ST AN2426 APPLICATION NOTE

AN2426

Application note

Auxiliary power supply with

VIPer53EDIP

1 Introduction

This document describes the reference design of the 25W Switch Mode Power Supply which is dedicated to industrial or white goods applications. The board accepts wide range input voltages (90 to 265Vrms) and delivers 2 or 3 output voltages depending on the version. Two types of power supply are available: negative output or positive output voltage. The actual version depends the way the components are assembled on the secondary side and on the configuration of jumpers. On the primary side, the PCB and transformer are the same for both versions. More information is available in Chapter 3. The Switch mode power supply is based on the VIPer53E. The VIPer53E combines in the same package an enhanced current mode PWM controller with a high voltage MDMesh Power Mosfet. High efficiency and low standby consumption are the main characteristics of this board. Such features, coupled with minimal part requirements and global low cost in addition to, makes it an ideal solution for powering industrial or consumer equipment, meeting worldwide standards.

Figure 1. STEVAL-ISA023V1 demo board, described in this application note

January 2007

Rev 1

1/45

www.st.com

Contents

AN2426 - Application note

 

 

Contents

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 1

2

Main characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

3

Circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8

4

Cross regulation and stand by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

5

Functional checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

 

5.1

Stand by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

 

5.2

Short-circuit tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

 

5.3

Start-up behavior at full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

 

5.4

Wake-up time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

 

5.5

Power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

 

5.6

Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

 

5.7

Output ripple voltage at full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

6

Conducted noise measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

7

Part list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

36

8

PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

39

9

Transformer specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

41

 

9.1

Electrical characteristics: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

41

 

9.2

Manufacturer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

43

10

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

44

2/45

AN2426 - Application note

List of tables

 

 

List of tables

Table 1. Output voltages, positive version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table 2. Output voltages, negative version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Table 3. Output voltages at VIN 90VAC, 12V / 0.8A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 4. Output voltages at VIN 230VAC, 12V / 0.8A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 5. Output voltages at VIN 90VAC, 5V / 3A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 6. Output voltages at VIN 230VAC, 5V / 3A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 7. Output voltages at VIN 90VAC, –12V / 0.8A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 8. Output voltages at VIN 230VAC, –12V / 0.8A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 9. Output voltages at VIN 90VAC, –5V / 3A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 10. Output voltages at VIN 230VAC, –5V / 3A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 11. Output voltages with open feedback loop - positive version of power supply. . . . . . . . . . . 29

Table 12. Output voltages with open feedback loop - negative version of power supply . . . . . . . . . . 29 Table 13. Bill of material (Part 1 of 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 14. Bill of material (Part 2 of 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 15. Bill of material (Part 3 of 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 16. Winding characteristics of transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 17. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3/45

List of figures

AN2426 - Application note

 

 

List of figures

Figure 1.

STEVAL-ISA023V1 demo board, described in this application note . . . . . . . . . . . . . . . . .

. 1

Figure 2.

Electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 7

Figure 3.

Drain voltage and current at VIN = 90VAC - 50Hz and full load . . . . . . . . . . . . . . . . . . . . .

. 9

Figure 4.

Drain voltage and current at VIN = 230VAC - 50Hz and full load . . . . . . . . . . . . . . . . . . . .

10

Figure 5.

Drain voltage and current at VIN = 265VAC - 50Hz and full load . . . . . . . . . . . . . . . . . . . .

10

Figure 6.

Diodes voltages at VIN = 265VAC - 50Hz and full load. . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

Figure 7.

Drain-source and VDD voltage and current at VIN = 90VAC - 50Hz and full load . . . . . . .

12

Figure 8.

Drain-source and VDD voltage and current at VIN = 265VAC - 50Hz and full load . . . . . .

12

Figure 9.

Power consumption during stand by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

Figure 10.

Device voltages in stand by operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

Figure 11.

Short circuit on 5V at VIN = 90VAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

Figure 12.

Short circuit on 5V at VIN = 230VAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

Figure 13.

Short circuit on 5V at VIN = 265VAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

Figure 14.

Short circuit on 12V at VIN = 90VAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

Figure 15.

Short circuit on 12V at VIN = 230VAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

Figure 16.

Short circuit on 12V at VIN = 265VAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

Figure 17.

Start-up, positive version of power supply at VIN = 90VAC . . . . . . . . . . . . . . . . . . . . . . . .

21

Figure 18.

Start-up, positive version of power supply at VIN = 230VAC . . . . . . . . . . . . . . . . . . . . . . .

22

Figure 19.

Start-up, negative version of power supply at VIN = 90VAC. . . . . . . . . . . . . . . . . . . . . . . .

22

Figure 20.

Start-up, negative version of power supply at VIN = 230VAC. . . . . . . . . . . . . . . . . . . . . . .

23

Figure 21.

Wake-up time, positive version of power supply at VIN = 90VAC . . . . . . . . . . . . . . . . . . . .

24

Figure 22.

Wake-up time, positive version of power supply at VIN = 230VAC . . . . . . . . . . . . . . . . . .

24

Figure 23.

Wake-up time, negative version of power supply at VIN = 90VAC . . . . . . . . . . . . . . . . . . .

25

Figure 24.

Wake-up time, negative version of power supply at VIN = 230VAC . . . . . . . . . . . . . . . . . .

25

Figure 25.

Power down, positive version of power supply at VIN = 90VAC . . . . . . . . . . . . . . . . . . . . .

26

Figure 26.

Power down, positive version of power supply at VIN = 230VAC . . . . . . . . . . . . . . . . . . .

27

Figure 27.

Power down, negative version of power supply at VIN = 90VAC . . . . . . . . . . . . . . . . . . . .

27

Figure 28.

Power down, negative version of power supply at VIN = 230VAC . . . . . . . . . . . . . . . . . . .

28

Figure 29.

Ripple voltage at switching frequency, positive version of power supply . . . . . . . . . . . . . .

30

Figure 30.

Ripple voltage at switching frequency, negative version of power supply . . . . . . . . . . . . .

30

Figure 31.

Conducted noise measurements Phase A - positive version of power supply,

 

 

peak detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

Figure 32.

Conducted noise measurements Phase B - positive version of power supply,

 

 

peak detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

32

Figure 33.

Conducted noise measurements Phase A - positive version of power supply,

 

 

AVG detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

32

Figure 34.

Conducted noise measurements Phase B - positive version of power supply,

 

 

AVG detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33

Figure 35.

Conducted noise measurements Phase A - negative version of power supply,

 

 

peak detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33

Figure 36.

Conducted noise measurements Phase B - negative version of power supply,

 

 

peak detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34

Figure 37.

Conducted noise measurements Phase A - negative version of power supply,

 

 

AVG detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34

Figure 38.

Conducted noise measurements Phase B - negative version of power supply,

 

 

AVG detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

35

Figure 39.

Silk screen - top side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

39

Figure 40.

Silk screen - bottom side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

39

4/45

AN2426 - Application note

List of figures

 

 

Figure 41. Copper tracks - bottom side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Figure 42. Transformer layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure 43. Dimension and appearance of transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure 44. Winding position of transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5/45

Main characteristics

AN2426 - Application note

 

 

2 Main characteristics

The main characteristics of the SMPS are listed below:

Input voltage: Vin: 90-265Vrms

Frequency 45-66Hz

Output voltages are given in Table 1, and 2:

Standby consumption: <1 Watt

Short circuit protection: on all outputs with auto-restart at short removal

EMI according to:EN55022 Class B.

Table 1.

Output voltages, positive version

 

 

 

VOUT

IOUT

 

PMAX

Stability

 

3.3V

100mA

 

330mW

2%

 

 

 

 

 

 

 

5V

3A

 

15W

5%

 

 

 

 

 

 

 

12V

0.8A

 

9.6W

15%

 

 

 

 

 

POUT = 24.93W

 

 

 

 

Table 2.

Output voltages, negative version

 

 

 

VOUT

IOUT

 

PMAX

Stability

 

–5V

3A

 

15W

5%

 

 

 

 

 

 

 

–12V

0.8A

 

9.6W

15%

 

 

 

 

 

POUT = 24.6W

 

 

 

 

6/45

AN2426 - Application note

Main characteristics

 

 

Figure 2. Electrical diagram

 

 

 

 

 

 

 

CON1

 

 

 

 

 

 

 

 

 

 

 

 

2

1

 

 

 

 

 

 

 

 

 

Input 85 - 265VAC

2

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2A

 

F1

15R

RT1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100nF/275VAC/X2

 

 

 

 

 

t

 

 

 

 

 

 

 

 

C1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20mH/

 

1A

 

 

 

 

 

 

 

100nF/275VAC/X2

 

 

 

 

 

 

 

 

 

 

1M

R2

C2

 

 

1M

 

R1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

D1

 

 

 

 

 

 

 

 

 

68µF/400V

C3

 

 

 

 

 

 

 

 

 

 

5.6k

R3

 

 

 

 

 

 

 

 

4.7nF/50V

 

C4

6

2

 

 

VIPer 53DIP

 

 

 

 

 

 

 

 

 

U1

 

 

 

 

 

 

 

 

 

 

 

 

NC

OSC

 

 

 

 

 

 

 

 

 

39nF

C5

8

 

7

 

 

 

 

 

 

 

 

 

 

 

 

TOVL

 

 

 

 

 

 

 

 

 

 

 

 

1 COMP VDD

 

 

 

 

 

 

 

 

 

 

C6

R4

 

4

S

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

D

 

 

 

 

 

 

 

 

 

150nF

5.1k

 

3

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22µF/35V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D2 STPS1150

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q1

BC807-40

 

 

 

 

 

7.5k

R5

 

 

 

 

 

 

 

1.5KE150A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D4

 

D5

 

 

 

 

 

 

120pF

C8

 

 

STTH1R06

 

 

 

 

 

 

 

D3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BAR18

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

4

 

3

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2nF/Y1

U2

 

 

 

 

6

 

7

 

 

 

 

 

8

9

10

PC817

 

 

 

 

 

 

STPS1045D

 

 

 

 

3

4

 

 

 

 

 

 

D7

 

 

 

 

 

 

 

 

 

 

STPS1045D

D6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D8

2

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C9

STPS2H100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C10

 

 

+

 

 

 

 

R14

 

 

 

 

 

 

 

+

 

 

 

470µF/25V

 

1k

 

 

 

 

 

 

 

1000µF/25V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

+

 

 

 

 

 

 

 

 

 

 

 

 

C11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1000µF/25V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.1µH

L3

 

 

 

 

 

 

 

 

R7

 

 

R6

 

 

 

 

 

 

 

 

 

 

 

 

220R

220R

 

 

 

 

 

 

 

 

 

 

0R

R9

 

 

R80R

 

 

 

 

 

 

 

 

 

 

 

U3

 

 

 

 

R10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10k

 

 

 

 

 

 

 

 

 

 

TL431

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100nF

 

 

 

 

 

 

 

 

 

L2

R12

 

R11

 

 

 

 

 

 

 

 

3.3µH

15k

 

 

15k

 

 

 

 

 

 

 

 

+

 

 

+

 

+

+

 

 

 

 

 

 

 

 

 

 

 

 

Positive version only

 

 

 

 

 

470µF/25V

C13

 

 

 

 

 

C14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C15

 

100nF

 

33µF/35V

Negative version only

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

120R

 

R13

9.1V

D9

 

 

 

 

 

 

L78L33

U4

 

 

 

 

C17

 

 

 

 

 

 

 

 

 

VIN

 

470n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GND

 

 

 

 

 

 

 

 

 

 

 

 

VOUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C18

100n

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

4

3

2 1

 

AI12637

 

 

 

 

 

 

 

 

 

 

 

 

 

CON2

 

7/45

Circuit description

AN2426 - Application note

 

 

3 Circuit description

The converter topology of this SMPS is the fly-back, working in continuous and discontinuous conduction mode. The core of this design is the primary controller VIPer53EDIP, integrating the controller and a Power Mosfet in a single, standard DIP-8 package. The device integrates all the functions needed to control and protect a power supply, giving a modern, compact and cheap solution to SMPS designs. If an SMT mounting is required, a PowerSO-10 version is also available (VIPer53ESP).

The operating frequency of the circuit (~60kHz) has been chosen in order to obtain a compromise between the transformer size and the input filter complexity. Frequency modulation has been implemented on the input of VIPer53E to reduce electromagnetic interferences on the SMPS. Thus, the EMI input filter can be a simple LC-filter consists of CMC and two X2 capacitors, for differential and common mode noise. The input of SMPS is protected against inrush peak current by an NTC. In case any catastrophic failures a standard 5 x 20mm fuse disconnects the SMPS from mains. The transformer reflected voltage is ~73V, which provides enough room for the leakage inductance voltage spike and leaves enough margin of reliability. The D4 diode and the D5 transil, clamp the leakage inductance voltage spike, assuring reliable operation of the Viper53EDIP.

The transformer is manufactured by TDK, and designed according to the safety standard EN60950. It has two secondary windings, which provide 5 and 12V or –5 and –12V, and an additional winding which provides the supply voltage for the VIPer53EDIP.

This power supply can generate positive or negative output voltages depending on the configuration of the jumpers. Jumpers J1, J2, J5 and J7 have to be assembled for the positive version of the power supply, whilst jumpers J3, J4, J6 and J8 have to be assembled for the negative version. It is also mandatory to change polarity of the output electrolytic capacitors: C9, C10, C11, C13 and C14. Diode D6 is found on the secondary side of the positive power supply, whilst diode D7 is found on the negative side. The polarization of the diode D8 has to be also changed. The positive power supply can generate a voltage of 3.3V from the linear regulator U4.

The output rectifiers have been chosen in accordance with the maximum reverse voltage and their power dissipation. The 5V and –5V rectifier is a Schottky barrier, type STPS1045D0. It is assembled in an axial TO220 package. The 12V and –12V rectifier is a Schottky barrier, type STPS2H100. It is assembled in an SMD package. This rectifier has low forward voltage drop, therefore it improves efficiency as it has a lower power dissipation in comparison with a standard type. A small LC filter has been added on both outputs in order to filter the high frequency ripple without increasing the output capacitors size or quality. Output voltage regulation is performed by secondary feedback, which monitors the 5V output. The feedback network is a classical one, which uses a TL431 and optocoupler. It assures the required insulation between the primary and secondary sides. The optotransistor drives the COMP pin of the Viper53EDIP, directly. Capacitor C6 and resistor R4 are parts of the compensation loop filtering the high frequency noise.

The VIPer53EDIP is activated at start-up by an internal current source, charging capacitor C7 from the DC bus via the Drain pin. As a result of this circuit, the start-up time is short and independent from the mains voltage input. During normal operation the device is powered by the transformer via the LEB circuit (Q1, C8, D3 and R5) and the D2 diode. The LEB circuit filters leakage inductance spikes, i.e. it blanks the spike appearing at the leading edges of the voltage which are generated by the self-supply winding. These spikes, which are due to inductance leakage from the transformer, are the major cause of raised VCC

8/45

AN2426 - Application note

Circuit description

 

 

voltages at high load. This circuit also helps to keep the max VCC voltage under control if the transformer has a high leakage inductance across the auxiliary.

The switching frequency is selected by resistor R3 and capacitor C4. Capacitor C5 provides a delay to the current protection intervention, the so called TOVL function.

Figure 3, Figure 4 and Figure 5 show the drain voltage and current at nominal mains voltage input during normal operation at full load. Clearly the current peak is below the maximum current peak defined in the VIPer53 datasheet. The drain voltage rise time is around 120ns. Figure 3 shows the drain peak voltage at full load and maximum mains voltage input. The measured voltage of 564V, assures reliable operation of the Viper53 MOSFET with a good margin of the maximum break down voltage BVDSS (620V).

Figure 3. Drain voltage and current at VIN = 90VAC - 50Hz and full load

Ch1: VPIN5 (Drain) Ch4: IPIN5 (Drain current)

9/45

Circuit description

AN2426 - Application note

 

 

 

 

Figure 4.

Drain voltage and current at VIN = 230VAC - 50Hz and full load

 

 

 

Ch1: VPIN5 (Drain) Ch4: IPIN5 (Drain current)

Figure 5. Drain voltage and current at VIN = 265VAC - 50Hz and full load

Ch1: VPIN5 (Drain) Ch4: IPIN5 (Drain current)

10/45

AN2426 - Application note

Circuit description

 

 

The Figure 6 shows the maximum PIV of rectifiers. They have been measured during 'worst case scenario'. The margin, with respect to the maximum voltage sustained by each diode, assure a safe operating conditions for these devices.

Figure 6. Diodes voltages at VIN = 265VAC - 50Hz and full load

Ch3: +5V Diode: Anode voltage Ch4: +12V Diode: Anode voltage

Signals measured on the VIPer53E are shown in Figure 7 and Figure 8, the most salient controller IC signals are shown. In both figures, clean waveforms, free of hard spikes and noise that could affect correct operation of SMPS, are distinguishable.

11/45

ST AN2426 APPLICATION NOTE

Circuit description

AN2426 - Application note

 

 

 

 

Figure 7.

Drain-source and VDD voltage and current at VIN = 90VAC - 50Hz and full

 

 

load

 

 

 

Ch1: VPIN5 (Drain) Ch2: VPIN1 (Comp) Ch3: VPIN2 (Osc) Ch4: VPIN7 (VDD)

Figure 8. Drain-source and VDD voltage and current at VIN = 265VAC - 50Hz and full load

Ch1: VPIN5 (Drain) Ch2: VPIN1 (Comp) Ch3: VPIN2 (Osc) Ch4: VPIN7 (VDD)

12/45

AN2426 - Application note

Cross regulation and stand by

 

 

4 Cross regulation and stand by

The following tables show the output voltages for both positive and negative version of power supplies, in addition to the overall efficiency of the converter measured at different input voltages. All the output voltages have been measured on the output connector. It should be noted that the 5V output is regulated. The 12V output is influenced by load of 5V branch. If the 5V voltage branch is not loaded typically the voltage on the 12V branch fall rapidly down.

Positive version of power supply

Table 3.

 

Output voltages at VIN 90VAC, 12V / 0.8A

 

 

 

 

3.3V

 

5V

 

 

12V

POUT

 

PIN

Efficiency

 

 

 

 

 

 

 

 

 

 

 

Voltage

 

Current

 

Voltage

 

Current

 

Voltage

Current

 

 

 

 

[W]

 

[W]

[%]

[V]

 

[A]

 

[V]

 

[A]

 

[V]

[A]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.28

0.1

4.95

 

0.5

11.00

0.8

11.60

15.30

75.80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.28

0.1

4.95

 

1.0

11.13

0.8

14.17

18.70

75.70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.28

0.1

4.94

 

1.5

11.23

0.8

16.71

22.00

75.90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.28

0.1

4.93

 

2.0

11.31

0.8

19.22

25.50

75.40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.28

0.1

4.92

 

2.5

11.39

0.8

21.73

29.00

74.90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.28

0.1

4.91

 

3.0

11.47

0.8

24.23

32.50

74.50

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.

 

Output voltages at VIN 230VAC, 12V / 0.8A

 

 

 

 

3.3V

 

5V

 

 

12V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

POUT

 

PIN

Efficiency

Voltage

 

Current

 

Voltage

 

Current

 

Voltage

Current

 

 

 

 

 

[W]

 

[W]

[%]

[V]

 

[A]

 

[V]

 

[A]

 

[V]

[A]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.28

 

0.1

 

4.95

 

0.5

 

10.97

0.8

11.58

 

15.20

76.20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.28

 

0.1

 

4.95

 

1.0

 

11.12

0.8

14.16

 

18.40

76.90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.28

 

0.1

 

4.94

 

1.5

 

11.21

0.8

16.70

 

21.50

77.60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.28

 

0.1

 

4.93

 

2.0

 

11.28

0.8

19.20

 

24.80

77.40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.28

 

0.1

 

4.92

 

2.5

 

11.35

0.8

21.70

 

27.90

77.70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.28

 

0.1

 

4.91

 

3.0

 

11.42

0.8

24.19

 

31.20

77.50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13/45

Cross regulation and stand by

 

 

 

 

 

 

 

 

 

 

AN2426 - Application note

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.

Output voltages at VIN 90VAC, 5V / 3A

 

 

 

 

 

 

 

 

 

 

3.3V

 

5V

 

12V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

POUT

 

PIN

 

Efficiency

 

Voltage

Current

Voltage

 

 

Current

 

Voltage

 

Current

 

 

 

 

 

 

 

 

[W]

 

[W]

[%]

 

[V]

[A]

[V]

 

 

[A]

 

[V]

 

 

[A]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.28

 

0.1

 

4.91

 

3.0

12.25

 

0.2

 

17.50

23.80

73.50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.28

 

0.1

 

4.91

 

3.0

11.74

 

0.4

 

19.75

26.60

74.20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.28

 

0.1

 

4.91

 

3.0

11.56

 

0.6

 

21.98

29.60

74.20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.28

 

0.1

 

4.91

 

3.0

11.46

 

0.8

 

24.21

32.50

74.50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.

Output voltages at VIN 230VAC, 5V / 3A

 

 

 

 

 

 

 

3.3V

 

 

5V

 

12V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

POUT

 

PIN

 

Efficiency

 

Voltage

 

Current

 

Voltage

 

 

Current

 

Voltage

 

Current

 

 

 

 

 

 

 

 

 

 

 

[W]

 

[W]

 

[%]

 

[V]

 

[A]

 

[V]

 

 

[A]

 

[V]

 

[A]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.28

 

0.1

 

4.91

 

 

3.0

 

12.22

 

 

0.2

 

 

17.49

 

23.10

 

75.70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.28

 

0.1

 

4.91

 

 

3.0

 

11.71

 

 

0.4

 

 

19.73

 

25.80

 

76.50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.28

 

0.1

 

4.91

 

 

3.0

 

11.52

 

 

0.6

 

 

21.96

 

28.40

 

77.30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.28

 

0.1

 

4.91

 

 

3.0

 

11.41

 

 

0.8

 

 

24.17

 

31.10

 

77.70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Negative version of power supply

Table 7.

Output voltages at VIN 90VAC, –12V / 0.8A

 

 

 

 

–5V

–12V

 

POUT

PIN

Efficiency

 

 

 

 

 

 

Voltage [V]

 

Current [A]

Voltage [V]

Current [A]

 

[W]

[W]

[%]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–4.98

 

0.5

–10.97

0.8

 

11.30

14.50

77.70

 

 

 

 

 

 

 

 

 

–4.97

 

1.0

–11.16

0.8

 

13.90

18.00

77.20

 

 

 

 

 

 

 

 

 

–4.96

 

1.5

–11.27

0.8

 

16.40

21.50

76.50

 

 

 

 

 

 

 

 

 

–4.95

 

2.0

–11.36

0.8

 

19.00

25.10

75.60

 

 

 

 

 

 

 

 

 

–4.95

 

2.5

–11.45

0.8

 

21.50

28.60

75.20

 

 

 

 

 

 

 

 

 

–4.94

 

3.0

–11.54

0.8

 

24.00

32.20

74.60

 

 

 

 

 

 

 

 

 

Table 8.

Output voltages at VIN 230VAC, –12V / 0.8A

 

 

 

–5V

–12V

 

POUT

PIN

Efficiency

 

 

 

 

 

 

Voltage [V]

 

Current [A]

Voltage [V]

Current [A]

 

[W]

[W]

[%]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–4.98

 

0.5

–10.97

0.8

 

11.30

14.50

77.70

 

 

 

 

 

 

 

 

 

–4.97

 

1.0

–11.12

0.8

 

13.90

17.80

77.90

 

 

 

 

 

 

 

 

 

–4.96

 

1.5

–11.24

0.8

 

16.40

21.00

78.20

 

 

 

 

 

 

 

 

 

–4.95

 

2.0

–11.33

0.8

 

19.00

24.30

78.00

 

 

 

 

 

 

 

 

 

–4.94

 

2.5

–11.41

0.8

 

21.50

27.40

78.40

 

 

 

 

 

 

 

 

 

–4.93

 

3.0

–11.48

0.8

 

24.00

30.70

78.10

 

 

 

 

 

 

 

 

 

14/45

Loading...
+ 31 hidden pages