
-3
Minimum detectable Rx signal BER<10
Auxiliary supply
5 V regulated voltage ST7540 internally generated -5% 5.05 +5% V
5 V current capability 50 mA
3.3 V regulated voltage ST7540 internally generated -5% 3.3 +5% V
3.3 V current capability 50 mA
Power supply section
AC mains voltage range 85 265 V
Mains frequency 50-60 Hz
Output voltage Green led ON -10% 12.3 +10% V
Output voltage ripple Iout = 500 mA, Vin=85 Vac 1 %
Peak output current 500 mA
Output power 5.6 W
Efficiency at Pout=3.5W 70 %
Nominal transformer isolation*
Primary to secondary/ secondary to auxiliary
, negligible noise 48 dBµV rms
4 kV
Doc ID 12791 Rev 3 7/55
Electrical characteristics AN2451
Table 1. Electrical characteristics of the ST7540 reference design (continued)
Val ue
Parameter Test conditions
Min Typ Max
Number of holdup cycles 0
Input power 100 mW
Switching frequency Transceiver section in Tx mode -10% 65 +10% kHz
Switching frequency
Transceiver section in Rx mode
-10% 21 +10% kHz
Unit
Table 2. Output voltage level setting through V
V(PA_OUT)
[V
]
P-P
V(PA_OUT)
[V
]
RMS
V(PA_OUT)
[dBuV
RMS
]
partitioning - typical values
sense
R
7
[kΩ]
2.830 1.000 120 16 15
3.170 1.120 121 20 15
3.560 1.260 122 24 15
3.990 1.410 123 27 15
4.470 1.580 124 33 15
5.030 1.780 125 39 15
5.660 2.000 126 47 15
6.340 2.240 127 51 15
7.100 2.510 128 56 15
7.980 2.820 129 68 15

Figure 2. Typical curve for output current limit vs. RCL value

R
[kΩ]
8
8/55 Doc ID 12791 Rev 3
AN2451 Safety precautions

2 Safety precautions

The board must be used only by expert technicians. Due to the high voltage (220 V ac) present on the parts which are not isolated, special care should be taken with regard to people's safety.
There is no protection against high voltage accidental human contact.
After disconnection of the board from the mains, none of the live parts should be touched immediately because of the energized capacitors.
It is mandatory to use a mains insulation transformer to perform any tests on the high voltage sections (see circuit sections highlighted in Figure 7 and Figure 8) in which test instruments like Spectrum Analyzers or Oscilloscopes are used.
Do not connect any oscilloscope probes to high voltage sections in order to avoid damaging instruments and demonstration tools.
Warning: ST assumes no responsibility for any consequences which
may result from the improper use of this tool.
Doc ID 12791 Rev 3 9/55
ST7540 FSK powerline transceiver description AN2451

3 ST7540 FSK powerline transceiver description

ST7540 transceiver uses frequency shift keying (FSK) modulation to perform a half-duplex communication on a powerline network. It operates from a 7.5 to 13.5 V single supply voltage (Vcc) and integrates a power amplifier (PA), which is able to drive low line impedance, and two linear regulators providing 5 V and 3.3 V.

Figure 3. ST7540 Transceiver block diagram

The ST7540 can communicate using eight different communication channels (60, 66, 72, 76, 82.05, 86, 110, 132.5 kHz), four baud rates (600, 1200, 2400, 4800) and two deviations (1 and 0.5). Additional functions are included, such as watchdog, automatic control on PA output voltage and current, carrier/preamble detection and band-in-use signaling, transmission time-out, and thermal shutdown.
The transceiver, which is dedicated only to physical communication, operates with a microcontroller whose aim is to manage the communication protocol stack. A reset output (RSTO) and a programmable clock (MCLK) can be provided to the microcontroller by the ST7540 in order to simplify the external logic and circuitry.
The host controller can exchange data with the transceiver through a serial interface, programmable to operate either in UART (CLR/T data clock not used) or in SPI mode. Communication on the power line can be either synchronous or asynchronous to the data clock that is provided by the transceiver at the programmed baud rate.
When in transmission mode (i.e. RxTx line at low level), the ST7540 samples the digital signal on the TxD line at the programmed baud rate and modulates it in a FSK sinusoidal output on the Tx_OUT line. This signal is then externally fed into the power amplifier to add current capability. The power amplifier can also introduce gain and active filtering to the signal, just using few external passive components. The resulting signal on the PA_OUT line is coupled to the power line.
When in receiving mode (i.e. RxTx line at high level), an incoming FSK signal on the Rx_IN line is demodulated and the digital output is available for the microcontroller on the RxD pin.
10/55 Doc ID 12791 Rev 3
AN2451 Evaluation tools description
The device also recovers the synchronism of the received signal using an internal PLL. The recovered clock is present on CLR/T output.
The ST7540 operating parameters can be set by means of an internal control register, accessible only through the SPI host interface.

4 Evaluation tools description

The complete evaluation system for the ST7540 powerline communication consists of:
a PC using the "ST7540 power line modem demo kit" software tool
one EVALCOMMBOARD hosting the ST7 microcontroller
one ST7540 reference design board (EVALST7540-2).
The correct procedure for connecting the EVALST7540-2 and the EVALCOMMBOARD is as follows:
1. Connect the EVALST7540-2 and the EVALCOMMBOARD
2. Connect the ac mains cable to the EVALST7540-2 and the USB cable to the EVALCOMMBOARD
3. Connect the EVALST7540-2 to the ac mains supply
4. Connect the EVALCOMMBOARD to the PC via the USB cable.
Warning: Follow the connection procedure to avoid damaging the
boards.
Figure 4. Complete evaluation system including a PC, an EVALCOMMBOARD and
the EVALST7540-2 board
B /
UUSSB
RS232
Doc ID 12791 Rev 3 11/55
Evaluation tools description AN2451

Figure 5. ST7540 powerline modem demonstration kit with control register window

The complete chain, controlled by the ST7540 powerline modem demonstration kit, can set up real communication at bit level, simply by sending or receiving a user-defined bit stream.
It is possible to establish a half-duplex communication with two of these communication nodes (two chains) connected to each other. In order to better evaluate communication between two nodes, the ST7540 powerline modem demonstration kit has some particular features, including:
Frame synchronization: a byte synchronization header can be added to the to the
exchanged data to set up a simple protocol, intended to test the capability of the system to correctly receive the exact transmitted bit sequence. This can be done in two ways: via the ST7540 control register settings (the internal configuration register of the modem has a frame header field, in which an 8- or 16-bit header can be set) or via the Rx panel of the ST7540 powerline modem demonstration kit (setting a synchronization at SW level). A bit synchronization can be introduced as a simpler feature by enabling the preamble detection method in the control register panel and then inserting at least one “0101” or one “1010” sequence at the beginning of the transmitted bit stream.
Ping session: a master-slave communication with automatic statistics calculation can
be very useful to test a point-to-point or a point-to-multipoint powerline communication network, thus providing a method to evaluate reachability of each node in the network. For further details about the ST7540 powerline modem demonstration kit, please refer to the user manual UM0239 “ST7540 power line modem demo kit graphical user interface”.
12/55 Doc ID 12791 Rev 3
AN2451 Board description

5 Board description

The ST7540 reference design is composed of the following sections:
Power supply section, based on ST’s VIPer12A-E IC
ST7540 modem and crystal oscillator section
Line coupling interface section, with three subsections:
Transmission active filter
Transmission passive filter
Receiving passive filter.
The board also has two connectors, which allow the user to plug the mains supply on one side of it and the I.B.U. communication board on the other side.

Figure 6. Positioning of the various sections of the board

The schematics of the whole reference design appear in Figure 7 and 8. Figure 7 shows the modem and the coupling Interface circuits, while Figure 8 represents the power supply circuit. In both the schematics, high voltage regions are highlighted.
Ta bl e 3 lists the components used to develop the reference design board. All parts have
been selected to give optimal performances.
The layout of the printed circuit is given in Appendix A - Figure 49, Figure 50 and Figure 51.
Doc ID 12791 Rev 3 13/55
Board description AN2451

Figure 7. Modem and coupling interface schematic

HIGH
VOLTAGE
SECTION
14/55 Doc ID 12791 Rev 3
AN2451 Board description

Figure 8. Power supply schematic

VccVcc
VssVss
Vcc
TEST PADS
L3
470uHL3470uH
T1T1
C4
C4
R2
220kR2220k
Vcc
L4
33 uHL433 uH
D4D4
2 1
1
470pF 630V
470pF 630V
+
+
C2
C2
10uF 400V
10uF 400V
R5
1k5R51k5
D6
LEDD6LED
C29
C29
47uF 16V
47uF 16V
C9
C9
47uF 16V
47uF 16V
C8
470uF 16V
C8
470uF 16V
+
+
R4
560R4560
8
5
4
3
2
C5
220 pFC5220 pF
23
D2D2
Q1Q1
13
R3
1
D3D3
DC OUTPUT
C10
2.2 nF
C10
2.2 nF
10 KR310 K
12 V dc
1
3
D5
10VD510V
2 1 3
24
U2U2
R1
F1
D1
D1
4
10R 1WR110R 1W
T - 2AF1T - 2A
BRIDGE
BRIDGE
6
5
CN1CN1
C3
10uF 400V
C3
10uF 400V
+
+
1
3
-+
-+
2
10
L2L2
1
L1
1 mHL11 mH
N
P
C1
1
33nF X2C133nF X2
2
AC INPUT
85 V ac to 256 V ac
U1U1
578
DRAIN
FB
Vdd
3 6
C6
10 uFC610 uF
S
241
C7
47 nFC747 nF
HIGH VOLTAGE SECTION
Doc ID 12791 Rev 3 15/55
Board description AN2451

Table 3. Bill of materials

Item Qty Part Value Description
1 1 CN1 HEADER 2 Mains supply connector
2 1 CN2 CON50A 50 pins SMT right angle female p=1.27mm
3 1 C1 33nF X2 Murata GA355XR7-GB333K
4 2 C2,C3 10uF / 400V Yageo SE-K / Nichicon VK 20%
5 1 C4 470pF / 1kV TDK C4520X7R-3A471K
6 1 C5 220pF / 50V TDK C0603C0G-1E220J
7 4 C6,C15,C17,C24 10uF / 16V TDK C3216X7R-1C106MT
8 1 C7 47nF / 25V Murata GRM188R7-1E473K
9 1 C8 470uF / 16V Rubycon 3M0319 / Yageo SE-K 20%
10 2 C9,C29 47uF / 16V Murata GRM32ER6-1C476K
11 1 C10 2.2nF Y1
12 2 C11,C12 33pF TDK C1005C0G-1H330J
13 2 C14,C27 10nF Murata GRM188R7-1H103K
14 4 C16,C18,C19,C25 100nF TDK C1608X7R-1H104K
15 2 C21,C33 150pF Murata GRM1885C-1H151J
16 1 C22 10uF
17 1 C23 100nF X2 EPCOS B32922-A2104K
18 1 C26 22nF
19 1 C30 15pF Murata GRM1555C-1H150J
20 1 C31 22pF Murata GRM1555C-1H220J
21 1 C32 390pF Murata GRM1885C-1H391J
22 1 D1 DF06S 600 V - 1.5 A bridge rectifier
23 1 D2 STTH1L06A SMA ultra-fast Schottky diode
24 1 D3 BAS16 / BAS21 SOT23
25 1 D4 STPS1H100 SMA Schottky diode
TDK CD12-E2GA222MYNS / Murata DE1E3-KX222M
Murata GRM21BR6-1A106K / TDK C2012X5R-0J106K
Murata GRM21B5C-1H223J / TDK C3216C0G1H223J
26 1 D5 BZX84C10 SOT23 10V zener diode
27 1 D6 LED Green LED
28 2 D8, D10 BAT54S SOT23 low drop Schottky diode
29 1 D9 SM6T12CA 12V bidirectional transil diode
30 1 F1 2A - T Time-lag fuse
31 1 JP4 CLOSE
32 1 J1 CONNECTOR
16/55 Doc ID 12791 Rev 3
AN2451 Board description
Table 3. Bill of materials (continued)
Item Qty Part Value Description
33 1 L1 1mH Epcos B82442-H1105K
34 1 L2 2x10mH 0.3A Radiohm 42V15
35 1 L3 470uH Epcos B82442-A1474K
36 1 L4 33uH Epcos B82462-A4333K
37 1 L5 47uH
38 1 L6 220uH
39 1 Q1 BC857BL SOT23
40 1 R1 10R 1W Metal oxide type - radial
41 1 R2 220K 0603 1%
42 1 R3 10K 0603 1%
43 1 R4 560 0603 1%
44 1 R5 1K5 0603 1%
45 1 R6 1K1 0603 1%
46 1 R7 47K 0603 1%
47 1 R8 15K 0603 1%
48 1 R9 4K7 0603 1%
49 1 R10 12K 0603 1%
50 1 R12 1K 0603 1%
51 1 R14 1K8 0603 1%
52 1 R17 470 0603 1%
Epcos B82464-A4473K /
WE 744-775-147
Epcos B82462-A4224K /
WE 744-774-222
53 1 R19 3K9 0603 1%
54 1 R20 56K 0603 1%
55 1 R21 2K7 0603 1%
56 1 T1
57 1 T2
58 1 U1 VIPER12AS SMPS controller / switch
59 1 U2 SFH610-A Opto-switch
60 1 U3 ST7540 Powerline transceiver
61 1 X1 16 MHz
SMPS
transformer
Line
transformer
Doc ID 12791 Rev 3 17/55
TDK SRW12.6EF-E07H013 / WE S06-100-057
VAC T60403-K5024-X044 / Radiohm 69H14-2101
Loading...
+ 38 hidden pages